1
|
Cellina M, Cè M, Rossini N, Cacioppa LM, Ascenti V, Carrafiello G, Floridi C. Computed Tomography Urography: State of the Art and Beyond. Tomography 2023; 9:909-930. [PMID: 37218935 PMCID: PMC10204399 DOI: 10.3390/tomography9030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Computed Tomography Urography (CTU) is a multiphase CT examination optimized for imaging kidneys, ureters, and bladder, complemented by post-contrast excretory phase imaging. Different protocols are available for contrast administration and image acquisition and timing, with different strengths and limits, mainly related to kidney enhancement, ureters distension and opacification, and radiation exposure. The availability of new reconstruction algorithms, such as iterative and deep-learning-based reconstruction has dramatically improved the image quality and reducing radiation exposure at the same time. Dual-Energy Computed Tomography also has an important role in this type of examination, with the possibility of renal stone characterization, the availability of synthetic unenhanced phases to reduce radiation dose, and the availability of iodine maps for a better interpretation of renal masses. We also describe the new artificial intelligence applications for CTU, focusing on radiomics to predict tumor grading and patients' outcome for a personalized therapeutic approach. In this narrative review, we provide a comprehensive overview of CTU from the traditional to the newest acquisition techniques and reconstruction algorithms, and the possibility of advanced imaging interpretation to provide an up-to-date guide for radiologists who want to better comprehend this technique.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Nicolo’ Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Laura Maria Cacioppa
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Velio Ascenti
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Radiology Department, Policlinico di Milano Ospedale Maggiore|Fondazione IRCCS Ca’ Granda, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Floridi
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I-Lancisi-Salesi”, 60126 Ancona, Italy
| |
Collapse
|
2
|
Ascenti G, Cicero G, Cardone G, Bertelli E, Papa M, Ciccone V, Manetta R, Gentili F, Francioso AP, Mazzei MA, Floridi C, Di Cesare E, Gandolfo N, De Filippo M, Miele V, Giovagnoni A. Cornerstones of CT urography: a shared document by the Italian board of urogenital radiology. LA RADIOLOGIA MEDICA 2023; 128:601-611. [PMID: 37027091 DOI: 10.1007/s11547-023-01623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
CT urography is a single term used to refer to different scanning protocols that can be applied for a number of clinical indications. If, on the one hand, this highlights the role of the radiologist in deciding the most suitable technique to perform according to the patient's needs, on the other hand, a certain confusion may arise due to the different technical and clinical variables that have to be taken into account. This has been well demonstrated by a previous work based on an online questionnaire administered to a population of Italian radiologists that brought out similarities as well as differences across the national country. Defining precise guidelines for each clinical scenario, although desirable, is a difficult task to accomplish, if not even unfeasible. According to the prementioned survey, five relevant topics concerning CT urography have been identified: definition and clinical indications, opacification of the excretory system, techniques, post-processing reconstructions, and radiation dose and utility of dual-energy CT. The aim of this work is to deepen and share knowledge about these main points in order to assist the radiology in the daily practice. Moreover, a synopsis of recommendations agreed by the Italian board of genitourinary imaging is provided.
Collapse
Affiliation(s)
- Giorgio Ascenti
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino", Via Consolare Valeria, 1, 98100, Messina, Italy
| | - Giuseppe Cicero
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Policlinico "G. Martino", Via Consolare Valeria, 1, 98100, Messina, Italy.
| | - Gianpiero Cardone
- Diagnostic and Interventional Radiology Department, IRCCS Ospedale San Raffaele-Turro, Università Vita-Salute San Raffaele, Milan, Italy
| | - Elena Bertelli
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Maurizio Papa
- Complex Unit of Radiology, Department of Diagnostic and Interventional Radiology, Azienda Socio Sanitaria Territoriale (ASST) Lodi, Lodi, Italy
| | - Vincenzo Ciccone
- Radiology Department, San Giovanni Di Dio E Ruggi D'Aragona Hospital, Salerno, Italy
| | - Rosa Manetta
- Radiology Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Department of Radiological Sciences, Azienda Ospedaliero-Universitaria Senese, "Santa Maria Alle Scotte" General Hospital, Viale Mario Bracci, 16, Siena, 53100, Italy
| | - Antonio Pio Francioso
- Complex Unit of Radiology, Department of Diagnostic and Interventional Radiology, Azienda Socio Sanitaria Territoriale (ASST) Lodi, Lodi, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Chiara Floridi
- Department of Radiological Sciences, Ospedali Riuniti Ancona, Università Politecnica Delle Marche - University Hospital, Via Tronto 10, 60126, Ancona, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy
| | - Massimo De Filippo
- University of Parma, Parma Hospital, Via Gramsci 14, 43126, Parma, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Andrea Giovagnoni
- Department of Radiological Sciences, Ospedali Riuniti Ancona, Università Politecnica Delle Marche - University Hospital, Via Tronto 10, 60126, Ancona, Italy
| |
Collapse
|
3
|
Gezer M, Karaca L, Özdemir Z, Kahraman A, Oğuz F, Erbay MF, Yetiş H. Use of dual energy CT urography in evaluation of urinary stone and complex cyst. Turk J Med Sci 2023; 53:264-272. [PMID: 36945947 PMCID: PMC10388052 DOI: 10.55730/1300-0144.5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/22/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Dual-energy computed tomography scans can provide significant benefits to the urinary system. The aim of this study is to determine the limitations and benefits of using dual energy CT urography in patients with urinary system stones and cysts. METHODS In the analysis of the images, the virtual noncontrasted images obtained from the combined nephrogenicexcretory phase and the true noncontrasted images were evaluated. The true noncontrast images were accepted as the gold standard for stone detection. RESULTS Eighty-three different stones were detected in 26 of the 115 patients included in the study. Sensibilities of virtual noncontrast images in detecting urinary system stones were 66.7% and 65.4% according to the first and second radiologists, respectively. In this study, 32 hyperdense cysts were detected. According to iodine map images, there was no enhancement in 26 of 32 cysts; only 5 cysts showed minimal contrast enhancement. One patient could not decide on contrast enhancement. DISCUSSION As a result, if CT urography is performed with dual energy, it can provide additional information in patients with urinary system disorder.
Collapse
Affiliation(s)
- Mehmet Gezer
- Department of Radiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Leyla Karaca
- Department of Radiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Zeynep Özdemir
- Department of Radiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Ayşegül Kahraman
- Department of Radiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Fatih Oğuz
- Department of Urology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Mehmet Fatih Erbay
- Department of Radiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Hüseyin Yetiş
- Department of Radiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
4
|
Toia GV, Mileto A, Wang CL, Sahani DV. Quantitative dual-energy CT techniques in the abdomen. Abdom Radiol (NY) 2022; 47:3003-3018. [PMID: 34468796 DOI: 10.1007/s00261-021-03266-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Advances in dual-energy CT (DECT) technology and spectral techniques are catalyzing the widespread implementation of this technology across multiple radiology subspecialties. The inclusion of energy- and material-specific datasets has ushered overall improvements in CT image contrast and noise as well as artifacts reduction, leading to considerable progress in radiologists' ability to detect and characterize pathologies in the abdomen. The scope of this article is to provide an overview of various quantitative clinical DECT applications in the abdomen and pelvis. Several of the reviewed applications have not reached mainstream clinical use and are considered investigational. Nonetheless awareness of such applications is critical to having a fully comprehensive knowledge base to DECT and fostering future clinical implementation.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Mailbox 3252, Madison, WI, 53792, USA.
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Carolyn L Wang
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Bicci E, Mastrorosato M, Danti G, Lattavo L, Bertelli E, Cozzi D, Pradella S, Agostini S, Miele V. Dual-Energy CT applications in urinary tract cancers: an update. TUMORI JOURNAL 2022; 109:148-156. [PMID: 35442120 DOI: 10.1177/03008916221088883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Urothelial tumours are the fourth most common cancer in the world and account for the majority of tumours involving the bladder. The symptom that often leads to diagnosis is the presence of haematuria. Diagnosis is made by cystoscopy, which is currently the gold standard in bladder cancer. Computed tomography (CT) performed with pre- and post-contrastographic phases is essential in order to assess the loco-regional and distant extension of disease. The diagnosis and staging of upper tract urothelial cancer (UTUC) are best done with computed tomography urography and flexible ureteroscopy (URS). In the acquisition protocol of this type of tumour, a urographic phase is mandatory, which allows for an accurate diagnostic assessment of the renal pelvis, ureter and bladder, especially in papillary forms. The use of multiple acquisition phases, especially in this type of patient who will have to perform follow-up CTs, leads to the problem of overexposure to ionising radiation, as well as the frequent administration of iodinated contrast medium. For this reason, in recent year, the focus has been put on advanced technologies such as dual-energy CT (DECT), that is a method that can offer some advantages for both radiologist and patient, in the diagnosis of cancer and, in particular, urinary tract disease.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | | | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Lorenzo Lattavo
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Elena Bertelli
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Diletta Cozzi
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Simone Agostini
- Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
6
|
CT-urography: a nationwide survey by the Italian Board of Urogenital Radiology. Radiol Med 2022; 127:577-588. [PMID: 35381905 DOI: 10.1007/s11547-022-01488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Computed tomography-urography is currently the imaging modality of choice for the assessment of the whole urinary tract, giving the possibility to detect and characterize benign and malignant conditions. In particular, computed tomography-urography takes advantage from an improved visualization of the urinary collecting system due to acquisition of delayed scan obtained after excretion of intravenous contrast medium from the kidneys. Nevertheless, the remaining scans are of great help for identification, characterization, and staging of urological tumors. Considering the high number of diseases, urinary segment potentially involved and patients' features, scanning protocols of computed tomography-urography largely vary from one clinical case to another as well as selection and previous preparation of the patient. According to the supramentioned considerations, radiation exposure is also of particular concern. Italian radiologists were asked to express their opinions about computed tomography-urography performance and about its role in their daily practice through an online survey. This paper collects and summarizes the results.
Collapse
|
7
|
Dodig D, Solocki Matić T, Žuža I, Pavlović I, Miletić D, Markić D. Side-by-side evaluation of virtual non-contrast and post-contrast images improves detection of clinically significant urolithiasis on single-phase split bolus dual-energy CT urography. Br J Radiol 2021; 94:20210013. [PMID: 33861140 DOI: 10.1259/bjr.20210013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Studies show insufficient sensitivity of virtual non-contrast (VNC) reconstructions for stone detection in dual-energy CT urography (DE-CTU). The aim of this study was to investigate if side-by-side-evaluation of both VNC and post-contrast images could increase the sensitivity of single-phase split bolus DE-CTU. METHODS Consecutive patients with haematuria who underwent split bolus DE-CTU on the same dual-source DE-CT scanner were retrospectively enrolled in the study. Intravenous furosemide and oral hydration were employed. Two readers, independently and then jointly in two separate sessions, recorded the location and the longest axial stone diameter on three randomised sets of images: separate VNC and post-contrast images, and side-by-side-reconstructions. True non-contrast (TNC) images served as the standard of reference. RESULTS A total of 83 urinary stones were detected on TNC images. Independent reader side-by-side-evaluation of VNC and post-contrast images yielded higher stone detection sensitivity (76 and 84%, respectively) compared to evaluation of only VNC (71 and 81%, respectively) or post-contrast images (64 and 80%, respectively). The sensitivity of joint reader evaluation of side-by-side-images reached almost 86% and was not significantly different from TNC images (p = 0.77). All stones larger than 3 mm were correctly detected by side-by-side-evaluation. Dose reduction of 55% could be achieved by omitting TNC scans. CONCLUSION Side-by-side-VNC and post-contrast image evaluation enable detection of clinically significant urolithiasis on single-phase split bolus DE-CTU with significant dose reduction. ADVANCES IN KNOWLEDGE This study shows that single-phase DE-CTU is feasible if VNC imaging is simultaneously utilised with post-contrast images.
Collapse
Affiliation(s)
- Doris Dodig
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | | | - Iva Žuža
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Ivan Pavlović
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Damir Miletić
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia.,Department of Radiology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Dean Markić
- Department of Urology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Building a dual-energy CT service line in abdominal radiology. Eur Radiol 2020; 31:4330-4339. [PMID: 33210201 DOI: 10.1007/s00330-020-07441-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
As the access of radiology practices to dual-energy CT (DECT) has increased worldwide, seamless integration into clinical workflows and optimized use of this technology are desirable. In this article, we provide basic concepts of commercially available DECT hardware implementations, discuss financial and logistical aspects, provide tips for protocol building and image routing strategies, and review radiation dose considerations to establish a DECT service line in abdominal imaging. KEY POINTS: • Tube-based and detector-based DECT implementations with varying features and strengths are available on the imaging market. • Thorough assessment of financial and logistical aspects is key to successful implementation of a DECT service line. • Optimized protocol building and image routing strategies are of critical importance for effective use and seamless inception of DECT in routine clinical workflows.
Collapse
|
9
|
Examining the upper urinary tract in patients with hematuria-time to revise the CT urography protocol? Eur Radiol 2019; 30:1664-1670. [PMID: 31748856 DOI: 10.1007/s00330-019-06521-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Three-phase CT urography (CTU) is the gold standard for evaluating the upper urinary tract in patients with hematuria. We aimed to evaluate the accuracy of CTU for detecting upper urothelial cell carcinomas (UCC) in patients with hematuria and negative cystoscopy. Secondly, we aimed to determine the tumor visibility on each CTU phase. MATERIAL AND METHODS This retrospective study included all patients with hematuria referred to CTU after a negative cystoscopy during 2016 and 2017. The original CTU reports were dichotomized as negative or positive. All patient charts were reviewed after a minimum of 18-month follow-up in order to register missed cancers. The results of biopsies and clinical follow-up were used as the reference standard. Two reviewers retrospectively evaluated the tumor visibility of each CT sequence in all true-positive CTUs. RESULTS We included 376 patients with hematuria who underwent CTU after a negative cystoscopy. Macroscopic and microscopic hematuria occurred in 87% (327) and 13% (49), respectively. The incidence of upper urothelial cell carcinoma was 1.9% (7), and the sensitivity of CTU was 100% (95% CI, 59-100), specificity was 99% (95% CI, 98-100), positive predictive value was 88% (95% CI, 47-99), and negative predictive value was 100% (95% CI, 99-100). The accuracy was 99% (95% CI, 90-100). All UCCs were visible on the nephrographic phase for both reviewers. CONCLUSION CTU is highly accurate for detecting upper UCCs. All cases were seen on the nephrographic phase. This suggests that the CTU protocol can be simplified. KEY POINTS • CT urography is highly accurate for detecting upper urothelial cell carcinomas. • All cancers were seen on the nephrographic phase. • All cancers were detected in patients with macroscopic hematuria.
Collapse
|
10
|
Zopfs D, Laukamp KR, Pinto Dos Santos D, Sokolowski M, Große Hokamp N, Maintz D, Borggrefe J, Persigehl T, Lennartz S. Low-keV virtual monoenergetic imaging reconstructions of excretory phase spectral dual-energy CT in patients with urothelial carcinoma: A feasibility study. Eur J Radiol 2019; 116:135-143. [PMID: 31153554 DOI: 10.1016/j.ejrad.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To compare objective and subjective image quality between low keV virtual monoenergetic images (VMI) of the excretory phase and conventional venous phase images derived from spectral dual-energy CT (DECT) in the assessment of urothelial carcinoma. METHODS 26 consecutive patients with histologically confirmed urothelial carcinoma who received clinically indicated venous- and excretory phase abdominal CT scans were included retrospectively. Attenuation, image noise as well as signal- and contrast-to-noise-ratio (SNR, CNR) in venous and excretory phase CT and excretory phase VMI from 40 to 70 keV were obtained from ROI-based measurements in the following regions: urothelial carcinoma, liver, pancreas, renal cortex, subcutaneous fat, renal vein/artery, portal vein, urinary bladder wall, lymph nodes, prostate/uterus. Subjective vessel contrast and delineation of primary tumor manifestations and distant metastases were rated on 5-point Likert scales. RESULTS In comparison to venous phase CT, attenuation and SNR in excretory phase VMI40keV were higher (p < 0.001), except for liver parenchyma, where they were comparable (p = 0.07 and p = 0.17, respectively). Regarding image noise, no significant difference was found between venous phase CT and excretory phase VMI40keV (p-range: 0.08-1.00), except for liver, portal vein and renal artery, where it was lower in VMI40keV (p < 0.05). CNR of urothelial carcinoma to circumjacent bladder wall was significantly higher in excretory phase VMI40keV compared to venous phase CT. Subjective vessel contrast and delineation of primary tumor and distant metastases received equivalent or higher Likert scores in excretory phase VMI40keV than in venous phase CT. CONCLUSION This feasibility study indicates that in the assessment of urothelial carcinoma, virtual monoenergetic excretory phase images at 40 keV acquired with spectral DECT could be feasible to maintain subjective and objective image quality as provided by conventional venous phase images. Still, equivalence with regards to metastatic lesion detection requires further investigation before employing this technique in a potential signal-scan, single-bolus approach.
Collapse
Affiliation(s)
- David Zopfs
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Kai Roman Laukamp
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, Case Western Reserve University and University Hospitals, 11100 Euclid Ave, Cleveland, Ohio, USA
| | - Daniel Pinto Dos Santos
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Marcel Sokolowski
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nils Große Hokamp
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - David Maintz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jan Borggrefe
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Thorsten Persigehl
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Simon Lennartz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany; Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany.
| |
Collapse
|
11
|
Systematic Review and Meta-Analysis Investigating the Diagnostic Yield of Dual-Energy CT for Renal Mass Assessment. AJR Am J Roentgenol 2019; 212:1044-1053. [PMID: 30835518 DOI: 10.2214/ajr.18.20625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE. The objective of our study was to perform a systematic review and meta-analysis to evaluate the diagnostic accuracy of dual-energy CT (DECT) for renal mass evaluation. MATERIALS AND METHODS. In March 2018, we searched MEDLINE, Cochrane Database of Systematic Reviews, Embase, and Web of Science databases. Analytic methods were based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Pooled estimates for sensitivity, specificity, and diagnostic odds ratios were calculated for DECT-based virtual monochromatic imaging (VMI) and iodine quantification techniques as well as for conventional attenuation measurements from renal mass CT protocols. I2 was used to evaluate heterogeneity. The methodologic quality of the included studies and potential bias were assessed using items from the Quality Assessment Tool for Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS. Of the 1043 articles initially identified, 13 were selected for inclusion (969 patients, 1193 renal masses). Cumulative data of sensitivity, specificity, and summary diagnostic odds ratio for VMI were 87% (95% CI, 80-92%; I2, 92.0%), 93% (95% CI, 90-96%; I2, 18.0%), and 183.4 (95% CI, 30.7-1093.4; I2, 61.6%), respectively. Cumulative data of sensitivity, specificity, and summary diagnostic odds ratio for iodine quantification were 99% (95% CI, 97-100%; I2, 17.6%), 91% (95% CI, 89-94%; I2, 84.2%), and 511.5 (95% CI, 217-1201; I2, 0%). No significant differences in AUCs were found when comparing iodine quantification to conventional attenuation measurements (p = 0.79). CONCLUSION. DECT yields high accuracy for renal mass evaluation. Determination of iodine content with the iodine quantification technique shows diagnostic accuracy similar to conventional attenuation measurements from renal mass CT protocols. The iodine quantification technique may be used to characterize incidental renal masses when a dedicated renal mass protocol is not available.
Collapse
|
12
|
Dual-Energy CT Material Density Iodine Quantification for Distinguishing Vascular From Nonvascular Renal Lesions: Normalization Reduces Intermanufacturer Threshold Variability. AJR Am J Roentgenol 2019; 212:366-376. [DOI: 10.2214/ajr.18.20115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Dual energy CT for evaluation of polycystic kidneys: a multi reader study of interpretation time and diagnostic confidence. Abdom Radiol (NY) 2018; 43:3418-3424. [PMID: 29926138 DOI: 10.1007/s00261-018-1674-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To compare dual-energy CT (DECT) iodine overlay images with renal mass protocol CT in the evaluation of polycystic kidneys with respect to reading time, diagnostic confidence, and detection of renal lesions that are not definitively benign. METHODS Following IRB approval, portal venous phase dual-source DECT scans performed between September 2013 and February 2016 from 55 patients (mean age 67 ± 15 years, 31 male, 24 female) with polycystic kidneys (4 or more cysts) were included. For each patient, two image sets were created: (1) DECT post-processed iodine overlay images and (2) simulated renal mass protocol CT images (virtual noncontrast and mixed images). Two radiologists independently retrospectively reviewed both sets at separate time points, evaluating for the presence of lesions that were not definitively benign (enhancing lesions or Bosniak IIF cysts), as well as reading times and Likert scale diagnostic confidence ratings (scaled 1-5) for the presence of non-benign lesions. Reading times were compared with a t test, diagnostic confidence with a McNemar test, and lesion number detection with Cohen's kappa test. RESULTS Iodine overlay images were read faster (mean 55 ± 26 s) than renal mass protocol (mean 105 ± 51 s) (p < 0.001). Readers assigned the highest diagnostic confidence rating in 64% using iodine overlay series, compared to 17% using renal mass protocol (p < 0.0001). The proportion of patients with recorded lesions was not significantly different between methods (p = 0.62). CONCLUSIONS DECT improves lesion assessment in polycystic kidneys by decreasing reading times and increasing diagnostic confidence, without affecting lesion detection rates.
Collapse
|
14
|
Wortman JR, Sodickson AD. Pearls, Pitfalls, and Problems in Dual-Energy Computed Tomography Imaging of the Body. Radiol Clin North Am 2018; 56:625-640. [PMID: 29936951 DOI: 10.1016/j.rcl.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dual-energy computed tomography (DECT) is an exciting technology that is increasing in routine use and has the potential for significant clinical impact. With the advancement of DECT, it is important for radiologists to be aware of potential challenges with DECT acquisition and postprocessing, and to have a basic knowledge of unique artifacts and diagnostic pitfalls that can occur when interpreting DECT scans and DECT postprocessed images. This article serves as a practical overview of potential problems and diagnostic pitfalls associated with DECT, and steps that can be taken to avoid them.
Collapse
Affiliation(s)
- Jeremy R Wortman
- Division of Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Aaron D Sodickson
- Division of Emergency Radiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
15
|
Vernuccio F, Meyer M, Mileto A, Marin D. Use of Dual-Energy Computed Tomography for Evaluation of Genitourinary Diseases. Urol Clin North Am 2018; 45:297-310. [PMID: 30031456 DOI: 10.1016/j.ucl.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since its clinical inception a decade ago, dual-energy computed tomography has expanded the array of computed tomography imaging tools available to the practicing abdominal radiologist. Of note, diagnostic solutions for imaging-based evaluation of genitourinary diseases, foremost kidney calculi and renal tumors characterization, represent the apogee applications of dual-energy computed tomography in abdominal imaging. This article reviews clinical applications of dual-energy computed tomography for the assessment of genitourinary diseases.
Collapse
Affiliation(s)
- Federica Vernuccio
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA; Section of Radiology -Di.Bi.Med., University Hospital "Paolo Giaccone", University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Mathias Meyer
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, Box 357115, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Schabel C, Patel B, Harring S, Duvnjak P, Ramírez-Giraldo JC, Nikolaou K, Nelson RC, Farjat AE, Marin D. Renal Lesion Characterization with Spectral CT: Determining the Optimal Energy for Virtual Monoenergetic Reconstruction. Radiology 2018; 287:874-883. [DOI: 10.1148/radiol.2018171657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Schabel
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Bhavik Patel
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Scott Harring
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Petar Duvnjak
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Juan Carlos Ramírez-Giraldo
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Konstantin Nikolaou
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Rendon C. Nelson
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Alfredo E. Farjat
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| | - Daniele Marin
- From the Departments of Radiology (C.S., B.P., S.H., P.D., R.C.N., D.M.) and Biostatistics and Bioinformatics (A.E.F.), Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710; Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany (C.S., K.N.); and Department of Computed Tomography, Siemens Medical Solutions USA, Malvern, Pa (J.C.R.)
| |
Collapse
|
17
|
Toia GV, Kim S, Dighe MK, Mileto A. Dual-Energy Computed Tomography in Body Imaging. Semin Roentgenol 2018; 53:132-146. [PMID: 29861005 DOI: 10.1053/j.ro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Giuseppe V Toia
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Sooah Kim
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Manjiri K Dighe
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Achille Mileto
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195.
| |
Collapse
|
18
|
Abstract
Renal cell carcinoma (RCC) exhibits a diverse and heterogeneous disease spectrum, but insight into its molecular biology has provided an improved understanding of potential risk factors, oncologic behavior, and imaging features. Computed tomography (CT) and MR imaging may allow the identification and preoperative subtyping of RCC and assessment of a response to various therapies. Active surveillance is a viable management option in some patients and has provided further insight into the natural history of RCC, including the favorable prognosis of cystic neoplasms. This article reviews CT and MR imaging in RCC and the role of screening in selected high-risk populations.
Collapse
Affiliation(s)
- Alberto Diaz de Leon
- Department of Radiology, University of Texas Southwestern Medical Center, 2201 Inwood Road, 2nd Floor, Suite 202, Dallas, TX 75390-9085, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, 2201 Inwood Road, 2nd Floor, Suite 202, Dallas, TX 75390-9085, USA.
| |
Collapse
|
19
|
Systematic radiation dose optimization of abdominal dual-energy CT on a second-generation dual-source CT scanner: assessment of the accuracy of iodine uptake measurement and image quality in an in vitro and in vivo investigations. Abdom Radiol (NY) 2017; 42:2562-2570. [PMID: 28470402 DOI: 10.1007/s00261-017-1160-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. METHODS In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDIvol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). RESULTS In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDIvol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p < 0.001), and the average image noise values were 6.6 ± 1.2, 7.8 ± 1.4, and 9.6 ± 2.2 HU, respectively (p < 0.001). No significant differences in the six subjective image quality parameters were observed between the dose-optimized dual-energy and the single-energy protocol. CONCLUSION A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.
Collapse
|
20
|
Marino MA, Silipigni S, Barbaro U, Mazziotti S, Sofia C, Mazzei MA, Ascenti G. Dual Energy CT Scanning in Evaluation of the Urinary Tract. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
|
22
|
Abstract
Reignited by innovations in scanner engineering and software design, dual-energy computed tomography (CT) has come back into the clinical radiology arena in the last decade. Possibilities for noninvasive in vivo characterization of genitourinary disease, especially for renal stones and renal masses, have become the pinnacle offerings of dual-energy CT for body imaging in clinical practice. This article renders a state-of-the-art review on clinical applications of dual-energy CT in genitourinary imaging.
Collapse
Affiliation(s)
- Achille Mileto
- Department of Radiology, University of Washington School of Medicine, Box 357115, 1959 Northeast Pacific Street, Seattle, WA 98195, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Abstract
Dual-energy CT is being increasingly used for abdominal imaging due to its incremental benefit of material characterization without significant increase in radiation dose. Knowledge of the different dual-energy CT acquisition techniques and image processing algorithms is essential to optimize imaging protocols and understand potential limitations while using dual-energy CT renal imaging such as urinary calculi characterization, assessment of renal masses and in CT urography. This review article provides an overview of the current dual-energy CT techniques and use of dual-energy CT in renal imaging.
Collapse
|
24
|
Diagnostic Performance of Split-Bolus Portal Venous Phase Dual-Energy CT Urography in Patients With Hematuria. AJR Am J Roentgenol 2016; 206:1013-22. [DOI: 10.2214/ajr.15.15112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria. Eur Radiol 2016; 26:3550-7. [DOI: 10.1007/s00330-016-4206-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
26
|
Split-Bolus Portal Venous Phase Dual-Energy CT Urography: Protocol Design, Image Quality, and Dose Reduction. AJR Am J Roentgenol 2016; 205:W492-501. [PMID: 26496571 DOI: 10.2214/ajr.14.13687] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The purpose of this study is to evaluate the image quality of split-bolus portal venous phase urography and the potential reduction of radiation dose by using a second-generation dual-source dual-energy CT (DECT) scanner. MATERIALS AND METHODS DECT urography was performed in 84 patients. Unenhanced CT was performed 20 minutes after drinking 800 mL of water. The split-bolus protocol consisted of a sequence of injections, as follows: 200 mL of normal saline (2.0 mL/s), 50 mL of contrast medium (2.5 mL/s) at 0 second, 70 mL of contrast medium (2.5 mL/s) at 360 seconds, and a saline flush of 25 mL. The scan was started at 420 seconds. Virtual unenhanced images were reconstructed from contrast-enhanced images. The mean CT density and signal-to-noise ratio (SNR) of the renal parenchyma, vessels, upper urinary tract, normal reference tissues, and tumors were measured for image quantitative analysis. Image quality and opacification of the collecting systems were rated by two radiologists using 3- or 4-point scales. RESULTS The SNR of all measured sites, except the renal pelvis, showed a statistically significant correlation (p < 0.001) between the true unenhanced and virtual unenhanced images. The overall sensitivity of stone detection was 87.5% (28/32) in virtual unenhanced images. Image quality of the renal parenchyma, arteries, and veins was excellent in 59.5%, 75.0%, and 97.6% of cases, respectively. Opacification of the intrarenal collecting systems, proximal, middle, and distal ureters, and bladder was complete in 92.9%, 83.9%, 78.6%, 77.4%, and 26.2% of patients, respectively. Omitting the unenhanced scan can reduce the mean radiation dose from 15.6 to 6.7 mSv. CONCLUSION Portal venous phase split-bolus DECT urography provides sufficient image quality with potential to reduce radiation exposure.
Collapse
|
27
|
Mileto A, Sofue K, Marin D. Imaging the renal lesion with dual-energy multidetector CT and multi-energy applications in clinical practice: what can it truly do for you? Eur Radiol 2016; 26:3677-90. [DOI: 10.1007/s00330-015-4180-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/30/2023]
|
28
|
|
29
|
Abstract
Although conceived of in the 1970s, practical use of dual-energy CT in the clinical setting did not come to fruition until 2006, and since that time an ever expanding exploration of the technology has been underway. This article will discuss technical aspects of the two commercially available CT scanners, review the recent literature, and provide an organ-based description of abdominal dual-energy CT applications for the practicing radiologist.
Collapse
|
30
|
Diagnostic efficiency of split-bolus dual-energy computed tomography for patients with suspected urinary stones. J Comput Assist Tomogr 2015; 39:25-31. [PMID: 25247691 DOI: 10.1097/rct.0000000000000151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the efficiency of virtual noncontrast image (VNCI) generated from dual-energy split-bolus computed tomographic urography (DE-SBCTU) for urinary stones detection. METHODS Three hundred fifty-six patients underwent true noncontrast image (TNCI) and DE-SBCTU. Two radiologists evaluated opacification scores of DE-SBCTU as well as iodine subtractions and image noise on VNCI. Diagnostic performance of the VNCI was evaluated using TNCI as a reference standard, according to diameter and image quality. The results were compared between patient groups with body mass index of less than 25 and 25 kg/m2 or greater. RESULTS Agreements for opacification, iodine subtraction, and image noise between the radiologists were excellent, and there were no significant difference in the 2 patients groups. A total of 499 stones were detected on VNCI, with a sensitivity and diagnostic accuracy of 95.1% (468/492) and 92.9% (499/537). Mean (SD) diameter was significantly smaller on VNCI (3.6 [2.3] mm) than on TNCI (4.4 [2.0] mm) (P = 0.01). The stone diameter with false interpretation was less than 4 mm in 48 of 51 patients. The diameter and image quality on VNCI had no significant difference between the 2 patients groups. CONCLUSIONS Virtual noncontrast image displays high accuracy for detecting urinary stones, regardless of body mass index.
Collapse
|
31
|
Alanee S, Dynda DI, Hemmer P, Schwartz B. Low enhancing papillary renal cell carcinoma diagnosed by using dual energy computerized tomography: a case report and review of literature. BMC Urol 2014; 14:102. [PMID: 25524502 PMCID: PMC4289588 DOI: 10.1186/1471-2490-14-102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Papillary renal cell carcinoma (pRCC) is a mixed group of tumors that constitutes about 15-20% of all renal cortical cancers. Strong enhancement on computerized tomography (CT) is a feature of clear cell, but not of pRCC making the differentiation of papillary tumors from benign cysts a diagnostic problem in some cases. CASE PRESENTATION We report here a case of a female patient with pRCC that was initially diagnosed as a benign renal cyst. The patient is a 66 year old Caucasian female who initially presented with an ultrasound showing a 2.6 cm hypo-echoic lesion within the inferior pole of her left kidney. This was followed by a contrast enhanced computerized tomography that suggested the hypo-echoic lesion to be a hyper-attenuating benign renal cyst. Follow-up CT scan 4 months later demonstrated an increase in the size of the lesion to 3.2 cm with equivocal enhancement. A dual energy computerized tomography (DECT) showed the lesion to be a solid mass suspicious for renal cell carcinoma. A robotic partial nephrectomy revealed a papillary renal cell carcinoma with negative margins. CONCLUSION In this case report, we reviewed the literature on variations in enhancement of renal tumors and the possible role of dual energy contract enhanced CT in differentiating papillary tumors with low enhancement from benign kidney cystic lesions.
Collapse
Affiliation(s)
- Shaheen Alanee
- Southern Illinois University School of Medicine, Division of Urology, 301 N Eighth St - St John's Pavilion, PO Box 19665, 62794-9665 Springfield, IL, USA.
| | | | | | | |
Collapse
|
32
|
Puech P, Rouprêt M, Renard-Penna R, Lemaître L, Colin P. Imagerie des tumeurs des voies excrétrices supérieures : état de l’art pour le rapport scientifique annuel de l’Association française d’urologie. Prog Urol 2014; 24:987-99. [DOI: 10.1016/j.purol.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
|
33
|
Diagnostics clinique, urétéroscopique et photodynamique des tumeurs de la voie excrétrice urinaire supérieures : état-de-l’art pour le rapport scientifique annuel de l’Association française d’urologie. Prog Urol 2014; 24:977-86. [DOI: 10.1016/j.purol.2014.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 11/23/2022]
|
34
|
Mileto A, Marin D, Alfaro-Cordoba M, Ramirez-Giraldo JC, Eusemann CD, Scribano E, Blandino A, Mazziotti S, Ascenti G. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 2014; 273:813-20. [PMID: 25162309 DOI: 10.1148/radiol.14140171] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate whether dual-energy multidetector row computed tomographic (CT) imaging with iodine quantification is able to distinguish between clear cell and papillary renal cell carcinoma ( RCC renal cell carcinoma ) subtypes. MATERIALS AND METHODS In this retrospective, HIPAA-compliant, institutional review board-approved study, 88 patients (57 men, 31 women) with diagnosis of either clear cell or papillary RCC renal cell carcinoma at pathologic analysis, who underwent contrast material-enhanced dual-energy nephrographic phase study between December 2007 and June 2013, were included. Five readers, blinded to pathologic diagnosis, independently evaluated all cases by determining the lesion iodine concentration on color-coded iodine maps. The receiving operating characteristic curve analysis was adopted to estimate the optimal threshold for discriminating between clear cell and papillary RCC renal cell carcinoma , and results were validated by using a leave-one-out cross-validation. Interobserver agreement was assessed by using an intraclass correlation coefficient. The correlation between tumor iodine concentration and tumor grade was investigated. RESULTS A tumor iodine concentration of 0.9 mg/mL represented the optimal threshold to discriminate between clear cell and papillary RCC renal cell carcinoma , and it yielded the following: sensitivity, 98.2% (987 of 1005 [95% confidence interval: 97.7%, 98.7%]); specificity, 86.3% (272 of 315 [95% confidence interval: 85.0%, 87.7%]); positive predictive value, 95.8% (987 of 1030 [95% confidence interval: 95.0%, 96.6%]); negative predictive value, 93.7% (272 of 290 [95% confidence interval: 92.8%, 94.7%]); overall accuracy of 95.3% (1259 of 1320 [95% confidence interval: 94.6%, 96.2%]), with an area under the curve of 0.923 (95% confidence interval: 0.913, 0.933). An excellent agreement was found among the five readers in measured tumor iodine concentration (intraclass correlation coefficient, 0.9990 [95% confidence interval: 0. 9987, 0.9993). A significant correlation was found between tumor iodine concentration and tumor grade for both clear cell (τ = 0.85; P < .001) and papillary RCC renal cell carcinoma (τ = 0.53; P < .001). CONCLUSION Dual-energy multidetector CT with iodine quantification can be used to distinguish between clear cell and papillary RCC renal cell carcinoma , and it provides insights regarding the tumor grade.
Collapse
Affiliation(s)
- Achille Mileto
- From the Department of Radiology, Duke University Medical Center, Box 3808 Erwin Rd, Durham, NC 27710 (A.M., D.M.); Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy (A.M., E.S., A.B., S.M., G.A.); Department of Statistics, North Carolina State University, Raleigh, NC (M.A.C.); and Siemens Medical Solutions USA, Malvern, Pa (J.C.R.G., C.D.E.)
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Moloney F, Murphy KP, Twomey M, O'Connor OJ, Maher MM. Haematuria: an imaging guide. Adv Urol 2014; 2014:414125. [PMID: 25136357 PMCID: PMC4124848 DOI: 10.1155/2014/414125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/23/2022] Open
Abstract
This paper discusses the current status of imaging in the investigation of patients with haematuria. The physician must rationalize imaging so that serious causes such as malignancy are promptly diagnosed while at the same time not exposing patients to unnecessary investigations. There is currently no universal agreement about the optimal imaging work up of haematuria. The choice of modality to image the urinary tract will depend on individual patient factors such as age, the presence of risk factors for malignancy, renal function, a history of calculus disease and pregnancy, and other factors, such as local policy and practice, cost effectiveness and availability of resources. The role of all modalities, including conventional radiography, intravenous urography/excretory urography, ultrasonography, retrograde pyelography, multidetector computed tomography urography (MDCTU), and magnetic resonance urography, is discussed. This paper highlights the pivotal role of MDCTU in the imaging of the patient with haematuria and discusses issues specific to this modality including protocol design, imaging of the urothelium, and radiation dose. Examination protocols should be tailored to the patient while all the while optimizing radiation dose.
Collapse
Affiliation(s)
- Fiachra Moloney
- Department of Radiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Kevin P. Murphy
- Department of Radiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Maria Twomey
- Department of Radiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Owen J. O'Connor
- Department of Radiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Michael M. Maher
- Department of Radiology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
36
|
In search of a consensus: evaluation of the patient with hematuria in an era of cost containment. AJR Am J Roentgenol 2014; 202:1179-86. [PMID: 24848814 DOI: 10.2214/ajr.13.12266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this article is to describe the current consensus guidelines for nonimaging triage and ultimate preferred imaging approach for the patient with unexplained hematuria. CONCLUSION Numerous consensus guidelines from varying societies have outlined preferred imaging pathways for the patient with unexplained urologic causes of hematuria. Future guidelines will need to take into account disease prevalence, radiation considerations, and cost.
Collapse
|
37
|
Abstract
Recent technologic advances in computed tomography (CT)--enabling the nearly simultaneous acquisition of clinical images using two different x-ray energy spectra--have sparked renewed interest in dual-energy CT. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT can be used to provide quantitative information about tissue composition, overcoming the limitations of attenuation-based conventional single-energy CT imaging. In the past few years, intensive research efforts have been devoted to exploiting the unique and powerful opportunities of dual-energy CT for a variety of clinical applications. This has led to CT protocol modifications for radiation dose reduction, improved diagnostic performance for detection and characterization of diseases, as well as image quality optimization. In this review, the authors discuss the basic principles, instrumentation and design, examples of current clinical applications in the abdomen and pelvis, and future opportunities of dual-energy CT.
Collapse
Affiliation(s)
- Daniele Marin
- From the Department of Radiology, Duke University Medical Center, Box 3808, Room 1531, Erwin Rd, Durham, NC 27710
| | | | | | | |
Collapse
|
38
|
Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol 2014; 202:W466-74. [PMID: 24758682 DOI: 10.2214/ajr.13.11450] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of our study was to assess the accuracy of iodine-related attenuation and iodine quantification as imaging biomarkers of iodine uptake in renal lesions on a single-phase nephrographic image with dual-energy MDCT. MATERIALS AND METHODS Fifty-nine patients (41 men, 18 women; age range, 28-84 years) with 80 renal lesions underwent contrast-enhanced dual-energy CT during the nephrographic phase of enhancement. Renal lesions were characterized as enhancing or nonenhancing on color-coded iodine overlay maps using iodine-related attenuation (in Hounsfield units) and iodine quantification (in milligrams per milliliter). For iodine-related attenuation the iodine uptake thresholds of 15 and 20 HU were tested; a threshold of 0.5 mg/mL was used for iodine quantification. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of iodine-related attenuation and iodine quantification were calculated from chi-square tests of contingency with histopathology or imaging follow-up as the reference standard. The 95% CIs were calculated from binomial expression. Differences in sensitivity and specificity were assessed by means of McNemar analysis. RESULTS A significant difference in sensitivity and specificity was found between iodine-related attenuation with the thresholds of 15 HU (sensitivity, 91.4%; specificity, 93.3%; PPV, 91.4%; NPV, 93.3%) and 20 HU (sensitivity, 77.1%; specificity, 100%; PPV, 100%; NPV, 84.9%) (p = 0.008) and between iodine quantification (sensitivity, 100%; specificity, 97.7%; PPV, 97.2%; NPV, 100%) and iodine-related attenuation with a threshold of 20 HU (p = 0.004). No significant difference in sensitivity and specificity was found between iodine quantification and iodine-related attenuation with a threshold of 15 HU. CONCLUSION Contrast-enhanced dual-energy MDCT with iodine-related attenuation and iodine quantification allows accurate evaluation of iodine uptake in renal lesions on a single-phase nephrographic image.
Collapse
|
39
|
Pushing CT and MR imaging to the molecular level for studying the "omics": current challenges and advancements. BIOMED RESEARCH INTERNATIONAL 2014; 2014:365812. [PMID: 24738056 PMCID: PMC3971568 DOI: 10.1155/2014/365812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/26/2013] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
During the past decade, medical imaging has made the transition from anatomical imaging to functional and even molecular imaging. Such transition provides a great opportunity to begin the integration of imaging data and various levels of biological data. In particular, the integration of imaging data and multiomics data such as genomics, metabolomics, proteomics, and pharmacogenomics may open new avenues for predictive, preventive, and personalized medicine. However, to promote imaging-omics integration, the practical challenge of imaging techniques should be addressed. In this paper, we describe key challenges in two imaging techniques: computed tomography (CT) and magnetic resonance imaging (MRI) and then review existing technological advancements. Despite the fact that CT and MRI have different principles of image formation, both imaging techniques can provide high-resolution anatomical images while playing a more and more important role in providing molecular information. Such imaging techniques that enable single modality to image both the detailed anatomy and function of tissues and organs of the body will be beneficial in the imaging-omics field.
Collapse
|
40
|
Toepker M, Kuehas F, Kienzl D, Herwig R, Spazierer E, Krauss B, Weber M, Seitz C, Ringl H. Dual Energy Computerized Tomography with a Split Bolus—A 1-Stop Shop for Patients with Suspected Urinary Stones? J Urol 2014; 191:792-7. [DOI: 10.1016/j.juro.2013.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Michael Toepker
- Department of Radiology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Franklin Kuehas
- Department of Urology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Daniela Kienzl
- Department of Radiology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Ralf Herwig
- Department of Urology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Elisa Spazierer
- Department of Radiology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | | | - Michael Weber
- Department of Radiology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Christian Seitz
- Department of Urology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Helmut Ringl
- Department of Radiology, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| |
Collapse
|
41
|
Dual energy MDCT assessment of renal lesions: an overview. Eur Radiol 2013; 24:353-62. [DOI: 10.1007/s00330-013-3030-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/26/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
|
42
|
Urinary stone detection and characterisation with dual-energy CT urography after furosemide intravenous injection: preliminary results. Eur Radiol 2013; 24:709-14. [DOI: 10.1007/s00330-013-3033-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/30/2013] [Accepted: 09/15/2013] [Indexed: 01/01/2023]
|
43
|
Ascenti G, Mileto A, Krauss B, Gaeta M, Blandino A, Scribano E, Settineri N, Mazziotti S. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 2013; 23:2288-95. [DOI: 10.1007/s00330-013-2811-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 01/03/2023]
|