1
|
Fushimi Y, Nakajima S, Sakata A, Okuchi S, Otani S, Nakamoto Y. Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology. J Magn Reson Imaging 2024; 59:1914-1929. [PMID: 37681441 DOI: 10.1002/jmri.29010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Iron Deposition in Brain: Does Aging Matter? Int J Mol Sci 2022; 23:ijms231710018. [PMID: 36077413 PMCID: PMC9456423 DOI: 10.3390/ijms231710018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The alteration of iron homeostasis related to the aging process is responsible for increased iron levels, potentially leading to oxidative cellular damage. Iron is modulated in the Central Nervous System in a very sensitive manner and an abnormal accumulation of iron in the brain has been proposed as a biomarker of neurodegeneration. However, contrasting results have been presented regarding brain iron accumulation and the potential link with other factors during aging and neurodegeneration. Such uncertainties partly depend on the fact that different techniques can be used to estimate the distribution of iron in the brain, e.g., indirect (e.g., MRI) or direct (post-mortem estimation) approaches. Furthermore, recent evidence suggests that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their anatomical location. This review aims to collect the available data on the association between iron concentration in the brain and aging, shedding light on potential mechanisms that may be helpful in the detection of physiological neurodegeneration processes and neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
3
|
Mousa SO, Abd El-Hafez AH, Abu El-Ela MA, Mourad MAF, Saleh RN, Sayed SZ. RANK/RANKL/OPG axis genes relation to cognitive impairment in children with transfusion-dependent thalassemia: a cross-sectional study. BMC Pediatr 2022; 22:435. [PMID: 35858838 PMCID: PMC9297631 DOI: 10.1186/s12887-022-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023] Open
Abstract
Background RANK/RANKL/OPG axis was implicated in many pathological conditions. The study aimed to assess the relationship between the studied RANK, RANKL, and OPG polymorphisms and alleles and cognitive impairment in children with transfusion-dependent thalassemia (TDT). Methods This study included 60 TDT children. Real-time PCR was done for: rs1805034, rs1245811, and rs75404003 polymorphisms for the RANK gene, rs9594782 and rs2277438 polymorphisms for the RANKL gene, and rs207318 polymorphism for the OPG gene. The intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for Children-Third Edition. Results TDT children had a low average total IQ, verbal IQ, and borderline performance IQ. RANK rs1805034 (C > T) had a significant effect on total IQ (p = 0.03). Its TT polymorphism and the CT polymorphism of RANKL rs9494782 (C > T) had a significantly lower total IQ (p = 0.01 for both). The G allele of the RANKL rs2277438 (G > A) had a significantly lower total IQ (p = 0.02). RANK rs1805034 (C > T) and RANKL rs2277438 (G > A) significantly affected verbal IQ (p = 0.01 and 0.03). TT genotype of RANK rs1805034 (C > T) had significantly lower verbal IQ (p = 0.002). Furthermore, the GG genotype of RANKL rs2277438 (G > A) had a significantly lower verbal and performance IQ than the AA genotype (p = 0.04 and 0.01 respectively), and its G allele had a significantly lower performance IQ than the A allele (p = 0.02). Conclusion TDT children had low average total and verbal IQ while their performance IQ was borderline. The RANK/RANKL/OPG pathway affects cognition in TDT children, as some of the studied genes’ polymorphisms and alleles had significant effects on total, verbal, and performance IQ of the studied TDT children.
Collapse
Affiliation(s)
- Suzan Omar Mousa
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt.
| | - Asmaa Hosni Abd El-Hafez
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt
| | | | | | - Rasha Nady Saleh
- Department of Neuropsychiatry, Faculty of Medicine, El-Minya, Egypt
| | - Samira Zain Sayed
- Department of Pediatrics, Children's University hospital, Faculty of Medicine, Minia University, El-Minya, Egypt
| |
Collapse
|
4
|
Neuroimaging Findings in Pediatric Patients with Thalassemia Major. Hematol Rep 2022; 14:54-60. [PMID: 35323180 PMCID: PMC8952535 DOI: 10.3390/hematolrep14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Cranial magnetic resonance imaging (MRI) studies about iron accumulation in children with thalassemia major are quite limited. Aim: This study aimed to detect neurological findings with cranial MRIs in the pediatric patients with thalassemia major who did not develop any neurological complications. Materials and Methods: Pediatric patients with thalassemia major who followed in the Pediatric Hematology Unit between 1 July 2017 and 1 January 2019 were included in the study. The patients underwent cranial MRI scans. Results: A total of 30 patients were included. The median age was 15 (range from 4–18) years old. We found that 7 patients had a splenectomy and 19 of the remaining 23 patients had splenomegaly. In addition, 13 of the patients had hepatomegaly, 10 had skeletal deformities, and 17 had growth retardation. The mean ferritin level was 3772.3 ± 2524.8. We detected various pathologies on cranial MRI images of 10 (33.3%) patients. In 3 of these patients, millimeter-sized ischemia-compatible lesions were found in the cerebral white matter, which did not fit any arterial area, and 5 patients had hyperintense lesions in the basal ganglia. Conclusion: Our study is valuable since 1/3 of our pediatric patients with thalassemia major were detected with intracranial pathology.
Collapse
|
5
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
6
|
Elalfy MS, Ibrahim AS, Ibrahim GS, Hussein HMAG, Mohammed HGE, Ebeid FSE. Hidden brain iron content in sickle cell disease: impact on neurocognitive functions. Eur J Pediatr 2021; 180:2677-2686. [PMID: 34236515 DOI: 10.1007/s00431-021-04189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Children with sickle cell disease (SCD) are at a high risk for neurocognitive impairment. We aim to quantitatively measure cerebral tissue R2* to investigate the brain iron deposition in children and young adults with SCD in comparison to beta thalassemia major (BTM) and healthy controls and evaluate its impact on neurocognitive functions in patients with SCD. Thirty-two SCD, fifteen BTM, and eleven controls were recruited. Multi-echo fast-gradient echo sequence brain MRI was performed, and brain R2* values of both caudate and thalamic regions were calculated. SCD patients were examined for the neurocognitive functions. SCD had high iron overload 0.30 ± 0.12 mg/kg/day. 68.9% of SCD had under-threshold IQ, 12.5% had moderate to severe anxiety, and 60.8% had depression. There were no differences between SCD, BTM, and controls in brain MRI except that left thalamus R2* higher in BTM than both SCD and controls (p = 0.032). Mean right caudate R2* was higher in female than male (p = 0.044). No significant association between brain R2* and LIC or heart R2* values in SCD. Left caudate R2* directly correlate with age and HbS%, and negatively correlate with HbA% while right thalamus R2* negatively correlate with transfusion index and among SCD patients.Conclusion: Neurocognitive dysfunction in SCD could not be explained solely by brain iron overload. What is Known: • Children with sickle cell disease are at great risk of brain damage due to their irregularly shaped red blood cells that can interrupt blood flow to the brain. • There are a number of factors that have negative brain effects that result in learning difficulties, and this not only due to increase brain iron content. What is New: • Assessment of quantitative brain iron content using MRI R2* in children and young adults with SCD in comparison to beta thalassemia major and healthy controls. • Impact of brain iron content on neurocognitive functions of children and young adults with SCD.
Collapse
|
7
|
Sun J, Sha Y, Geng W, Chen J, Xing W. Susceptibility-weighted Imaging for Renal Iron Overload Assessment: A Pilot Study. Magn Reson Med Sci 2021; 21:415-424. [PMID: 33642470 PMCID: PMC9316138 DOI: 10.2463/mrms.mp.2020-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: To explore the feasibility of susceptibility-weighted imaging (SWI) for evaluating renal iron overload. Methods: Twenty-eight rabbits were randomly assigned into control (n = 14) and iron (n = 14) group. In the 0th week, the study group was injected with iron dextran. Both groups underwent SWI examination at the 0th, 8th, and 12th week. The signal intensity (SI) of cortex and medulla was assessed. Angle radian value (ARV) calculated with phase image was taken as the quantitative value for cortical and medullary iron deposition. After the 12th week, the left kidneys of rabbits were removed for pathology. The difference in the ARV among three groups was analyzed using Kruskal–Wallis test. The difference of the iron content between two groups was analyzed through independent sample t-test. Results: In the iron group: at the 12th week, eight rabbits were found to have decreased SI of only cortex, and the other six rabbits had decreased SI of cortex and medulla by the same degree; the ARV of cortex at the 8th and 12th week was significantly higher than that of the 0th week (P < 0.05); the ARV of the six rabbits’ medulla at the 12th week was significantly higher than that of the 0th week, 8th week, and the other eight rabbits at the 12th week (P < 0.05); at the 12th week, eight rabbits (iron group) were found to have many irons only deposit in the cortex, and the others were found to have many irons deposit in both cortex and medulla; the iron content of cortex and six rabbits’ medulla in the iron group was significantly higher than that of the control (P < 0.05). Conclusion: The ARV of SWI can be used to quantitatively assess the excess iron deposition in the kidneys. Excessive iron deposition mainly occurs in the cortex or medulla and causes their SWI SI to decrease.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Yuanyuan Sha
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Weiwei Geng
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University
| |
Collapse
|
8
|
Wimmer I, Scharler C, Kadowaki T, Hillebrand S, Scheiber-Mojdehkar B, Ueda S, Bradl M, Berger T, Lassmann H, Hametner S. Iron accumulation in the choroid plexus, ependymal cells and CNS parenchyma in a rat strain with low-grade haemolysis of fragile macrocytic red blood cells. Brain Pathol 2020; 31:333-345. [PMID: 33220123 PMCID: PMC8018038 DOI: 10.1111/bpa.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/03/2022] Open
Abstract
Iron accumulation in the CNS is associated with many neurological diseases via amplification of inflammation and neurodegeneration. However, experimental studies on iron overload are challenging, since rodents hardly accumulate brain iron in contrast to humans. Here, we studied LEWzizi rats, which present with elevated CNS iron loads, aiming to characterise choroid plexus, ependymal, CSF and CNS parenchymal iron loads in conjunction with altered blood iron parameters and, thus, signifying non‐classical entry sites for iron into the CNS. Non‐haem iron in formalin‐fixed paraffin‐embedded tissue was detected via DAB‐enhanced Turnbull Blue stainings. CSF iron levels were determined via atomic absorption spectroscopy. Ferroportin and aquaporin‐1 expression was visualised using immunohistochemistry. The analysis of red blood cell indices and serum/plasma parameters was based on automated measurements; the fragility of red blood cells was manually determined by the osmotic challenge. Compared with wild‐type animals, LEWzizi rats showed strongly increased iron accumulation in choroid plexus epithelial cells as well as in ependymal cells of the ventricle lining. Concurrently, red blood cell macrocytosis, low‐grade haemolysis and significant haemoglobin liberation from red blood cells were apparent in the peripheral blood of LEWzizi rats. Interestingly, elevated iron accumulation was also evident in kidney proximal tubules, which share similarities with the blood–CSF barrier. Our data underscore the importance of iron gateways into the CNS other than the classical route across microvessels in the CNS parenchyma. Our findings of pronounced choroid plexus iron overload in conjunction with peripheral iron overload and increased RBC fragility in LEWzizi rats may be seminal for future studies of human diseases, in which similar constellations are found.
Collapse
Affiliation(s)
- Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Cornelia Scharler
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Taro Kadowaki
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Sophie Hillebrand
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University, Tochigi, Japan
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Al-Hakeim HK, Najm AH, Al-Dujaili AH, Maes M. Major Depression in Children with Transfusion-Dependent Thalassemia Is Strongly Associated with the Combined Effects of Blood Transfusion Rate, Iron Overload, and Increased Pro-inflammatory Cytokines. Neurotox Res 2020; 38:228-241. [DOI: 10.1007/s12640-020-00193-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 02/02/2023]
|
10
|
Brain iron content in systemic iron overload: A beta-thalassemia quantitative MRI study. NEUROIMAGE-CLINICAL 2019; 24:102058. [PMID: 31711032 PMCID: PMC6849415 DOI: 10.1016/j.nicl.2019.102058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023]
Abstract
Iron overload is a life-threatening condition in beta-thalassemia. Data on brain involvement in systemic iron overload are conflicting. MRI quantification of brain tissue iron content is feasible in a voxel-based approach. No iron tissue excess is evident in beta-thalassemia but in the choroid plexuses.
Objective Multisystem iron poisoning is a major concern for long-term beta-thalassemia management. Quantitative MRI-based techniques routinely show iron overload in heart, liver, endocrine glands and kidneys. However, data on the brain are conflicting and monitoring of brain iron content is still matter of debate. Methods This 3T-MRI study applied a well validated high-resolution whole-brain quantitative MRI assessment of iron content on 47 transfusion-dependent (mean-age: 36.9 ± 10.3 years, 63% females), 23 non-transfusion dependent (mean-age: 29.2 ± 11.7 years, 56% females) and 57 healthy controls (mean-age: 33.9 ± 10.8 years, 65% females). Clinical data, Wechsler Adult Intelligence Scale scores and treatment regimens were recorded. Beside whole-brain R2* analyses, regional R2*-values were extracted in putamen, globus pallidum, caudate nucleus, thalamus and red nucleus; hippocampal volumes were also determined. Results Regional analyses yielded no significant differences between patients and controls, except in those treated with deferiprone that showed lower R2*-values (p<0.05). Whole-brain analyses of R2*-maps revealed strong age-R2* correlations (r2=0.51) in both groups and clusters of significantly increased R2*-values in beta-thalassemia patients in the hippocampal formations and around the Luschka foramina; transfusion treatment was associated with additional R2* increase in dorsal thalami. Hippocampal formation R2*-values did not correlate with hippocampal volume; hippocampal volume did not differ between patients and controls. All regions with increased R2*-values shared a strict anatomical contiguity with choroid plexuses suggesting a blooming effect as the likely cause of R2* increase, in agreement with the available histopathologic literature evidence. Conclusion According to our MRI findings and the available histopathologic literature evidence, concerns about neural tissue iron overload in beta-thalassemia appear to be unjustified.
Collapse
|
11
|
The Efficacy of Iron Chelators for Removing Iron from Specific Brain Regions and the Pituitary-Ironing out the Brain. Pharmaceuticals (Basel) 2019; 12:ph12030138. [PMID: 31533229 PMCID: PMC6789569 DOI: 10.3390/ph12030138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy, either subcutaneous or orally administered, has been used successfully in various clinical conditions. The removal of excess iron from various tissues, e.g., the liver spleen, heart, and the pituitary, in beta thalassemia patients, has become an essential therapy to prolong life. More recently, the use of deferiprone to chelate iron from various brain regions in Parkinson’s Disease and Friederich’s Ataxia has yielded encouraging results, although the side effects, in <2% of Parkinson’s Disease(PD) patients, have limited its long-term use. A new class of hydroxpyridinones has recently been synthesised, which showed no adverse effects in preliminary trials. A vital question remaining is whether inflammation may influence chelation efficacy, with a recent study suggesting that high levels of inflammation may diminish the ability of the chelator to bind the excess iron.
Collapse
|
12
|
Hubert V, Chauveau F, Dumot C, Ong E, Berner LP, Canet-Soulas E, Ghersi-Egea JF, Wiart M. Clinical Imaging of Choroid Plexus in Health and in Brain Disorders: A Mini-Review. Front Mol Neurosci 2019; 12:34. [PMID: 30809124 PMCID: PMC6379459 DOI: 10.3389/fnmol.2019.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022] Open
Abstract
The choroid plexuses (ChPs) perform indispensable functions for the development, maintenance and functioning of the brain. Although they have gained considerable interest in the last years, their involvement in brain disorders is still largely unknown, notably because their deep location inside the brain hampers non-invasive investigations. Imaging tools have become instrumental to the diagnosis and pathophysiological study of neurological and neuropsychiatric diseases. This review summarizes the knowledge that has been gathered from the clinical imaging of ChPs in health and brain disorders not related to ChP pathologies. Results are discussed in the light of pre-clinical imaging studies. As seen in this review, to date, most clinical imaging studies of ChPs have used disease-free human subjects to demonstrate the value of different imaging biomarkers (ChP size, perfusion/permeability, glucose metabolism, inflammation), sometimes combined with the study of normal aging. Although very few studies have actually tested the value of ChP imaging biomarkers in patients with brain disorders, these pioneer studies identified ChP changes that are promising data for a better understanding and follow-up of diseases such as schizophrenia, epilepsy and Alzheimer’s disease. Imaging of immune cell trafficking at the ChPs has remained limited to pre-clinical studies so far but has the potential to be translated in patients for example using MRI coupled with the injection of iron oxide nanoparticles. Future investigations should aim at confirming and extending these findings and at developing translational molecular imaging tools for bridging the gap between basic molecular and cellular neuroscience and clinical research.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Fabien Chauveau
- CNRS UMR5292, INSERM U1028, BIORAN Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Lyon, France
| | - Chloé Dumot
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | - Elodie Ong
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | | | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Jean-François Ghersi-Egea
- CNRS UMR5292, INSERM U1028, Fluid Team and BIP Facility, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Wiart
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,CNRS, Lyon, France
| |
Collapse
|