1
|
Stockett MH, Bull JN, Cederquist H, Indrajith S, Ji M, Navarro Navarrete JE, Schmidt HT, Zettergren H, Zhu B. Reply to: The stabilization of cyanonaphthalene by fast radiative cooling. Nat Commun 2024; 15:8443. [PMID: 39353948 PMCID: PMC11445253 DOI: 10.1038/s41467-024-52696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Affiliation(s)
- Mark H Stockett
- Department of Physics, Stockholm University, Stockholm, Sweden.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | | | - MingChao Ji
- Department of Physics, Stockholm University, Stockholm, Sweden
| | | | | | | | - Boxing Zhu
- Department of Physics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Hansen K. The stabilization of cyanonaphthalene by fast radiative cooling. Nat Commun 2024; 15:8442. [PMID: 39353934 PMCID: PMC11445457 DOI: 10.1038/s41467-024-52695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Affiliation(s)
- K Hansen
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Navarro Navarrete JE, Bull JN, Cederquist H, Indrajith S, Ji M, Schmidt HT, Zettergren H, Zhu B, Stockett MH. Experimental radiative cooling rates of a polycyclic aromatic hydrocarbon cation. Faraday Discuss 2023; 245:352-367. [PMID: 37317671 DOI: 10.1039/d3fd00005b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Several small Polycyclic Aromatic Hydrocarbons (PAHs) have been identified recently in the Taurus Molecular Cloud (TMC-1) using radio telescope observations. Reproducing the observed abundances of these molecules has been a challenge for astrochemical models. Rapid radiative cooling of PAHs by Recurrent Fluorescence (RF), the emission of optical photons from thermally populated electronically excited states, has been shown to efficiently stabilize small PAHs following ionization, augmenting their resilience in astronomical environments and helping to rationalize their observed high abundances. Here, we use a novel method to experimentally determine the radiative cooling rate of the cation of 1-cyanonaphthalene (C10H7CN, 1-CNN), the neutral species of which has been identified in TMC-1. Laser-induced dissociation rates and kinetic energy release distributions of 1-CNN cations isolated in a cryogenic electrostatic ion-beam storage ring are analysed to track the time evolution of the vibrational energy distribution of the initially hot ion ensemble as it cools. The measured cooling rate is in good agreement with the previously calculated RF rate coefficient. Improved measurements and models of the RF mechanism are needed to interpret astronomical observations and refine predictions of the stabilities of interstellar PAHs.
Collapse
Affiliation(s)
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | | | - MingChao Ji
- Department of Physics, Stockholm University, Stockholm, Sweden.
| | | | | | - Boxing Zhu
- Department of Physics, Stockholm University, Stockholm, Sweden.
| | - Mark H Stockett
- Department of Physics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Stockett MH, Bull JN, Cederquist H, Indrajith S, Ji M, Navarro Navarrete JE, Schmidt HT, Zettergren H, Zhu B. Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds. Nat Commun 2023; 14:395. [PMID: 36693859 PMCID: PMC9873784 DOI: 10.1038/s41467-023-36092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
After decades of searching, astronomers have recently identified specific Polycyclic Aromatic Hydrocarbons (PAHs) in space. Remarkably, the observed abundance of cyanonaphthalene (CNN, C10H7CN) in the Taurus Molecular Cloud (TMC-1) is six orders of magnitude higher than expected from astrophysical modeling. Here, we report unimolecular dissociation and radiative cooling rate coefficients of the 1-CNN isomer in its cationic form. These results are based on measurements of the time-dependent neutral product emission rate and kinetic energy release distributions produced from an ensemble of internally excited 1-CNN+ studied in an environment similar to that in interstellar clouds. We find that Recurrent Fluorescence - radiative relaxation via thermally populated electronic excited states - efficiently stabilizes 1-CNN+, owing to a large enhancement of the electronic transition probability by vibronic coupling. Our results help explain the anomalous abundance of CNN in TMC-1 and challenge the widely accepted picture of rapid destruction of small PAHs in space.
Collapse
Affiliation(s)
- Mark H Stockett
- Department of Physics, Stockholm University, Stockholm, Sweden.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | | | | | - MingChao Ji
- Department of Physics, Stockholm University, Stockholm, Sweden
| | | | | | | | - Boxing Zhu
- Department of Physics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Concina B, Bordas C. Thermionic Emission of Negative Ions of Molecules and Small Clusters as a Probe of Low-Energy Attachment. J Phys Chem A 2022; 126:7442-7451. [PMID: 36221803 DOI: 10.1021/acs.jpca.2c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have been studying the thermionic emission of negatively charged molecules and small clusters for more than a decade. The kinetic energy released distribution (KERD) of mass-selected negative ions has been measured with a velocity map imaging spectrometer. A comparison of the experimental KERD to detailed balance models provided information on the reverse process, namely, the electron attachment to the parent. The electron attachment to neutral systems (reverse process of the electron emission from anions) is usually described in a simplified way as a single electron capture in the framework of the classical Langevin model. Our measurements show that this approach is insufficient and that, in addition to the capture step, an intramolecular vibrational redistribution (IVR) step should be included. As far as multiply charged anions are concerned, the electron attachment to anions (reverse process of the electron emission from dianions) is strongly affected by the repulsive Coulomb barrier (RCB). Previous studies assumed a pure over-the-barrier process, which is in disagreement with our study. Indeed, electron emission is measured below the RCB, revealing significant thermal tunneling. In the present review, we summarize these works on singly and doubly charged anions in an attempt to present a unified view of the involved processes. It is worth noting that the detailed measurements of KERDs in the very low kinetic energy region (typically around 0.1 eV) have been made possible thanks to electron imaging methods, without which all of this work could never have been done, with time-resolution capabilities allowing the disentangling of direct and delayed electron emission.
Collapse
Affiliation(s)
- Bruno Concina
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622Villeurbanne, France
| | - Christian Bordas
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622Villeurbanne, France
| |
Collapse
|
6
|
Zhu B, Bull JN, Ji M, Zettergren H, Stockett MH. Radiative cooling rates of substituted PAH ions. J Chem Phys 2022; 157:044303. [DOI: 10.1063/5.0089687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The unimolecular dissociation and infrared radiative cooling rates of cationic 1-hydroxypyrene (OHPyr$^+$, \ce{C16H10O+}) and 1-bromopyrene (BrPyr$^+$, \ce{C16H9Br+}) are measured using a cryogenic electrostatic \rev{ion beam} storage ring. A novel numerical approach is developed to analyze the time dependence of the dissociation rate and to determine the absolute scaling of the radiative cooling rate coefficient. The model results show that radiative cooling competes with dissociation below the critical total vibrational energies \revv{$E_c=5.39(1)$}~eV for OHPyr$^+$ and \revv{5.90(1)}~eV for BrPyr$^+$. These critical energies and implications for radiative cooling dynamics are important for astrochemical models concerned with energy dissipation and molecular lifecycles. The methods presented extend the utility of storage ring experiments on astrophysically relevant ions.
Collapse
Affiliation(s)
| | - James N Bull
- School of Chemistry, University of East Anglia, United Kingdom
| | - MingChao Ji
- Stockholm University Department of Physics, Sweden
| | | | | |
Collapse
|