1
|
Amjad M, Bibi I, Majid F, Jilani K, Sultan M, Raza Q, Ghafoor A, Alwadai N, Nazir A, Iqbal M. NiO/MnFe 2O 4 Nanocomposite Photoluminescence, Structural, Morphological, Magnetic, and Optical Properties: Photocatalytic Removal of Cresol Red under Visible Light Irradiation. ACS OMEGA 2024; 9:20876-20890. [PMID: 38764693 PMCID: PMC11097188 DOI: 10.1021/acsomega.3c09637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 05/21/2024]
Abstract
In this study, pure nickel oxide (NiO), manganese ferrite (MnFe2O4 or MFO), and binary nickel oxide/manganese ferrite (NiO/MFO1-4) nanocomposites (NCs) were synthesized using the Sol-Gel method. A comprehensive investigation into their photoluminescence, structural, morphological, magnetic, optical, and photocatalytic properties was conducted. Raman analysis, UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction techniques were used to characterize the materials. The synthesized samples exhibited superparamagnetic behavior, as revealed by our analysis of their magnetic properties. A lower recombination rate was shown by the photoluminescence analysis, which is helpful for raising photocatalytic activity. The photocatalytic activity was evaluated for the degradation of Cresol Red (CR) dye. 91.6% of CR dye was degraded by NiO/MFO-4 nanocomposite, and the NC dosage as well as solution pH affected the photocatalytic performance significantly. In four sequential photocatalytic cycles, the magnetically separable NCs were stable and recyclable. The enhanced photocatalytic activity and magnetic separability revealed the potential application of NiO/MFO-4 as an efficient photocatalyst for the removal of dyes from industrial wastewater under solar light irradiation.
Collapse
Affiliation(s)
- Muhammad Amjad
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ismat Bibi
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Farzana Majid
- Department
of Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Kashif Jilani
- Department
of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Misbah Sultan
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Qasim Raza
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aamir Ghafoor
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Norah Alwadai
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Arif Nazir
- Department
of Chemistry, University of Lahore, Lahore 54000, Pakistan
| | - Munawar Iqbal
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
2
|
Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici MM, Zhou H. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307412. [PMID: 38251820 DOI: 10.1002/adma.202307412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangkai He
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Mengyin Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongqing Xu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xuan Bie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Qinghai Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yanguo Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Marta Sevilla
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | | | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
3
|
Zahra M, Yasmeen G, Aftab F, Athar HUR, Saleem A, Ambreen S, Malana MA. ZnSe-rGO nanocomposites as photocatalysts for purification of textile dye contaminated water: A green approach to use wastewater for maize cultivation. Heliyon 2023; 9:e22687. [PMID: 38046153 PMCID: PMC10687704 DOI: 10.1016/j.heliyon.2023.e22687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023] Open
Abstract
Disputes about the probable availability of safe water and the efficacy of processed wastewater are key issues that necessitate a suitable solution to enhance the quality of clean water. The current research emphasizes the synthesis of ZnSe-reduced graphene oxide nanocomposites (ZnSe:rGO) with different weight ratios of rGO (represented as X = 0.6, 1 and 1.6 g)via one-step hydrothermal method. The photocatalytic performance for the degradation of methyl violet (MV) dye was investigated under visible light irradiation by varying the reaction parameters. The crystal structure, elemental composition, surface functionality and morphology of the synthesized ZnSe-XrGO nanocomposites were estimated by powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. UV-visible spectroscopy was used to investigate the optical properties. The highest efficiency is obtained for ZnSe-XrGO in 1:1 and it showed pseudo 1st order behavior with rate constant of 0.0167min-1and 94 % photodegradation of MV in just 3 h. Furthermore, hazardous effects of MV were investigated on the germination and growth of Zea mays seeds by giving them aqueous solution of MV (0, 8, 12, 24 and 48 ppm) and the decontaminated water after photodegradation of MV with the synthesized photoactive composite. The results showed profound negative effect on both germination and seedling growth at higher concentration (>12 ppm) of the dye solution. No hazardous effects were observed on both these parameters when it was given the dye degraded water which reflects the practical use of the synthesized catalyst for water remediation. The current study fulfills the goal of designing an efficient visible-light active nano-photocatalyst and its direct applicability on life sciences for water purification.
Collapse
Affiliation(s)
- Mishal Zahra
- Physical Research Laboratory, Institute of Chemical Sciences, Bahauddin Zakriya University Multan, Punjab, Pakistan
| | - Ghazala Yasmeen
- Physical Research Laboratory, Institute of Chemical Sciences, Bahauddin Zakriya University Multan, Punjab, Pakistan
| | - Faryal Aftab
- Department of Chemistry, The Women University Multan, Punjab, Pakistan
| | | | - Aisha Saleem
- Institute of Botany, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sarah Ambreen
- Institute of Botany, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Aslam Malana
- Physical Research Laboratory, Institute of Chemical Sciences, Bahauddin Zakriya University Multan, Punjab, Pakistan
| |
Collapse
|
4
|
Tariq GH, Asghar G, Shifa MS, Anis-Ur-Rehman M, Ullah S, Shah ZA, Ziani I, Tawfeek AM, Sher F. Effect of copper doping on plasmonic nanofilms for high performance photovoltaic energy applications. Phys Chem Chem Phys 2023; 25:31726-31740. [PMID: 37964641 DOI: 10.1039/d3cp04332k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In the current era, alternative but environment-friendly sources of energy have gained attention to meet the growing energy demands. In particular, the focus of research has been solar energy and using it to fulfill energy demands. Solar energy is either directly converted into electrical energy or stored for later use. Solar cells are a practical way to turn solar energy into electrical energy. Various materials are being investigated to manufacture solar cell devices that can absorb a maximum number of photons present in sunlight. The present study reports thermally evaporated in situ Cu-doped SnS photon absorber thin films with tunable physical properties. This study mainly explored the effects of changing Cu concentrations on the physical features of light absorption of SnS thin films. The thin films were formed by simultaneous resistive heating of Cu and SnS powders on glass substrates at 150 °C. The X-ray diffraction patterns revealed pure SnS thin films having orthorhombic polycrystalline crystal structures oriented preferentially along the (111) plane. Raman spectroscopy confirmed this phase purity. Photoconductivity studies showed phase dependence on Cu content that improved with increasing concentrations of Cu. The optical bandgap energy was also found to be dependent on Cu content and was observed at 1.10-1.47 eV for SnS thin films with variation in the Cu content, i.e., 0-18%. According to the hot probe method, all films displayed p-type conductivity for the substitution of Cu metal atoms. These findings demonstrated that the prepared thin films are substantial candidates as low-cost, suitably efficient, thin-film solar cells featuring environmentally-friendly active layers that absorb sunlight.
Collapse
Affiliation(s)
- Ghulam Hasnain Tariq
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Asghar
- Department of Physics, The University of Poonch, Rawalakot 10250, Pakistan
| | - M Shahzad Shifa
- Institute of Physics, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - M Anis-Ur-Rehman
- Applied Thermal Physics Laboratory, Department of Physics, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Ullah
- Institute of Mechanical and Manufacturing Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Zulfiqar Ali Shah
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Imane Ziani
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Mohammed 1st University, Oujda 60000, Morocco
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Ahmed M Tawfeek
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
5
|
Adesina MO, Block I, Günter C, Unuabonah EI, Taubert A. Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO 2 Composite. ACS OMEGA 2023; 8:21594-21604. [PMID: 37360480 PMCID: PMC10286278 DOI: 10.1021/acsomega.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
New TiO2 hybrid composites were prepared from kaolin clay, predried and carbonized biomass, and titanium tetraisopropoxide and explored for tetracycline (TET) and bisphenol A (BPA) removal from water. Overall, the removal rate is 84% for TET and 51% for BPA. The maximum adsorption capacities (qm) are 30 and 23 mg/g for TET and BPA, respectively. These capacities are far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change the adsorption capacity of the adsorbent. pH changes only slightly change BPA adsorption, while a pH > 7 significantly reduces the adsorption of TET on the material. The Brouers-Sotolongo fractal model best describes the kinetic data for both TET and BPA adsorption, predicting that the adsorption process occurs via a complex mechanism involving various forces of attraction. Temkin and Freundlich isotherms, which best fit the equilibrium adsorption data for TET and BPA, respectively, suggest that adsorption sites are heterogeneous in nature. Overall, the composite materials are much more effective for TET removal from aqueous solution than for BPA. This phenomenon is assigned to a difference in the TET/adsorbent interactions vs the BPA/adsorbent interactions: the decisive factor appears to be favorable electrostatic interactions for TET yielding a more effective TET removal.
Collapse
Affiliation(s)
- Morenike O. Adesina
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
- African
Centre of Excellence for Water and Environment Research (ACEWATER), Redeemer’s University, PMB 230 Ede, Osun State 232101, Nigeria
- Department
of Chemical Sciences, Redeemer’s
University, PMB 230 Ede, Osun State 232101, Nigeria
- Lead
City University, Ibadan 200255, Oyo State, Nigeria
| | - Inga Block
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Christina Günter
- Institute
of Geosciences, University of Potsdam, D-14476 Potsdam, Germany
| | - Emmanuel I. Unuabonah
- African
Centre of Excellence for Water and Environment Research (ACEWATER), Redeemer’s University, PMB 230 Ede, Osun State 232101, Nigeria
- Department
of Chemical Sciences, Redeemer’s
University, PMB 230 Ede, Osun State 232101, Nigeria
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Santos-Aguilar P, Bernal-Ramírez J, Vázquez-Garza E, Vélez-Escamilla LY, Lozano O, García-Rivas GDJ, Contreras-Torres FF. Synthesis and Characterization of Rutile TiO 2 Nanoparticles for the Toxicological Effect on the H9c2 Cell Line from Rats. ACS OMEGA 2023; 8:19024-19036. [PMID: 37273591 PMCID: PMC10233665 DOI: 10.1021/acsomega.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
The widespread use of titanium dioxide (TiO2) has raised concerns about potential health risks associated with its cytotoxicity in the cardiovascular system. To evaluate the cytotoxicity of TiO2 particles, the H9c2 rat cardiomyoblasts were used as a biological model, and their toxicological susceptibility to TiO2-anatase and TiO2-rutile particles was studied in vitro. The study examined dose and time exposure responses. The cell viability was evaluated based on metabolic inhibition and membrane integrity loss. The results revealed that both TiO2-anatase and TiO2-rutile particles induced similar levels of cytotoxicity at the inhibition concentrations IC25 (1.4-4.4 μg/cm2) and IC50 (7.2-9.3 μg/cm2). However, at more significant concentrations, TiO2-rutile appeared to be more cytotoxic than TiO2-anatase at 24 h. The study found that the TiO2 particles induced apoptosis events, but necrosis was not observed at any of the concentrations of particles used. The study considered the effects of microstructural properties, crystalline phase, and particle size in determining the capability of TiO2 particles to induce cytotoxicity in H9c2 cardiomyoblasts. The microstress in TiO2 particles was assessed using powder X-ray diffraction through Williamson-Hall and Warren-Averbach analysis. The analysis estimated the apparent crystallite domain and microstrain of TiO2-anatase to be 29 nm (ε = 1.03%) and TiO2-rutile to be 21 nm (ε = 0.53%), respectively. Raman spectroscopy, N2 adsorption isotherms, and dynamic light scattering were used to identify the presence of pure crystalline phases (>99.9%), comparative surface areas (10 m2/g), and ζ-potential values (-24 mV). The difference in the properties of TiO2 particles made it difficult to attribute the cytotoxicity solely to one variable.
Collapse
Affiliation(s)
- Pamela Santos-Aguilar
- Escuela
de Ingeniería y Ciencias, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Judith Bernal-Ramírez
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
| | - Eduardo Vázquez-Garza
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
| | | | - Omar Lozano
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Gerardo de Jesús García-Rivas
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Flavio F. Contreras-Torres
- Escuela
de Ingeniería y Ciencias, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
7
|
Adeleye AT, John KI, Ighalo JO, Ogunniyi S, Adeyanju CA, Adeniyi AG, Elawad M, Omorogie MO. Photocatalytic remediation of methylene blue using hydrothermally synthesized H-Titania and Na-Titania nanotubes. Heliyon 2022; 8:e12610. [PMID: 36593848 PMCID: PMC9803790 DOI: 10.1016/j.heliyon.2022.e12610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Although nanotube is among the most effective morphology of Titania due to its unilateral pathway for photo-generated charge transfer and mechanical stability, its performance is still hampered by high recombination. In the present study, to further improve the photocatalytic degradation performance of Titania, univalent elements of H and Na were respectively ion-exchanged into the Titania nanotubes (TNTs). The photocatalyst was characterized using XRD, TEM, ICP-AES, and FTIR. The modified samples displayed enhanced photocatalytic degradation performance over Degussa TiO2 under UV-A light illumination of MB. The rate constants of NaTNT and HTNT were 16 and 13 times that of Degussa TiO2. Specifically, the Na-TNTs showed better photocatalytic degradation activity than H-TNTs with a rate constant of 0.12 min-1 while the latter showed 0.09 min-1. The optimum adsorption and photocatalytic performance of NaTNT were determined at pH 6 achieving about 99% MB removal within 10 min of irradiation. The ion exchange NaTNT displayed excellent reusability after the fifth cycle of the photocatalytic tests and superoxide radicals were experimentally determined to be the main reactive oxygen species involved in the photocatalytic degradation of MB.
Collapse
Affiliation(s)
- Aderemi Timothy Adeleye
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, Australia,Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya
| | - Kingsley Igenepo John
- Organization of African Academic Doctor (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya,College of Science, Health, Engineering and Education, Murdoch University, Murdoch 6150, Australia,Department of Pure and Applied Chemistry, College of Natural and Applied Sciences, Veritas University, P.M.B. 5171, Abuja, Nigeria
| | - Joshua O. Ighalo
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria,Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Samuel Ogunniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | | | - Adewale George Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Mohammed Elawad
- Faculty of Materials and Chemical Engineering, Yibin University, 64400, Yibin, China,Corresponding author.
| | - Martins O. Omorogie
- Department of Chemical Sciences, Redeemer's University, P.M.B. 230, Ede, 232101, Nigeria,Environmental Science and Technology Unit, African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer’s University, P.M.B. 230, Ede, 232101, Nigeria,Corresponding author.
| |
Collapse
|
8
|
Adsorption Performance of Zinc Semiconductor Nanoparticles in Tetracycline Removal. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
John KI, Obu M, Adeleye AT, Ebiekpe V, Adenle AA, Chi H, Iseoluwa OJ, Omorogie MO. Oxygen deficiency induction and boundary layer modulation for improved adsorption performance of titania nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|