1
|
Yang C, Dong H, Li X, Zhou N, Liu Y, Jin J, Wang Y. The σ+π dual aromaticity of typical bi-tetrazole ring molecule TKX-50. Chemphyschem 2024; 25:e202400005. [PMID: 38259129 DOI: 10.1002/cphc.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/24/2024]
Abstract
Two complexes of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) were employed to evaluate the aromaticity of their tetrazole rings via deep analysis such as the electronic structure, the ZZ component of the natural chemical shielding tensor (NICSZZ) and component orbitals, localized orbital locator purely contributed by σ-orbitals (LOL-σ) and localized orbital locator purely contributed by π-orbitals (LOL-π), the anisotropy of the induced current density (AICD) and the ZZ component of iso-chemical shielding surface (ICSSZZ) of these tetrazole rings thereof. The conclusion shows: that all tetrazole rings and bi-tetrazole rings in complexes have strong σ and a comparable strength π double aromaticity; all these magnetic shields almost symmetrically increase from the central axis to the tetrazole ring atoms; tetrazole rings in complex II show a little stronger dual aromaticity than that in complex I mainly due to the different orientation of the fragment 2 encompassing two hydroxylamine groups resulting in different effects on the contributions of σ orbitals and π orbitals to total aromaticity of tetrazole rings thereof; the difference in aromaticity is fundamentally caused by the atoms O with stronger electron-withdrawing than atom N in fragment 2 interact with bi-tetrazole ring through O in complex I but through N in complex II.
Collapse
Affiliation(s)
- Chunhai Yang
- School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Xue Li
- School of Petroleum Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning Zhou
- School of Petroleum Engineering, Changzhou University, Changzhou, 213164, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxun Jin
- School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China
| | - Yinjun Wang
- BGRIMM Explosive & Blasting Technology Co., Ltd., Beijing, 100160, China
| |
Collapse
|
2
|
Wang M, Wang Y. Advances for Triangular and Sandwich-Shaped All-Metal Aromatics. Molecules 2024; 29:763. [PMID: 38398515 PMCID: PMC10892378 DOI: 10.3390/molecules29040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Much experimental work has been contributed to all-metal σ, π and δ-aromaticity among transition metals, semimetallics and other metals in the past two decades. Before our focused investigations on the properties of triangular and sandwich-shaped all-metal aromatics, A. I. Boldyrev presented general discussions on the concepts of all-metal σ-aromaticity and σ-antiaromaticity for metallo-clusters. Schleyer illustrated that Nucleus-Independent Chemical Shifts (NICS) were among the most authoritative criteria for aromaticity. Ugalde discussed the earlier developments of all-metal aromatic compounds with all possible shapes. Besides the theoretical predictions, many stable all-metal aromatic trinuclear clusters have been isolated as the metallic analogues of either the σ-aromatic molecule's [H3]+ ion or the π-aromatic molecule's [C3H3]+ ion. Different from Hoffman's opinion on all-metal aromaticity, triangular all-metal aromatics were found to hold great potential in applications in coordination chemistry, catalysis, and material science. Triangular all-metal aromatics, which were theoretically proved to conform to the Hückel (4n + 2) rule and possess the smallest aromatic ring, could also play roles as stable ligands during the formation of all-metal sandwiches. The triangular and sandwich-shaped all-metal aromatics have not yet been specifically summarized despite their diversity of existence, puissant developments and various interesting applications. These findings are different from the public opinion that all-metal aromatics would be limited to further applications due to their overstated difficulties in synthesis and uncertain stabilities. Our review will specifically focus on the summarization of theoretical predictions, feasible syntheses and isolations, and multiple applications of triangular and sandwich shaped all-metal aromatics. The appropriateness and necessities of this review will emphasize and disseminate their importance and applications forcefully and in a timely manner.
Collapse
Affiliation(s)
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China;
| |
Collapse
|
3
|
He X, Lu T, Rong C, Liu S, Ayers PW, Liu W. Topological analysis of information-theoretic quantities in density functional theory. J Chem Phys 2023; 159:054112. [PMID: 37548307 DOI: 10.1063/5.0159941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
We have witnessed considerable research interest in the recent literature about the development and applications of quantities from the information-theoretic approach (ITA) in density functional theory. These ITA quantities are explicit density functionals, whose local distributions in real space are continuous and well-behaved. In this work, we further develop ITA by systematically analyzing the topological behavior of its four representative quantities, Shannon entropy, two forms of Fisher information, and relative Shannon entropy (also called information gain or Kullback-Leibler divergence). Our results from their topological analyses for 103 molecular systems provide new insights into bonding interactions and physiochemical properties, such as electrophilicity, nucleophilicity, acidity, and aromaticity. We also compare our results with those from the electron density, electron localization function, localized orbital locator, and Laplacian functions. Our results offer a new methodological approach and practical tool for applications that are especially promising for elucidating chemical bonding and reactivity propensity.
Collapse
Affiliation(s)
- Xin He
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Wang K, He X, Rong C, Zhong A, Liu S, Zhao D. On the origin and nature of internal methyl rotation barriers: an information-theoretic approach study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Revisiting the trapping of noble gases (He-Kr) by the triatomic H 3+ and Li 3+ species: a density functional reactivity theory study. J Mol Model 2022; 28:122. [PMID: 35437635 DOI: 10.1007/s00894-022-05099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Small atomic clusters with exotic stability, bonding, aromaticity, and reactivity properties can be made use of for various purposes. In this work, we revisit the trapping of noble gas atoms (He-Kr) by the triatomic H3+ and Li3+ species by using some analytical tools from density functional theory, conceptual density functional theory, and the information-theoretic approach. Our results showcase that though similar in geometry, H3+ and Li3+ exhibit markedly different behavior in bonding, aromaticity, and reactivity properties after the addition of noble gas atoms. Moreover, the exchange-correlation interaction and steric effect are key energy components in stabilizing the clusters. This study also finds that the origin of the molecular stability of these species is due to the spatial delocalization of the electron density distribution. Our work provides an additional arsenal towards a better understanding of small atomic clusters capturing noble gases.
Collapse
|
6
|
Zhao D, He X, Li M, Wang B, Guo C, Rong C, Chattaraj PK, Liu S. Density functional theory studies of boron clusters with exotic properties in bonding, aromaticity and reactivity. Phys Chem Chem Phys 2021; 23:24118-24124. [PMID: 34730137 DOI: 10.1039/d1cp02516c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomic clusters are unique in many perspectives because of their size and structure features and are continuously being applied for different purposes. To unveil their unconventional properties, in this work, using neutral tetraboron clusters as illustrative examples, we study their exotic behaviors in bonding, aromaticity, and reactivity. We show that both double and triple bonds can be formed, ring current patterns can be totally different, and both electrophilic and nucleophilic reactivities can coexist simultaneously. These features are often in contrast with our conventional chemical wisdom and could enrich the possibility for their potential applications. The methodologies employed in this work can be readily applied to other systems. Our studies should help us better appreciate atomic clusters with many atypical properties and henceforth yield novel applications.
Collapse
Affiliation(s)
- Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Chenggong District, Kunming 650500, Yunnan, P. R. China.
| | - Xin He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Meng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Bin Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Chunna Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Pratim K Chattaraj
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599-3290, USA
| |
Collapse
|
7
|
Li M, He X, Chen J, Wang B, Liu S, Rong C. Density Functional Theory and Information-Theoretic Approach Study on the Origin of Homochirality in Helical Structures. J Phys Chem A 2021; 125:1269-1278. [PMID: 33527833 DOI: 10.1021/acs.jpca.0c10310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Homochirality of macromolecules such as proteins and DNA is one of the most striking features in nature; yet, there is still no convincing theory to explain its origin. In a recent work by one of the present authors (J. Phys. Chem. Lett. 2020, 11, 8690-8696), a general proposal from the viewpoint of thermodynamics has been put forward. It proposes that it is the handedness of helices ubiquitous in biological macromolecules that plays the decisive role. It also unveiled that there exist strong cooperativity effects dominated by favorable electrostatic interactions in the homochiral conformer. In this work, making use of analytical tools, we recently developed a density functional theory and an information-theoretic approach and through four sets of helical structures we designed for the present study, we examine these systems to provide new insights about these properties. We found that the 310-helix and the α-helix are markedly different in cooperativity from the viewpoint of both the total energy and its three components. The electrostatic dominance of homochiral species is manifested by both the electron charge distribution and information gain. At the atomic level, different elements behave significantly differently because they play different roles in the systems. Our results from this work validate that these analytical tools can be applied to homochiral systems, which can be further extended to others with potential interest in asymmetric synthesis and macromolecular assembly where the Principle of Homochirality Hierarchy comes into play.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xin He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jie Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Bin Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|