1
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Taherpoor P, Farzad F, Zaboli A. Engineering of surface-modified CuBTC-MXene nanocarrier for adsorption and co-loading of curcumin/paclitaxel from aqueous solutions for synergistic multi-therapy of cancer. J Biomol Struct Dyn 2024; 42:1145-1156. [PMID: 37066617 DOI: 10.1080/07391102.2023.2201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
Two-dimensional (2D) nanomaterials can improve drug delivery by reducing toxicity, increasing bioavailability and boosting efficacy. In this study, the simultaneous use of transition metal carbides and nitrides (MXenes) along with copper (II) benzene-1, 3, 5-tricarboxylate metal-organic framework (Cu - BTC/MOF) as attractive nanocarriers are investigated for loading and delivering curcumin (CUR) and paclitaxel (PTX) drugs to cancer cells. The efficiency of surface termination (bare and oxygen) in the adsorption of PTX and CUR drugs and the co-loading of these two drugs are evaluated. Our results show that the strongest interaction energy belongs to the adsorption of drug CUR on the MXNNO-Cu-BTC adsorbent, while the interaction of PTX drug with the MXNO- Cu-BTC in the MXNO-Cu-BTC/PTX&CUR system is the lowest due to the particular structure of the drug and the adsorbent. Our results show that at the beginning simulation, the interaction energy between the PTX drug and water in PTX/MXN system is -4645.48 kJ/mol, which reduces to -3848.71 kJ/mol after the system reaches equilibrium. Therefore, the inspected adsorbents have a good performance in adsorbing CUR and PTX drugs. The obtained results from this investigation provide valuable information about experimental studies by medical scientists in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Ameneh Zaboli
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
3
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Metal-organic frameworks having hydroxy group: Nanoarchitectonics, preparation, and applications in adsorption, catalysis, and sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Farrando-Pérez J, Martinez-Navarrete G, Gandara-Loe J, Reljic S, Garcia-Ripoll A, Fernandez E, Silvestre-Albero J. Controlling the Adsorption and Release of Ocular Drugs in Metal–Organic Frameworks: Effect of Polar Functional Groups. Inorg Chem 2022; 61:18861-18872. [DOI: 10.1021/acs.inorgchem.2c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J. Farrando-Pérez
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| | - G. Martinez-Navarrete
- Neuroprosthesis and Neuroengineering Research Group, Institute of Bioengineering, Miguel Hernández University, E-03202 Elche, Spain
| | - J. Gandara-Loe
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| | - S. Reljic
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| | - A. Garcia-Ripoll
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| | - E. Fernandez
- Neuroprosthesis and Neuroengineering Research Group, Institute of Bioengineering, Miguel Hernández University, E-03202 Elche, Spain
| | - J. Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, E-03690 San Vicente del Raspeig, Spain
| |
Collapse
|
6
|
Synthesis of exfoliate bentonite/cellulose nanocomposite as a delivery system for Oxaliplatin drug with enhanced loading and release properties; cytotoxicity and pharmacokinetic studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Tabosa AÉGA, Ferreira AS, da Silva NM, da Silva Nascimento DDS, de Moura Ferraz LR, Silva JYR, Junior SA, da Silva RMF, Rolim LA, Rolim-Neto PJ. Prolonged Release of Anti-Retroviral Efavirenz From System Using ZIF-8 as Carrier. Curr HIV Res 2020; 18:396-404. [PMID: 32753016 DOI: 10.2174/1570162x18666200804130734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acquired Immunodeficiency Syndrome (AIDS) is a major public health problem in the world. One of the highly effective drugs in anti-HIV therapy is efavirenz (EFZ), which is classified as Class II according to the Classification System of Biopharmaceuticals, presenting low solubility and high permeability, this being an obstacle related to the drug. OBJECTIVE This study aimed to obtain an innovative system based on EFZ and the Zeolitic Imidazolate Framework (ZIF-8) to use in the development of prolonged-release pharmaceutical forms that can circumvent this problem. METHODS The EFZ: ZIF-8 system was obtained by a selected ex-situ method due to its higher incorporation efficiency. Different characterization techniques corroborated the obtainment of the system, and drug release was analyzed by dissolution testing under sink conditions, the profiles being adjusted to some kinetic models. RESULTS At pH 1.2, the structure of ZIF-8 breaks down rapidly, releasing a large amount of drug within either 3h or short time. In the pH 4.5 and 6.8 medium, the EFZ release from the EFZ: ZIF-8 system obtained in ethanol was prolonged, releasing 95% of the drug in 24h at pH 4.5 and 75% medium at pH 6.8. CONCLUSION It is evident that a promising pH-sensitive system was obtained using ZIF-8 as a novel carrier of EFZ intended for the alternative treatment of AIDS.
Collapse
Affiliation(s)
- Alinne Élida Gonçalves Alves Tabosa
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Aline Silva Ferreira
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Natália Millena da Silva
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Débora Dolores Souza da Silva Nascimento
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Leslie Raphael de Moura Ferraz
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - José Yago Rodrigues Silva
- Laboratory Rare Earths BSTR, Fundamental Departament of Chemistry, Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n - Cidade Universitária, 50740-560, Recife-PE, Brazil
| | - Severino Alves Junior
- Laboratory Rare Earths BSTR, Fundamental Departament of Chemistry, Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n - Cidade Universitária, 50740-560, Recife-PE, Brazil
| | - Rosali Maria Ferreira da Silva
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Larissa Araújo Rolim
- Central Analytical of Drugs, Medicines and Food, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, s/n, Centro, 56304-917, Petrolina-PE, Brazil
| | - Pedro Jose Rolim-Neto
- Laboratory of Medication Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Arthur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| |
Collapse
|
8
|
Sarker M, Jhung SH. Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Assessment of dynamical properties of mercaptopurine on the peptide-based metal-organic framework in response to experience of external electrical fields: a molecular dynamics simulation. J Mol Model 2019; 25:304. [PMID: 31493060 DOI: 10.1007/s00894-019-4178-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
In this work, the effect of the external electric field (EF) on the drug delivery performance of peptide-based metal-organic framework (MPF) for 6-mercaptopurine (6-MP) drug is investigated by means of the molecular dynamics (MD) simulations. It is found that the strength interaction of drug molecule with MPF is decreased under the influence of the electric field. In other words, the adsorbed drug molecules have more tendencies for the interaction with the porous nanostructure in the absence of EF. According to the radial distribution function (RDF) patterns, the probability of finding drug molecules in terms of the intermolecular distance with respect to the MPF surface is lowest during the high field strength. As the EF strength increases, the spread of drug molecules around MPF results in high dynamics movement and further more diffusion coefficient of drug molecule in the simulation system. This result emphasizes the weak intermolecular interaction of drug molecules with MPF with the application of EF. Assessment of dynamical properties of 6-mercaptopurine in the presence of EF with various strengths reveals that the applied electric field can act as a trigger on liberation behavior of drug from the porous nanostructure.
Collapse
|
10
|
Simagina AA, Polynski MV, Vinogradov AV, Pidko EA. Towards rational design of metal-organic framework-based drug delivery systems. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Fabrication of a Porous Metal-Organic Framework with Polar Channels for 5-Fu Delivery and Inhibiting Human Osteosarcoma Cells. J CHEM-NY 2018. [DOI: 10.1155/2018/1523154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As an emerging kind of crystalline material, the metal-organic framework (MOF) has shown great promise in the biomedical domains such as drug storage and delivery. In this study, a new porous MOF, [[Dy2(H2O)3(SDBA)3](DMA)6] (1, H2SDBA = 4,4′-sulfonyldibenzoic acid, DMA = N,N-dimethylacetamide (C4H9NO)), with uncoordinated O donor sites has been fabricated using a bent polycarboxylic acid organic linker under the solvothermal condition. The structure of the obtained crystalline product has been fully determined by the X-ray single-crystal diffraction, TGA, elemental analysis, XRD, and the gas sorption measurement. Due to the suitable window size and polar atom functionalized 1D channels, the activated 1 (1a) compound was used for the anticancer drug 5-fluorouracil (5-Fu, C4H3FN2O2) loading by a simple impregnation method. A moderate drug loading and pH-dependent drug-release behavior could be observed for 1a. Furthermore, as indicated by the MTT assay, this drug/MOF composite shows low toxicity toward the human normal cells and demonstrates obvious anticancer activity against the human osteosarcoma cell line MG63.
Collapse
|
12
|
Kotzabasaki M, Froudakis GE. Review of computer simulations on anti-cancer drug delivery in MOFs. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00645d] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal–organic frameworks (MOFs) have been recently used as potential nanocarrier platforms in biomedical applications such as drug storage and delivery, due to their low toxicity, biodegradability, high internal surface area, widely tunable composition, high payloads and controlled drug release.
Collapse
|