1
|
Huang Z, Lam S, Lin Z, Zhou L, Pei L, Song A, Wang T, Zhang Y, Qi R, Huang S. Predicting major adverse cardiac events using radiomics nomogram of pericoronary adipose tissue based on CCTA: A multi-center study. Med Phys 2024; 51:8348-8361. [PMID: 39042398 DOI: 10.1002/mp.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The evolution of coronary atherosclerotic heart disease (CAD) is intricately linked to alterations in the pericoronary adipose tissue (PCAT). In recent epochs, characteristics of the PCAT have progressively ascended as focal points of research in CAD risk stratification and individualized clinical decision-making. Harnessing radiomic methodologies allows for the meticulous extraction of imaging features from these adipose deposits. Coupled with machine learning paradigms, we endeavor to establish predictive models for the onset of major adverse cardiovascular events (MACE). PURPOSE To appraise the predictive utility of radiomic features of PCAT derived from coronary computed tomography angiography (CCTA) in forecasting MACE. METHODS We retrospectively incorporated data from 314 suspected or confirmed CAD patients admitted to our institution from June 2019 to December 2022. An additional cohort of 242 patients from two external institutions was encompassed for external validation. The endpoint under consideration was the occurrence of MACE after a 1-year follow-up. MACE was delineated as cardiovascular mortality, newly diagnosed myocardial infarction, hospitalization (or re-hospitalization) for heart failure, and coronary target vessel revascularization occurring more than 30 days post-CCTA examination. All enrolled patients underwent CCTA scanning. Radiomic features were meticulously extracted from the optimal diastolic phase axial slices of CCTA images. Feature reduction was achieved through a composite feature selection algorithm, laying the groundwork for the radiomic signature model. Both univariate and multivariate analyses were employed to assess clinical variables. A multifaceted logistic regression analysis facilitated the crafting of a clinical-radiological-radiomic combined model (or nomogram). Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were delineated, with the area under the ROC curve (AUCs) computed to gauge the predictive prowess of the clinical model, radiomic model, and the synthesized ensemble. RESULTS A total of 12 radiomic features closely associated with MACE were identified to establish the radiomic model. Multivariate logistic regression results demonstrated that smoking, age, hypertension, and dyslipidemia were significantly correlated with MACE. In the integrated nomogram, which amalgamated clinical, imaging, and radiomic parameters, the diagnostic performance was as follows: 0.970 AUC, 0.949 accuracy (ACC), 0.833 sensitivity (SEN), 0.981 specificity (SPE), 0.926 positive predictive value (PPV), and 0.955 negative predictive value (NPV). The calibration curve indicated a commendable concordance of the nomogram, and the decision curve analysis underscored its superior clinical utility. CONCLUSIONS The integration of radiomic signatures from PCAT based on CCTA, clinical indices, and imaging parameters into a nomogram stands as a promising instrument for prognosticating MACE events.
Collapse
Affiliation(s)
- Zhaoheng Huang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Saikit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnical University, Hong Kong, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zihe Lin
- Department of Computing, The Hong Kong Polytechnical University, Hong Kong, China
| | - Linjia Zhou
- Department of Medical Informatics, Nantong University, Nantong, China
| | - Liangchen Pei
- School of Automation, Southeast University, Nanjing, China
| | - Anyi Song
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Tianle Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong, China
| | - Rongxing Qi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Sheng Huang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Badesha AS, Frood R, Bailey MA, Coughlin PM, Scarsbrook AF. A Scoping Review of Machine-Learning Derived Radiomic Analysis of CT and PET Imaging to Investigate Atherosclerotic Cardiovascular Disease. Tomography 2024; 10:1455-1487. [PMID: 39330754 PMCID: PMC11435603 DOI: 10.3390/tomography10090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Cardiovascular disease affects the carotid arteries, coronary arteries, aorta and the peripheral arteries. Radiomics involves the extraction of quantitative data from imaging features that are imperceptible to the eye. Radiomics analysis in cardiovascular disease has largely focused on CT and MRI modalities. This scoping review aims to summarise the existing literature on radiomic analysis techniques in cardiovascular disease. METHODS MEDLINE and Embase databases were searched for eligible studies evaluating radiomic techniques in living human subjects derived from CT, MRI or PET imaging investigating atherosclerotic disease. Data on study population, imaging characteristics and radiomics methodology were extracted. RESULTS Twenty-nine studies consisting of 5753 patients (3752 males) were identified, and 78.7% of patients were from coronary artery studies. Twenty-seven studies employed CT imaging (19 CT carotid angiography and 6 CT coronary angiography (CTCA)), and two studies studied PET/CT. Manual segmentation was most frequently undertaken. Processing techniques included voxel discretisation, voxel resampling and filtration. Various shape, first-order, second-order and higher-order radiomic features were extracted. Logistic regression was most commonly used for machine learning. CONCLUSION Most published evidence was feasibility/proof of concept work. There was significant heterogeneity in image acquisition, segmentation techniques, processing and analysis between studies. There is a need for the implementation of standardised imaging acquisition protocols, adherence to published reporting guidelines and economic evaluation.
Collapse
Affiliation(s)
- Arshpreet Singh Badesha
- Department of Radiology, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Russell Frood
- Department of Radiology, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9TJ, UK
| | - Marc A Bailey
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9TJ, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Patrick M Coughlin
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Andrew F Scarsbrook
- Department of Radiology, St. James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9TJ, UK
| |
Collapse
|
3
|
Corti A, Lo Iacono F, Ronchetti F, Mushtaq S, Pontone G, Colombo GI, Corino VDA. Enhancing cardiovascular risk stratification: Radiomics of coronary plaque and perivascular adipose tissue - Current insights and future perspectives. Trends Cardiovasc Med 2024:S1050-1738(24)00058-6. [PMID: 38960074 DOI: 10.1016/j.tcm.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Radiomics, the quantitative extraction and mining of features from radiological images, has recently emerged as a promising source of non-invasive image-based cardiovascular biomarkers, potentially revolutionizing diagnostics and risk assessment. This review explores its application within coronary plaques and pericoronary adipose tissue, particularly focusing on plaque characterization and cardiac events prediction. By shedding light on the current state-of-the-art, achievements, and prospective avenues, this review contributes to a deeper understanding of the evolving landscape of radiomics in the context of coronary arteries. Finally, open challenges and existing gaps are emphasized to underscore the need for future efforts aimed at ensuring the robustness and reliability of radiomics studies, facilitating their clinical translation.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy.
| | - Francesca Lo Iacono
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy
| | - Francesca Ronchetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gualtiero I Colombo
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan 20133, Italy; Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
4
|
Baeßler B, Engelhardt S, Hekalo A, Hennemuth A, Hüllebrand M, Laube A, Scherer C, Tölle M, Wech T. Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging. Circ Cardiovasc Imaging 2024; 17:e015490. [PMID: 38889216 DOI: 10.1161/circimaging.123.015490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cardiovascular diseases remain a significant health burden, with imaging modalities like echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging playing a crucial role in diagnosis and prognosis. However, the inherent heterogeneity of these diseases poses challenges, necessitating advanced analytical methods like radiomics and artificial intelligence. Radiomics extracts quantitative features from medical images, capturing intricate patterns and subtle variations that may elude visual inspection. Artificial intelligence techniques, including deep learning, can analyze these features to generate knowledge, define novel imaging biomarkers, and support diagnostic decision-making and outcome prediction. Radiomics and artificial intelligence thus hold promise for significantly enhancing diagnostic and prognostic capabilities in cardiac imaging, paving the way for more personalized and effective patient care. This review explores the synergies between radiomics and artificial intelligence in cardiac imaging, following the radiomics workflow and introducing concepts from both domains. Potential clinical applications, challenges, and limitations are discussed, along with solutions to overcome them.
Collapse
Affiliation(s)
- Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.)
| | - Sandy Engelhardt
- Department of Internal Medicine III, Heidelberg University Hospital, Germany (S.E., M.T.)
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim (S.E., M.T.)
| | - Amar Hekalo
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.)
| | - Anja Hennemuth
- Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany (A. Hennemuth, M.H.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Germany (A. Hennemuth)
| | - Markus Hüllebrand
- Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany (A. Hennemuth, M.H.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.)
| | - Ann Laube
- Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.)
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.)
| | - Clemens Scherer
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany (C.S.)
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), Germany (C.S.)
| | - Malte Tölle
- Department of Internal Medicine III, Heidelberg University Hospital, Germany (S.E., M.T.)
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim (S.E., M.T.)
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.)
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany (T.W.)
| |
Collapse
|
5
|
Stamate E, Piraianu AI, Ciobotaru OR, Crassas R, Duca O, Fulga A, Grigore I, Vintila V, Fulga I, Ciobotaru OC. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel) 2024; 14:1103. [PMID: 38893630 PMCID: PMC11172021 DOI: 10.3390/diagnostics14111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) can radically change almost every aspect of the human experience. In the medical field, there are numerous applications of AI and subsequently, in a relatively short time, significant progress has been made. Cardiology is not immune to this trend, this fact being supported by the exponential increase in the number of publications in which the algorithms play an important role in data analysis, pattern discovery, identification of anomalies, and therapeutic decision making. Furthermore, with technological development, there have appeared new models of machine learning (ML) and deep learning (DP) that are capable of exploring various applications of AI in cardiology, including areas such as prevention, cardiovascular imaging, electrophysiology, interventional cardiology, and many others. In this sense, the present article aims to provide a general vision of the current state of AI use in cardiology. RESULTS We identified and included a subset of 200 papers directly relevant to the current research covering a wide range of applications. Thus, this paper presents AI applications in cardiovascular imaging, arithmology, clinical or emergency cardiology, cardiovascular prevention, and interventional procedures in a summarized manner. Recent studies from the highly scientific literature demonstrate the feasibility and advantages of using AI in different branches of cardiology. CONCLUSIONS The integration of AI in cardiology offers promising perspectives for increasing accuracy by decreasing the error rate and increasing efficiency in cardiovascular practice. From predicting the risk of sudden death or the ability to respond to cardiac resynchronization therapy to the diagnosis of pulmonary embolism or the early detection of valvular diseases, AI algorithms have shown their potential to mitigate human error and provide feasible solutions. At the same time, limits imposed by the small samples studied are highlighted alongside the challenges presented by ethical implementation; these relate to legal implications regarding responsibility and decision making processes, ensuring patient confidentiality and data security. All these constitute future research directions that will allow the integration of AI in the progress of cardiology.
Collapse
Affiliation(s)
- Elena Stamate
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Alin-Ionut Piraianu
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Oana Roxana Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| | - Rodica Crassas
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Oana Duca
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Ionica Grigore
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Vlad Vintila
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Clinical Department of Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 37 Dionisie Lupu Street, 4192910 Bucharest, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Octavian Catalin Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| |
Collapse
|
6
|
Cui K, Liang S, Hua M, Gao Y, Feng Z, Wang W, Zhang H. Diagnostic Performance of Machine Learning-Derived Radiomics Signature of Pericoronary Adipose Tissue in Coronary Computed Tomography Angiography for Coronary Artery In-Stent Restenosis. Acad Radiol 2023; 30:2834-2843. [PMID: 37268514 DOI: 10.1016/j.acra.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/04/2023]
Abstract
RATIONALE AND OBJECTIVES Coronary inflammation can alter the perivascular fat phenotype. Hence, we aimed to assess the diagnostic performance of radiomics features of pericoronary adipose tissue (PCAT) in coronary computed tomography angiography (CCTA) for in-stent restenosis (ISR) after percutaneous coronary intervention. MATERIALS AND METHODS In this study, 165 patients with 214 eligible vessels were included, and ISR was found in 79 vessels. After evaluating clinical and stent characteristics, peri-stent fat attenuation index, and PCAT volume, 1688 radiomics features were extracted from each peri-stent PCAT segmentation. The eligible vessels were randomly categorized into training and validation groups in a ratio of 7:3. After performing feature selection using Pearson's correlation, F test, and least absolute shrinkage and selection operator analysis, radiomics models and integrated models that combined selected clinical features and Radscore were established using five different machine learning algorithms (logistic regression, support vector machine, random forest, stochastic gradient descent, and XGBoost). Subgroup analysis was performed using the same method for patients with stent diameters of ≤ 3 mm. RESULTS Nine significant radiomics features were selected, and the areas under the curves (AUCs) for the radiomics model and the integrated model were 0.69 and 0.79, respectively, for the validation group. The AUCs of the subgroup radiomics model based on 15 selected radiomics features and the subgroup integrated model were 0.82 and 0.85, respectively, for the validation group, which showed better diagnostic performance. CONCLUSION CCTA-based radiomics signature of PCAT has the potential to identify coronary artery ISR without additional costs or radiation exposure.
Collapse
Affiliation(s)
- Keyi Cui
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China (K.C., S.L., M.H., Z.F., W.W., H.Z.)
| | - Shuo Liang
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China (K.C., S.L., M.H., Z.F., W.W., H.Z.)
| | - Minghui Hua
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China (K.C., S.L., M.H., Z.F., W.W., H.Z.)
| | - Yufan Gao
- Department of Radiology, Chest Hospital, Tianjin University, Tianjin, China (Y.G.)
| | - Zhenxing Feng
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China (K.C., S.L., M.H., Z.F., W.W., H.Z.)
| | - Wenjiao Wang
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China (K.C., S.L., M.H., Z.F., W.W., H.Z.)
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin, China (K.C., S.L., M.H., Z.F., W.W., H.Z.).
| |
Collapse
|
7
|
Huang Y, Yang J, Hou Y, Sun Q, Ma S, Feng C, Shang J. Automatic prediction of acute coronary syndrome based on pericoronary adipose tissue and atherosclerotic plaques. Comput Med Imaging Graph 2023; 108:102264. [PMID: 37418789 DOI: 10.1016/j.compmedimag.2023.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Cardiovascular disease is the leading cause of human death worldwide, and acute coronary syndrome (ACS) is a common first manifestation of this. Studies have shown that pericoronary adipose tissue (PCAT) computed tomography (CT) attenuation and atherosclerotic plaque characteristics can be used to predict future adverse ACS events. However, radiomics-based methods have limitations in extracting features of PCAT and atherosclerotic plaques. Therefore, we propose a hybrid deep learning framework capable of extracting coronary CT angiography (CCTA) imaging features of both PCAT and atherosclerotic plaques for ACS prediction. The framework designs a two-stream CNN feature extraction (TSCFE) module to extract the features of PCAT and atherosclerotic plaques, respectively, and a channel feature fusion (CFF) to explore feature correlations between their features. Specifically, a trilinear-based fully-connected (FC) prediction module stepwise maps high-dimensional representations to low-dimensional label spaces. The framework was validated in retrospectively collected suspected coronary artery disease cases examined by CCTA. The prediction accuracy, sensitivity, specificity, and area under curve (AUC) are all higher than the classical image classification networks and state-of-the-art medical image classification methods. The experimental results show that the proposed method can effectively and accurately extract CCTA imaging features of PCAT and atherosclerotic plaques and explore the feature correlations to produce impressive performance. Thus, it has the potential value to be applied in clinical applications for accurate ACS prediction.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China; School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Jinzhu Yang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China; School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Sun
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China; School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Shuang Ma
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China; School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Chaolu Feng
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China; School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Jin Shang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Csecs I, Feher A. The fat and the flow: multiparametric imaging assessment of pericoronary adipose tissue and myocardial blood flow. J Nucl Cardiol 2023; 30:1570-1573. [PMID: 36929294 DOI: 10.1007/s12350-023-03247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Ibolya Csecs
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Dana 3, P.O. Box 208017, New Haven, CT, 06520, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Chen C, Chen M, Tao Q, Hu S, Hu C. Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes. BMC Med Imaging 2023; 23:99. [PMID: 37507716 PMCID: PMC10386261 DOI: 10.1186/s12880-023-01051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients. METHODS The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomography angiography (CCTA). CCTA derived fractional flow reserve (FFRCT) ≤ 0.80 was defined as hemodynamically significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram. RESULTS Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76-0.86; validation cohort: AUC = 0.83; 95%CI: 0.76-0.90] to predict haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high clinical value of the radiomics nomogram. CONCLUSION The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynamically significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening of high-risk patients.
Collapse
Affiliation(s)
- Can Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Meng Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Qing Tao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
10
|
Yu L, Chen X, Ling R, Yu Y, Yang W, Sun J, Zhang J. Radiomics features of pericoronary adipose tissue improve CT-FFR performance in predicting hemodynamically significant coronary artery stenosis. Eur Radiol 2023; 33:2004-2014. [PMID: 36258046 DOI: 10.1007/s00330-022-09175-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate the value of radiomics-based model of pericoronary adipose tissue (PCAT) combined with CT fractional flow reserve (CT-FFR) in predicting hemodynamically significant coronary stenosis. METHODS Patients with suspected or known coronary artery disease, who had coronary computed tomography angiography (CCTA), invasive coronary angiography (ICA), and FFR within 1 month, were retrospectively included. Radiomics features of lesion-based PCAT were extracted. The lesion-specific CT-FFR values, CCTA-derived diameter stenosis, lesion length, and PCAT attenuation were also measured. FFR values were used as the reference standard to assess the diagnostic performance of radiomics model, CT-FFR, and combined model for detection of flow-limiting stenosis. RESULTS A total of 146 patients with 180 lesions were included in the study. All lesions were divided into training and validation cohorts at a ratio of 2:1. CT-FFR model exhibited the highest area under the curve (AUC) (0.803 for training, 0.791 for validation) in predicting hemodynamically significant stenosis, followed by radiomics model (0.776 for training, 0.744 for validation). However, no statistically significant difference was found between the AUCs of the above two models (p > 0.05). When CT-FFR was combined with radiomics model, the AUC reached 0.900 for training cohort and 0.875 for validation cohort, which were significantly higher than that of CT-FFR and radiomics model alone (both p < 0.05). CONCLUSION The diagnostic performance of PCAT radiomics model was comparable to that of CT-FFR for identification of ischemic coronary stenosis. Adding PCAT radiomics model to CT-FFR showed incremental value in discriminating flow-limiting from non-flow-limiting lesions. KEY POINTS • Radiomics analysis of lesion-based PCAT is potentially an alternative method to identify hemodynamic significance of coronary artery stenosis. • Adding radiomics model of PCAT to CT-FFR improved diagnostic performance for the detection of flow-limiting coronary stenosis. • Radiomics features + CT-FFR is a promising noninvasive method for comprehensive evaluation of hemodynamic significance of coronary artery stenosis.
Collapse
Affiliation(s)
- Lihua Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Xiuyu Chen
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Yarong Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Wenyi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China
| | - Jianqing Sun
- Digital Solution, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China.
| |
Collapse
|
11
|
Baeßler B, Götz M, Antoniades C, Heidenreich JF, Leiner T, Beer M. Artificial intelligence in coronary computed tomography angiography: Demands and solutions from a clinical perspective. Front Cardiovasc Med 2023; 10:1120361. [PMID: 36873406 PMCID: PMC9978503 DOI: 10.3389/fcvm.2023.1120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Coronary computed tomography angiography (CCTA) is increasingly the cornerstone in the management of patients with chronic coronary syndromes. This fact is reflected by current guidelines, which show a fundamental shift towards non-invasive imaging - especially CCTA. The guidelines for acute and stable coronary artery disease (CAD) of the European Society of Cardiology from 2019 and 2020 emphasize this shift. However, to fulfill this new role, a broader availability in adjunct with increased robustness of data acquisition and speed of data reporting of CCTA is needed. Artificial intelligence (AI) has made enormous progress for all imaging methodologies concerning (semi)-automatic tools for data acquisition and data post-processing, with outreach toward decision support systems. Besides onco- and neuroimaging, cardiac imaging is one of the main areas of application. Most current AI developments in the scenario of cardiac imaging are related to data postprocessing. However, AI applications (including radiomics) for CCTA also should enclose data acquisition (especially the fact of dose reduction) and data interpretation (presence and extent of CAD). The main effort will be to integrate these AI-driven processes into the clinical workflow, and to combine imaging data/results with further clinical data, thus - beyond the diagnosis of CAD- enabling prediction and forecast of morbidity and mortality. Furthermore, data fusing for therapy planning (e.g., invasive angiography/TAVI planning) will be warranted. The aim of this review is to present a holistic overview of AI applications in CCTA (including radiomics) under the umbrella of clinical workflows and clinical decision-making. The review first summarizes and analyzes applications for the main role of CCTA, i.e., to non-invasively rule out stable coronary artery disease. In the second step, AI applications for additional diagnostic purposes, i.e., to improve diagnostic power (CAC = coronary artery classifications), improve differential diagnosis (CT-FFR and CT perfusion), and finally improve prognosis (again CAC plus epi- and pericardial fat analysis) are reviewed.
Collapse
Affiliation(s)
- Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Michael Götz
- Division of Experimental Radiology, Department for Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Charalambos Antoniades
- British Heart Foundation Chair of Cardiovascular Medicine, Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Julius F. Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Meinrad Beer
- Department for Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
12
|
Ma R, Fari R, van der Harst P, N De Cecco C, E Stillman A, Vliegenthart R, van Assen M. Evaluation of pericoronary adipose tissue attenuation on CT. Br J Radiol 2023; 96:20220885. [PMID: 36607825 PMCID: PMC10161916 DOI: 10.1259/bjr.20220885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pericoronary adipose tissue (PCAT) is the fat deposit surrounding coronary arteries. Although PCAT is part of the larger epicardial adipose tissue (EAT) depot, it has different pathophysiological features and roles in the atherosclerosis process. While EAT evaluation has been studied for years, PCAT evaluation is a relatively new concept. PCAT, especially the mean attenuation derived from CT images may be used to evaluate the inflammatory status of coronary arteries non-invasively. The most commonly used measure, PCATMA, is the mean attenuation of adipose tissue of 3 mm thickness around the proximal right coronary artery with a length of 40 mm. PCATMA can be analyzed on a per-lesion, per-vessel or per-patient basis. Apart from PCATMA, other measures for PCAT have been studied, such as thickness, and volume. Studies have shown associations between PCATMA and anatomical and functional severity of coronary artery disease. PCATMA is associated with plaque components and high-risk plaque features, and can discriminate patients with flow obstructing stenosis and myocardial infarction. Whether PCATMA has value on an individual patient basis remains to be determined. Furthermore, CT imaging settings, such as kV levels and clinical factors such as age and sex affect PCATMA measurements, which complicate implementation in clinical practice. For PCATMA to be widely implemented, a standardized methodology is needed. This review gives an overview of reported PCAT methodologies used in current literature and the potential use cases in clinical practice.
Collapse
Affiliation(s)
- Runlei Ma
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Roberto Fari
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlo N De Cecco
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Arthur E Stillman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,University Medical Center Groningen, Data Science Center in Health (DASH), Groningen, the Netherlands
| | - Marly van Assen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Ayx I, Tharmaseelan H, Hertel A, Nörenberg D, Overhoff D, Rotkopf LT, Riffel P, Schoenberg SO, Froelich MF. Myocardial Radiomics Texture Features Associated with Increased Coronary Calcium Score—First Results of a Photon-Counting CT. Diagnostics (Basel) 2022; 12:diagnostics12071663. [PMID: 35885567 PMCID: PMC9320412 DOI: 10.3390/diagnostics12071663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The coronary artery calcium score is an independent risk factor of the development of adverse cardiac events. The severity of coronary artery calcification may influence the myocardial texture. Due to higher spatial resolution and signal-to-noise ratio, new CT technologies such as PCCT may improve the detection of texture alterations depending on the severity of coronary artery calcification. In this retrospective, single-center, IRB-approved study, left ventricular myocardium was segmented and radiomics features were extracted using pyradiomics. The mean and standard deviation with the Pearson correlation coefficient for correlations of features were calculated and visualized as boxplots and heatmaps. Random forest feature selection was performed. Thirty patients (26.7% women, median age 58 years) were enrolled in the study. Patients were divided into two subgroups depending on the severity of coronary artery calcification (Agatston score 0 and Agatston score ≥ 100). Through random forest feature selection, a set of four higher-order features could be defined to discriminate myocardial texture between the two groups. When including the additional Agatston 1–99 groups as a validation, a severity-associated change in feature intensity was detected. A subset of radiomics features texture alterations of the left ventricular myocardium was associated with the severity of coronary artery calcification estimated by the Agatston score.
Collapse
Affiliation(s)
- Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
- Correspondence: ; Tel.: +49-62-1383-2067
| | - Hishan Tharmaseelan
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
| | - Alexander Hertel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Lukas T. Rotkopf
- Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Philipp Riffel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.); (M.F.F.)
| |
Collapse
|
14
|
Ayx I, Tharmaseelan H, Hertel A, Nörenberg D, Overhoff D, Rotkopf LT, Riffel P, Schoenberg SO, Froelich MF. Comparison Study of Myocardial Radiomics Feature Properties on Energy-Integrating and Photon-Counting Detector CT. Diagnostics (Basel) 2022; 12:diagnostics12051294. [PMID: 35626448 PMCID: PMC9141463 DOI: 10.3390/diagnostics12051294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
The implementation of radiomics-based, quantitative imaging parameters is hampered by a lack of stability and standardization. Photon-counting computed tomography (PCCT), compared to energy-integrating computed tomography (EICT), does rely on a novel detector technology, promising better spatial resolution and contrast-to-noise ratio. However, its effect on radiomics feature properties is unknown. This work investigates this topic in myocardial imaging. In this retrospective, single-center IRB-approved study, the left ventricular myocardium was segmented on CT, and the radiomics features were extracted using pyradiomics. To compare features between scanners, a t-test for non-paired samples and F-test was performed, with a threshold of 0.05 set as a benchmark for significance. Feature correlations were calculated by the Pearson correlation coefficient, and visualization was performed with heatmaps. A total of 50 patients (56% male, mean age 56) were enrolled in this study, with equal proportions of PCCT and EICT. First-order features were, nearly, comparable between both groups. However, higher-order features showed a partially significant difference between PCCT and EICT. While first-order radiomics features of left ventricular myocardium show comparability between PCCT and EICT, detected differences of higher-order features may indicate a possible impact of improved spatial resolution, better detection of lower-energy photons, and a better signal-to-noise ratio on texture analysis on PCCT.
Collapse
Affiliation(s)
- Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
| | - Hishan Tharmaseelan
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
| | - Alexander Hertel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Lukas T. Rotkopf
- Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Philipp Riffel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (I.A.); (H.T.); (A.H.); (D.N.); (D.O.); (P.R.); (S.O.S.)
- Correspondence: ; Tel.: +49-621-383-2067
| |
Collapse
|