1
|
Barros de Lima G, Nencioni E, Thimoteo F, Perea C, Pinto RFA, Sasaki SD. TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules 2025; 15:75. [PMID: 39858469 PMCID: PMC11764435 DOI: 10.3390/biom15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations. Beyond infectious diseases, TMPRSS2 has also been linked to some cancers, suggesting it could be a valuable target for drug development. This review provides a summary of TMPRSS2 inhibitors currently under study, with some already in clinical trials to test their effectiveness against viral infections. As we uncover more about TMPRSS2's role in pathogenesis, it could open new doors for therapies to combat future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Daishi Sasaki
- Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil; (G.B.d.L.); (E.N.); (F.T.); (C.P.); (R.F.A.P.)
| |
Collapse
|
2
|
de Oliveira-Simões FA, Victorino da Silva Amatto I, Langer Marciano C, Rosa-Garzon NGD, Noma Okamoto D, Juliano MA, Juliano L, Cabral H. Biochemical characterization, stability, and kinetics of three substrates of the recombinant TMPRSS2 serine protease domain. Prep Biochem Biotechnol 2024; 54:1285-1293. [PMID: 38727020 DOI: 10.1080/10826068.2024.2349132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Transmembrane serine protease 2 (TMPRSS2) is a membrane-bound protease belonging to the type II transmembrane serine protease (TTSP) family. It is a multidomain protein, including a serine protease domain responsible for its self-activation. The protein has been implicated as an oncogenic transcription factor and for its ability to cleave (prime) the SARS-CoV-2 spike protein. In order to characterize the TMPRSS2 biochemical properties, we expressed the serine protease domain (rTMPRSS2_SP) in Komagataella phaffii using the pPICZαA vector and purified it using immobilized metal affinity (Ni Sepharose™ excel) and size exclusion (Superdex 75) chromatography. We explored operational fluorescence resonance energy transfer FRET peptides as substrates. We chose the peptide Abz-QARK-(Dnp)-NH2 (Abz = ortho-aminobenzoic acid, the fluorescence donor, and Dnp = 2,4-dinitrophenyl, the quencher group) as a substrate to find the optimal conditions for maximum enzymatic activity. We found that metallic ions such as Ca2+ and Na+ increased enzymatic activity, but ionic surfactants and reducing agents decreased catalytic capacity. Finally, we determined the rTMPRSS2_SP stability for long-term storage. Altogether, our results represent the first comprehensive characterization of TMPRSS2's biochemical properties, providing valuable insights into its serine protease domain.
Collapse
Affiliation(s)
- Flávio Antônio de Oliveira-Simões
- Pharmaceutical Sciences Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Victorino da Silva Amatto
- Biosciences and Biotechnology Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Langer Marciano
- Biosciences and Biotechnology Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathalia Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Débora Noma Okamoto
- Deparatment of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Maria Aparecida Juliano
- Departament of Biophysical, Escola Paulista de Medicina, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Departament of Biophysical, Escola Paulista de Medicina, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hamilton Cabral
- Pharmaceutical Sciences Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Biosciences and Biotechnology Program, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Wu A, Shi K, Wang J, Zhang R, Wang Y. Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors. Eur J Med Chem 2024; 263:115923. [PMID: 37981443 DOI: 10.1016/j.ejmech.2023.115923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has had a huge impact on global health. To respond to rapidly mutating viruses and to prepare for the next pandemic, there is an urgent need to develop small molecule therapies that target critical stages of the SARS-CoV-2 life cycle. Inhibiting the entry process of the virus can effectively control viral infection and play a role in prevention and treatment. Host factors involved in this process, such as ACE2, TMPRSS2, ADAM17, furin, PIKfyve, TPC2, CTSL, AAK1, V-ATPase, HSPG, and NRP1, have been found to be potentially good targets with stability. Through further exploration of the cell entry process of SARS-CoV-2, small-molecule drugs targeting these host factors have been developed. This review focuses on the structural functions of potential host cell targets during the entry of SARS-CoV-2 into host cells. The research progress, chemical structure, structure-activity relationship, and clinical value of small-molecule inhibitors against COVID-19 are reviewed to provide a reference for the development of small-molecule drugs against COVID-19.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kunyu Shi
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Ruofei Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
5
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
6
|
Santos ES, Silva PC, Sousa PSA, Aquino CC, Pacheco G, Teixeira LFLS, Araujo AR, Sousa FBM, Barros RO, Ramos RM, Rocha JA, Nicolau LAD, Medeiros JVR. Antiviral potential of diminazene aceturate against SARS-CoV-2 proteases using computational and in vitro approaches. Chem Biol Interact 2022; 367:110161. [PMID: 36116513 PMCID: PMC9476334 DOI: 10.1016/j.cbi.2022.110161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Diminazene aceturate (DIZE), an antiparasitic, is an ACE2 activator, and studies show that activators of this enzyme may be beneficial for COVID-19, disease caused by SARS-CoV-2. Thus, the objective was to evaluate the in silico and in vitro affinity of diminazene aceturate against molecular targets of SARS-CoV-2. 3D structures from DIZE and the proteases from SARS-CoV-2, obtained through the Protein Data Bank and Drug Database (Drubank), and processed in computer programs like AutodockTools, LigPlot, Pymol for molecular docking and visualization and GROMACS was used to perform molecular dynamics. The results demonstrate that DIZE could interact with all tested targets, and the best binding energies were obtained from the interaction of Protein S (closed conformation −7.87 kcal/mol) and Mpro (−6.23 kcal/mol), indicating that it can act both by preventing entry and viral replication. The results of molecular dynamics demonstrate that DIZE was able to promote a change in stability at the cleavage sites between S1 and S2, which could prevent binding to ACE2 and fusion with the membrane. In addition, in vitro tests confirm the in silico results showing that DIZE could inhibit the binding between the spike receptor-binding domain protein and ACE2, which could promote a reduction in the virus infection. However, tests in other experimental models with in vivo approaches are needed.
Collapse
Affiliation(s)
- Esley S Santos
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil
| | - Priscila C Silva
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Paulo S A Sousa
- Laboratory of Medicinal Chemistry and Biotechnology, QUIMEBIO, Federal University of Maranhão, São Bernardo, MA, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Cristhyane C Aquino
- Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil
| | - Luiz F L S Teixeira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Alyne R Araujo
- Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Romulo O Barros
- Research Laboratory in Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, LaPeSI/IFPI, Teresina, Piauí, Brazil
| | - Ricardo M Ramos
- Research Laboratory in Information Systems, Department of Information, Environment, Health and Food Production, Federal Institute of Piauí, LaPeSI/IFPI, Teresina, Piauí, Brazil
| | - Jefferson A Rocha
- Laboratory of Medicinal Chemistry and Biotechnology, QUIMEBIO, Federal University of Maranhão, São Bernardo, MA, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil; Medicinal Plants Research Center (NPPM), Federal University of Piauí, Teresina, Brazil; Biodiversity and Biotechnology Research Center, BIOTEC, Post-graduation Program in Biotechnology, Parnaíba Delta Federal University, Parnaíba, PI, Brazil.
| |
Collapse
|
7
|
Dankwa B, Broni E, Enninful KS, Kwofie SK, Wilson MD. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Struct Chem 2022; 33:2221-2241. [PMID: 36118173 PMCID: PMC9470509 DOI: 10.1007/s11224-022-02056-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is a pandemic that has severely posed substantial health challenges and claimed millions of lives. Though vaccines have been produced to stem the spread of this disease, the death rate remains high since drugs used for treatment have therapeutic challenges. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease, has a slew of potential therapeutic targets. Among them is the furin protease, which has a cleavage site on the virus’s spike protein. The cleavage site facilitates the entry of the virus into human cells via cell–cell fusion. This critical involvement of furin in the disease pathogenicity has made it a viable therapeutic strategy against the virus. This study employs the consensus docking approach using HYBRID and AutoDock Vina to virtually screen a pre-filtered library of 3942 natural product compounds of African origin against the human furin protease (PDB: 4RYD). Twenty of these compounds were selected as hits after meeting molecular docking cut-off of − 7 kcal.mol−1, pose alignment inspection, and having favorable furin-ligand interactions. An area under the curve (AUC) value of 0.72 was computed from the receiver operator characteristic (ROC) curve, and Boltzmann-enhanced discrimination of the ROC curve (BEDROC) value of 0.65 showed that AutoDock Vina was a reasonable tool for selecting actives for this target. Seven of these hits were proposed as potential leads having had bonding interactions with catalytic triad residues Ser368, His194, and Asp153, and other essential residues in the active site with plausible binding free energies between − 189 and − 95 kJ/mol from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations as well as favorable ADME/Tox properties. The molecules were also predicted as antiviral, anti-inflammatory, membrane permeability inhibitors, RNA synthesis inhibitors, cytoprotective, and hepatoprotective with probable activity (Pa) above 0.5 and probable inactivity values below 0.1. Some of them also have anti-influenza activity. Influenza virus has many similarities with SARS-CoV-2 in their mode of entry into human cells as both are facilitated by the furin protease. Pinobanksin 3-(E)-caffeate, one of the potential leads is a propolis compound. Propolis compounds have shown inhibitory effects against ACE2, TMPRSS2, and PAK1 signaling pathways of SARS-CoV-2 in previous studies. Likewise, quercitrin is structurally similar to isoquercetin, which is currently in clinical trials as possible medication for COVID-19.
Collapse
Affiliation(s)
- Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Computer Science, School of Physical & Mathematical Science, College of Basic & Applied Sciences, University of Ghana, LG 163 Legon, Accra Ghana
| | - Emmanuel Broni
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Kweku S. Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| |
Collapse
|