1
|
William MB, Hamed S, Shalash A, Khedr EM, Yousef MH, El-Jaafary S, Fawi G, Helmy A, Hamid E, Essam M, Lee H, Jama A, Koraym M, Mahmoud DM, Elfarrash S, Elsaid Y, Gabr AS, Shebl N, Abdelwahhab N, Belal TM, Elsayed NAB, El-Gamal M, Elgamal S, Ragab S, Mekky J, Aly L, Nabhan S, Ragab G, Hussein MA, Hegazy MT, Houlden H, Salama M, Rizig M. The p.Gly2019Ser is a common LRRK2 pathogenic variant among Egyptians with familial and sporadic Parkinson's disease. NPJ Parkinsons Dis 2024; 10:215. [PMID: 39505921 PMCID: PMC11541850 DOI: 10.1038/s41531-024-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The impact of LRRK2 variants on the risk of Parkinson's disease in Egyptians remains unknown. We examined 1210 Egyptians (611 PD patients and 599 controls) from 16 governorates across Egypt for 12 LRRK2 pathogenic variants. The p.Gly2019Ser was the only variant detected, with a prevalence of 4.1% in sporadic cases, 6.5% in familial cases, and 0.68% in controls. Among p.Gly2019Ser carriers, all were heterozygous bar one homozygous patient, and all shared the common haplotype 1. Demographics and UPDRS scores did not differ between carriers and non-carriers, with most patients being males and developed PD in their fifties. Young and Early-onset PD prevalence was 37.5% in carriers and 33% in non-carriers. Familial cases were 16.6% in carriers and 11.5% in non-carriers. This study affirms that like other Mediterranean populations, Egyptians with PD have a higher prevalence of the p.Gly2019Ser variant compared to the global average. LRRK2 inhibitors could be promising therapeutic options for further exploration in this population.
Collapse
Affiliation(s)
- Martina B William
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sharifa Hamed
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman M Khedr
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed H Yousef
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Shaimaa El-Jaafary
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gharib Fawi
- Department of Neurology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Asmaa Helmy
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Hamid
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Essam
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hamin Lee
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alina Jama
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Mohamed Koraym
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Doaa M Mahmoud
- Department of Neurology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sara Elfarrash
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt
| | - Yasmin Elsaid
- Department of Neurology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt
| | - Asmaa S Gabr
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Nourhan Shebl
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Nesreen Abdelwahhab
- Department of Neurology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt
| | - Tamer M Belal
- Department of Neurology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt
| | - Nehal A B Elsayed
- Department of Neurology, Mansoura International Hospital, Dakahlia, Egypt
| | - Mohamed El-Gamal
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt
| | - Shimaa Elgamal
- Department of Neuropsychiatry, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Salma Ragab
- Department of Neuropsychiatry, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Jaidaa Mekky
- Department of Neurology, Faculty of Medicine, Alexandria University, Alexandia, Egypt
| | - Lobna Aly
- Department of Neurology, Faculty of Medicine, Alexandria University, Alexandia, Egypt
| | - Samir Nabhan
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Gaafar Ragab
- Department of Internal Medicine, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
- Faculty of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Mohamed A Hussein
- Department of Internal Medicine, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Tharwat Hegazy
- Department of Internal Medicine, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
- Faculty of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt.
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Dakahlia, Egypt.
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK.
| |
Collapse
|
2
|
Jordi L, Isacson O. Neuronal threshold functions: Determining symptom onset in neurological disorders. Prog Neurobiol 2024; 242:102673. [PMID: 39389338 DOI: 10.1016/j.pneurobio.2024.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Synaptic networks determine brain function. Highly complex interconnected brain synaptic networks provide output even under fluctuating or pathological conditions. Relevant to the treatment of brain disorders, understanding the limitations of such functional networks becomes paramount. Here we use the example of Parkinson's Disease (PD) as a system disorder, with PD symptomatology emerging only when the functional reserves of neurons, and their interconnected networks, are unable to facilitate effective compensatory mechanisms. We have denoted this the "threshold theory" to account for how PD symptoms develop in sequence. In this perspective, threshold functions are delineated in a quantitative, synaptic, and cellular network context. This provides a framework to discuss the development of specific symptoms. PD includes dysfunction and degeneration in many organ systems and both peripheral and central nervous system involvement. The threshold theory accounts for and explains the reasons why parallel gradually emerging pathologies in brain and peripheral systems generate specific symptoms only when functional thresholds are crossed, like tipping points. New and mounting evidence demonstrate that PD and related neurodegenerative diseases are multisystem disorders, which transcends the traditional brain-centric paradigm. We believe that representation of threshold functions will be helpful to develop new medicines and interventions that are specific for both pre- and post-symptomatic periods of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luc Jordi
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA 02478, USA; Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Mazzotta GM, Conte C. Alpha Synuclein Toxicity and Non-Motor Parkinson's. Cells 2024; 13:1265. [PMID: 39120295 PMCID: PMC11311369 DOI: 10.3390/cells13151265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a common multisystem neurodegenerative disorder affecting 1% of the population over the age of 60 years. The main neuropathological features of PD are the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of alpha synuclein (αSyn)-rich Lewy bodies both manifesting with classical motor signs. αSyn has emerged as a key protein in PD pathology as it can spread through synaptic networks to reach several anatomical regions of the body contributing to the appearance of non-motor symptoms (NMS) considered prevalent among individuals prior to PD diagnosis and persisting throughout the patient's life. NMS mainly includes loss of taste and smell, constipation, psychiatric disorders, dementia, impaired rapid eye movement (REM) sleep, urogenital dysfunction, and cardiovascular impairment. This review summarizes the more recent findings on the impact of αSyn deposits on several prodromal NMS and emphasizes the importance of early detection of αSyn toxic species in biofluids and peripheral biopsies as prospective biomarkers in PD.
Collapse
Affiliation(s)
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
4
|
Alzola P, Carnero C, Bermejo-Pareja F, Sánchez-Benavides G, Peña-Casanova J, Puertas-Martín V, Fernández-Calvo B, Contador I. Neuropsychological Assessment for Early Detection and Diagnosis of Dementia: Current Knowledge and New Insights. J Clin Med 2024; 13:3442. [PMID: 38929971 PMCID: PMC11204334 DOI: 10.3390/jcm13123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Dementia remains an underdiagnosed syndrome, and there is a need to improve the early detection of cognitive decline. This narrative review examines the role of neuropsychological assessment in the characterization of cognitive changes associated with dementia syndrome at different states. The first section describes the early indicators of cognitive decline and the major barriers to their identification. Further, the optimal cognitive screening conditions and the most widely accepted tests are described. The second section analyzes the main differences in cognitive performance between Alzheimer's disease and other subtypes of dementia. Finally, the current challenges of neuropsychological assessment in aging/dementia and future approaches are discussed. Essentially, we find that current research is beginning to uncover early cognitive changes that precede dementia, while continuing to improve and refine the differential diagnosis of neurodegenerative disorders that cause dementia. However, neuropsychology faces several barriers, including the cultural diversity of the populations, a limited implementation in public health systems, and the adaptation to technological advances. Nowadays, neuropsychological assessment plays a fundamental role in characterizing cognitive decline in the different stages of dementia, but more efforts are needed to develop harmonized procedures that facilitate its use in different clinical contexts and research protocols.
Collapse
Affiliation(s)
- Patricia Alzola
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, 37005 Salamanca, Spain;
| | - Cristóbal Carnero
- Neurology Department, Granada University Hospital Complex, 18014 Granada, Spain
| | - Félix Bermejo-Pareja
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | | | | | | | | | - Israel Contador
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, 37005 Salamanca, Spain;
| |
Collapse
|
5
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
6
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
7
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
8
|
Zhukova NG, Matveeva MV, Kazantseva PE, Samoilova IG, Masenko AY, Gaponova OV, Zhukova IA. [Sarcopenia as a non-motor symptom of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:15-22. [PMID: 39435772 DOI: 10.17116/jnevro202412409115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Sarcopenia is a progressive generalized skeletal muscle disease that is accompanied by an accelerated loss of muscle mass and function, affecting the quality of life and the ability to perform self-care. The prevalence of sarcopenia in the world today ranges from 10 to 25%, which represents a certain danger as it is a prognostic factor for possible injury and increased disability in the elderly population. Sarcopenia often accompanies a large number of different diseases, including neurodegenerative ones, so it is actively studied in this category of patients, for example, as one of the early symptoms of Parkinson's disease (PD). PD and sarcopenia have overlapping pathophysiological mechanisms of muscle fiber loss: inflammation, muscle autophagy, oxidative stress and apoptosis. Loss of muscle mass due to malnutrition is common in PD. According to some studies, the prevalence of sarcopenia in PD varies from 6 to 55.8%; weakness and sarcopenia are more common in patients with PD than in society as a whole, which is associated with an unfavorable course of the disease. The presence of both diseases simultaneously in one patient can impose certain restrictions on the treatment of the patient, worsen his physical and mental condition, which determines the need for early detection of sarcopenia in patients with PD.
Collapse
Affiliation(s)
- N G Zhukova
- Siberian State Medical University, Tomsk, Russia
| | - M V Matveeva
- Siberian State Medical University, Tomsk, Russia
| | | | | | - A Ya Masenko
- Siberian State Medical University, Tomsk, Russia
| | - O V Gaponova
- Siberian State Medical University, Tomsk, Russia
| | - I A Zhukova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
9
|
Nieto-Escamez F, Obrero-Gaitán E, García-López H, Cortés-Pérez I. Unveiling the Hidden Challenges: Non-Motor Disorders in Parkinson's Disease. Brain Sci 2023; 13:1710. [PMID: 38137158 PMCID: PMC10741623 DOI: 10.3390/brainsci13121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is not just a motor disorder, it is a complex condition that affects every aspect of a patient's life, from cognitive impairment and psychiatric disturbances to autonomic dysfunction and sleep disturbances [...].
Collapse
Affiliation(s)
- Francisco Nieto-Escamez
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- CIBIS Research Center (Centro de Investigación para el Bienestar y la Inclusión Social), University of Almeria, 04120 Almeria, Spain
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| | - Héctor García-López
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain;
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| |
Collapse
|
10
|
Lualdi M, Casale F, Rizzone MG, Zibetti M, Monti C, Colugnat I, Calvo A, De Marco G, Moglia C, Fuda G, Comi C, Chiò A, Lopiano L, Fasano M, Alberio T. Shared and Unique Disease Pathways in Amyotrophic Lateral Sclerosis and Parkinson's Disease Unveiled in Peripheral Blood Mononuclear Cells. ACS Chem Neurosci 2023; 14:4240-4251. [PMID: 37939393 DOI: 10.1021/acschemneuro.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Recent evidence supports an association between amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Indeed, prospective population-based studies demonstrated that about one-third of ALS patients develop parkinsonian (PK) signs, even though different neuronal circuitries are involved. In this context, proteomics represents a valuable tool to identify unique and shared pathological pathways. Here, we used two-dimensional electrophoresis to obtain the proteomic profile of peripheral blood mononuclear cells (PBMCs) from PD and ALS patients including a small cohort of ALS patients with parkinsonian signs (ALS-PK). After the removal of protein spots correlating with confounding factors, we applied a sparse partial least square discriminant analysis followed by recursive feature elimination to obtain two protein classifiers able to discriminate (i) PD and ALS patients (30 spots) and (ii) ALS-PK patients among all ALS subjects (20 spots). Functionally, the glycolysis pathway was significantly overrepresented in the first signature, while extracellular interactions and intracellular signaling were enriched in the second signature. These results represent molecular evidence at the periphery for the classification of ALS-PK as ALS patients that manifest parkinsonian signs, rather than comorbid patients suffering from both ALS and PD. Moreover, we confirmed that low levels of fibrinogen in PBMCs is a characteristic feature of PD, also when compared with another movement disorder. Collectively, we provide evidence that peripheral protein signatures are a tool to differentially investigate neurodegenerative diseases and highlight altered biochemical pathways.
Collapse
Affiliation(s)
- Marta Lualdi
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Federico Casale
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Mario Giorgio Rizzone
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Maurizio Zibetti
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Chiara Monti
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Ilaria Colugnat
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Andrea Calvo
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Giovanni De Marco
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Cristina Moglia
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Giuseppe Fuda
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, University of Piemonte Orientale, and Sant'Andrea Hospital, I-13100 Vercelli, Italy
| | - Adriano Chiò
- Neurology 1, ALS Expert Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Leonardo Lopiano
- "Rita Levi Montalcini" Department of Neuroscience, University of Torino, and AOU Città della Salute e della Scienza, I-10126 Torino, Italy
| | - Mauro Fasano
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| | - Tiziana Alberio
- Department of Science and High Technology and Center for Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, Varese, Italy
| |
Collapse
|
11
|
Carroll SJ, Dale MJ, Bail K. "Out and proud…. in all your shaking glory" the wellbeing impact of a dance program with public dance performance for people with Parkinson's disease: a qualitative study. Disabil Rehabil 2023; 45:3272-3283. [PMID: 36111837 DOI: 10.1080/09638288.2022.2122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To explore if and how Parkinson's disease dance class participation and public performance contributes to perceptions of wellbeing. MATERIALS AND METHODS A qualitative design using audio-recorded one-on-one semi-structured interviews with five class participants and three teachers/volunteers from two metropolitan Dance for Wellbeing class locations. Data were inductively thematically analysed by three researchers. RESULTS Five themes illustrated the experience of dance class and performance for people with Parkinson's Disease: 1) 'the enabling learning environment'; 2) 'physical benefits from class participation; 3) 'mental/psychological benefits from class participation'; 4) 'social benefits from class participation; 5) 'sense of self and life engagement from class participation'. Themes 4 and 5 in particular were considered to be 'magnified by public performance', providing an opportunity for solidarity within the group and a supportive avenue for "coming out" and living publicly with the PD diagnosis. CONCLUSION Dance performance magnifies health and wellbeing experiences of people with Parkinson's disease when part of an enabling, inclusive and emotionally and physically safe learning dance class environment. Elements of holistic benefits, as well as the fun and playful nature of the experience may be important elements to consider for motivation, recruitment and retention in this population.IMPLICATIONS FOR REHABILITATIONRehabilitation professionals should consider the use of dance class as an art-based activity that has a holistic therapeutic benefit.Flexible and fun environments are constructive for dancers to sustain attendance and interest.Rehabilitation professionals can be cognisant of the impact of public dance performance as 'coming out' with Parkinson's Disease.
Collapse
Affiliation(s)
| | - Michael J Dale
- Health Research Institute, University of Canberra, Bruce, Australia
| | - Kasia Bail
- School of Nursing, Midwifery and Public Health, and Ageing Research Group, University of Canberra, Bruce, Australia
- Canberra Health Services & ACT Health, SYNERGY Nursing & Midwifery Research Centre, Canberra Hospital, Canberra, Australia
| |
Collapse
|
12
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
13
|
Both Motor and Non-Motor Fluctuations Matter in the Clinical Management of Patients with Parkinson's Disease: An Exploratory Study. J Pers Med 2023; 13:jpm13020242. [PMID: 36836476 PMCID: PMC9964567 DOI: 10.3390/jpm13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Non-motor symptoms (NMS) characterize the Parkinson's disease (PD) clinical picture, and as well as motor fluctuations, PD patients can also experience NMS fluctuations (NMF). The aim of this observational study was to investigate the presence of NMS and NMF in patients with PD using the recently validated Non-Motor Fluctuation Assessment questionnaire (NoMoFa) and to evaluate their associations with disease characteristics and motor impairment. Patients with PD were consecutively recruited, and NMS, NMF, motor impairment, motor fluctuations, levodopa-equivalent daily dose, and motor performance were evaluated. One-third of the 25 patients included in the study (10 females, 15 males, mean age: 69.9 ± 10.3) showed NMF, and patients with NMF presented a higher number of NMS (p < 0.01). Static NMS and NoMoFa total score were positively associated with motor performance assessed with the Global Mobility Task (p < 0.01 and p < 0.001), and the latter was also correlated with motor impairment (p < 0.05) but not with motor fluctuations. Overall, this study shows evidence that NMF are frequently reported by mild-to-moderate PD patients and associated with an increased number of NMS. The relationship between NoMoFa total score and motor functioning highlights the importance of understanding the clinical role of NMS and NMF in the management of PD patients.
Collapse
|
14
|
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues. Front Pharmacol 2022; 13:1007315. [PMID: 36263141 PMCID: PMC9574100 DOI: 10.3389/fphar.2022.1007315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Drug repositioning or repurposing is the process of discovering leading-edge indications for authorized or declined/abandoned molecules for use in different diseases. This approach revitalizes the traditional drug discovery method by revealing new therapeutic applications for existing drugs. There are numerous studies available that highlight the triumph of several drugs as repurposed therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and so on. Millions of people worldwide are affected by neurodegenerative diseases. According to a 2021 report, the Alzheimer's disease Association estimates that 6.2 million Americans are detected with Alzheimer's disease. By 2030, approximately 1.2 million people in the United States possibly acquire Parkinson's disease. Drugs that act on a single molecular target benefit people suffering from neurodegenerative diseases. Current pharmacological approaches, on the other hand, are constrained in their capacity to unquestionably alter the course of the disease and provide patients with inadequate and momentary benefits. Drug repositioning-based approaches appear to be very pertinent, expense- and time-reducing strategies for the enhancement of medicinal opportunities for such diseases in the current era. Kinase inhibitors, for example, which were developed for various oncology indications, demonstrated significant neuroprotective effects in neurodegenerative diseases. This review expounds on the classical and recent examples of drug repositioning at various stages of drug development, with a special focus on neurodegenerative disorders and the aspects of threats and issues viz. the regulatory, scientific, and economic aspects.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | | | | |
Collapse
|
15
|
Yu RL, Wu RM. Mild cognitive impairment in patients with Parkinson’s disease: An updated mini-review and future outlook. Front Aging Neurosci 2022; 14:943438. [PMID: 36147702 PMCID: PMC9485585 DOI: 10.3389/fnagi.2022.943438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Mild cognitive impairment (MCI) is one of the common non-motor symptoms in patients with Parkinson’s disease (PD). MCI is the transition stage between normal aging and full-blown dementia and is also a powerful predictor of dementia. Although the concept of MCI has been used to describe some of the PD symptoms for many years, there is a lack of consistent diagnostic criteria. Moreover, because of the diverse patterns of the cognitive functions, each cognitive impairment will have a different progression. In this review, we overviewed the diagnostic criteria for PD-MCI, primarily focused on the heterogeneity of PD-MCI patients’ cognitive function, including various types of cognitive functions and their progression rates. A review of this topic is expected to be beneficial for clinical diagnosis, early intervention, and treatment. In addition, we also discussed the unmet needs and future vision in this field.
Collapse
Affiliation(s)
- Rwei-Ling Yu
- College of Medicine, Institute of Behavioral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ruey-Meei Wu,
| |
Collapse
|
16
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases: Molecular Mechanisms and Pharmacological Opportunities. Cells 2022; 11:cells11142250. [PMID: 35883693 PMCID: PMC9323300 DOI: 10.3390/cells11142250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a protein degradation mechanism through lysosomes. By targeting the KFERQ motif of the substrate, CMA is responsible for the degradation of about 30% of cytosolic proteins, including a series of proteins associated with neurodegenerative diseases (NDs). The fact that decreased activity of CMA is observed in NDs, and ND-associated mutant proteins, including alpha-synuclein and Tau, directly impair CMA activity reveals a possible vicious cycle of CMA impairment and pathogenic protein accumulation in ND development. Given the intrinsic connection between CMA dysfunction and ND, enhancement of CMA has been regarded as a strategy to counteract ND. Indeed, genetic and pharmacological approaches to modulate CMA have been shown to promote the degradation of ND-associated proteins and alleviate ND phenotypes in multiple ND models. This review summarizes the current knowledge on the mechanism of CMA with a focus on its relationship with NDs and discusses the therapeutic potential of CMA modulation for ND.
Collapse
|
17
|
Bernardes RA, Ventura F, Neves H, Fernandes MI, Sousa P. Wearable Walking Assistant for Freezing of Gait With Environmental IoT Monitoring: A Contribution to the Discussion. Front Public Health 2022; 10:861621. [PMID: 35795702 PMCID: PMC9251205 DOI: 10.3389/fpubh.2022.861621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/30/2022] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, significantly increasing in the last three decades. Worldwide, seven to ten million people are affected by PD. In people living with PD, freezing of gait (FoG) significantly impacts activities of daily living, potentially leading to falls, injuries, and loss of autonomy. FoG prevalence rates vary widely, reaching at least 50% of patients with PD. Current therapeutic options have limited effectiveness, and their complement with innovative technology-based solutions in the real world is demanded to enhance daily functioning for people living with PD. This article provides a narrative review of current technological developments for people living with PD and, derived from that evidence, presents a perspective on integrating wearable technology and IoT to support telemonitoring and self-management of people living with PD in their daily living environment. Complementing current therapeutic options with technology-based solutions in PD patients' real-world environment is crucial to enhancing the quality of life of people living with PD. In that way, wearable technology and IoT might constitute resources of excellence in seamless monitoring and self-management in people's home environments.
Collapse
|
18
|
Gupta S, Tiwari V, Tiwari P, Parul, Mishra A, Hanif K, Shukla S. Angiotensin-Converting Enzyme 2 Activation Mitigates Behavioral Deficits and Neuroinflammatory Burden in 6-OHDA Induced Experimental Models of Parkinson's Disease. ACS Chem Neurosci 2022; 13:1491-1504. [PMID: 35533351 DOI: 10.1021/acschemneuro.1c00797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypertension is reported to cause major brain disorders including Parkinson's disease (PD), apart from cardiovascular and chronic kidney disorders. Considering this, for the first time, we explored the effect of modulation of the ACE2/Ang (1-7)/MasR axis using diminazene aceturate (DIZE), an ACE2 activator, in 6-hydroxydopamine (6-OHDA) induced PD model. We found that DIZE treatment improved neuromuscular coordination and locomotor deficits in the 6-OHDA induced PD rat model. Further, the DIZE-mediated activation of ACE2 led to increased tyrosine hydroxylase (TH) and dopamine transporters (DAT) expression in the rat brain, indicating the protection of dopaminergic (DAergic) neurons from 6-OHDA induced neurotoxicity. Moreover, 6-OHDA induced activation of glial cells (astrocytes and microglia) and release of neuroinflammatory mediators were attenuated by DIZE treatment in both in vitro as well as in vivo models of PD. DIZE exerted its effect by activating ACE2 that produced Ang (1-7), a neuroprotective peptide. Ang (1-7) conferred its neuroprotective effect upon binding with the G-protein-coupled MAS receptor that led to the upregulation of cell survival proteins while downregulating apoptotic proteins. Importantly, these findings were further validated by using A-779, a MasR antagonist. The result showed that treatment with A-779 reversed the antioxidative and anti-inflammatory effects of DIZE by decreasing glial activation and neuroinflammatory markers. Although the role of ACE2 in PD pathology needs to be additionally confirmed using transgenic models in either ACE2 overexpressing or knockout mice, still, our study demonstrates that enhancing ACE2 activity could be a novel approach for ameliorating PD pathology.
Collapse
Affiliation(s)
- Shivangi Gupta
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Priya Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Akanksha Mishra
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| |
Collapse
|