1
|
Park J, Govindan M, Kim D. Electrochemical Dechlorination of Gaseous Trichloroethylene to Nonchlorinated Value-Added Products Using a Cu/Ni Alloy Electrode with a Gel Membrane Interface. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4941-4950. [PMID: 39772399 DOI: 10.1021/acsami.4c18776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system. Our system demonstrated a conductivity of 0.05 S cm-1 in liquid phases at both half-cells, comparable to existing polymeric membranes. Importantly, when no liquid electrolyte was present, the conductivity increased to 0.09 S cm-1, making this setup highly suitable for the direct treatment of gaseous TCE. The removal efficiency was evaluated by varying electrodeposition time and modifying the electrode surface with potassium hydroxide (KOH) and cetyltrimethylammonium chloride (CTAC), resulting in a high TCE removal rate of 0.69 h-1. This enhanced performance is attributed to the Cu/Ni alloy's ability to adsorb and solubilize TCE effectively under these modified conditions. The gas chromatography analysis definitively shows that the TCE was completely dechlorinated, with a removal efficiency of about 75%. This resulted in the conversion of TCE to ethene and ethane with 100% carbon recovery. This gas-to-gas phase conversion strategy eliminates the need for additional separation steps, offering a promising solution for the effective management of chlorinated volatile organic compounds (CVOCs) and reducing environmental hazards.
Collapse
Affiliation(s)
- Junhee Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Muthuraman Govindan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Daekeun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Wang D, Wang Q, Liu M, Liu Z, Wang Z, Ji W, Wang Y, Wang J. Synthesis of Primary and Secondary Amines via Electrochemical Reduction of Hydrazines. Org Lett 2024; 26:11123-11128. [PMID: 39671222 DOI: 10.1021/acs.orglett.4c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We herein introduce an electrochemical route for the N-N bond cleavage of hydrazines. This mild and green methodology utilized readily available mono- and 1,1-disubstituted hydrazines or their HCl salts as starting materials to access a broad scope of primary and secondary amines in high yields. The mechanistic investigation suggests that the amine product is formed by consecutive SET reduction, and utilization of a hydrazine HCl salt is important for providing sufficient conductivity and acidity to facilitate this reaction.
Collapse
Affiliation(s)
- Dong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qiulu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Mingxia Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Zihan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Zixuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Wenhui Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Shaheeda S, Sharma S, Mandal N, Shyamal P, Datta A, Paul A, Bisai A. Regioselective Electrochemical Construction of C sp2-C sp2 Linkage at C5-C5' Position of 2-Oxindoles via an Intermolecular Anodic Dehydrogenative Coupling. Chemistry 2024; 30:e202403420. [PMID: 39308393 DOI: 10.1002/chem.202403420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024]
Abstract
Applying electricity as a reagent in synthetic organic chemistry has attracted particular attention from synthetic chemists worldwide as an environmentally benign and cost-effective technique. Herein, we report the construction of the Csp2-Csp2 linkage at the C5-C5' position of 2-oxindole utilizing electricity as the traceless oxidant in an anodic dehydrogenative homo-coupling process. A variety of 3,3-disubstituted-2-oxindoles were subjected to dimerization, achieving yields of up to 70 % through controlled potential electrolysis at an applied potential of 1.5 V versus Ag/Ag+ nonaqueous reference electrode. This electro-synthetic approach facilitates the specific assembly of C5-C5' (para-para coupled) dimer of 3,3-disubstituted-2-oxindole without the necessity of any external oxidants or additives and DFT (Density Functional Theory) calculations provided confirmation of this pronounced regioselectivity. Furthermore, validation through control experiments and voltammetric analyses substantiated the manifestation of radical-radical coupling (or biradical pathway) for the dimerization process.
Collapse
Affiliation(s)
- Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| |
Collapse
|
4
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
von Münchow T, Liu YR, Parmar R, Peters SE, Trienes S, Ackermann L. Cobaltaelectro-Catalyzed C-H Activation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2024; 63:e202405423. [PMID: 38758011 DOI: 10.1002/anie.202405423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
In recent years, enantioselective electrocatalysis has surfaced as an increasingly-effective platform for sustainable molecular synthesis. Despite indisputable progress, strategies that allow the control of two distinct stereogenic elements with high selectivity remain elusive. In contrast, we, herein, describe electrochemical cobalt-catalyzed C-H activations that enable the installation of chiral stereogenic centers along with a chiral axis with high levels of enantio- and diastereoselectivities. The developed electrocatalysis strategy allowed for C-H/N-H activations/annulations with cyclic and non-cyclic alkenes providing expedient access to various central as well as atropo-chiral dihydroisoquinolinones paired to the valuable hydrogen evolution reaction. Studies on the atropo-stability of the obtained compounds demonstrated that the exceedingly mild conditions ensured by the electrocatalytic process were key for the achieved high stereoselectivities.
Collapse
Affiliation(s)
- Tristan von Münchow
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Yi-Ru Liu
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Rahul Parmar
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Erik Peters
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Trienes
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Avanthay M, Goodrich OH, Tiemessen D, Alder CM, George MW, Lennox AJJ. Bromide-Mediated Silane Oxidation: A Practical Counter-Electrode Process for Nonaqueous Deep Reductive Electrosynthesis. JACS AU 2024; 4:2220-2227. [PMID: 38938809 PMCID: PMC11200245 DOI: 10.1021/jacsau.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
The counter-electrode process of an organic electrochemical reaction is integral for the success and sustainability of the process. Unlike for oxidation reactions, counter-electrode processes for reduction reactions remain limited, especially for deep reductions that apply very negative potentials. Herein, we report the development of a bromide-mediated silane oxidation counter-electrode process for nonaqueous electrochemical reduction reactions in undivided cells. The system is found to be suitable for replacing either sacrificial anodes or a divided cell in several reported reactions. The conditions are metal-free, use inexpensive reagents and a graphite anode, are scalable, and the byproducts are reductively stable and readily removed. We showcase the translation of a previously reported divided cell reaction to a >100 g scale in continuous flow.
Collapse
Affiliation(s)
- Mickaël
E. Avanthay
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Oliver H. Goodrich
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David Tiemessen
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Catherine M. Alder
- Modalities
Platform Technologies, Molecular Modalities Discovery, GSK Medicines Research Centre, Stevenage SG1 2NY, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
7
|
Schneider J, Häring AP, Waldvogel SR. Electrochemical Dehydration of Dicarboxylic Acids to Their Cyclic Anhydrides. Chemistry 2024; 30:e202400403. [PMID: 38527230 DOI: 10.1002/chem.202400403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
An intramolecular electrochemical dehydration reaction of dicarboxylic acids to their cyclic anhydrides is presented. This electrolysis allows dicarboxylic acids as naturally abundant, inexpensive, safe, and readily available starting materials to be transformed into carboxylic anhydrides under mild reaction conditions. No conventional dehydration reagent is required. The obtained cyclic anhydrides are highly valuable reagents in organic synthesis, and in this report, we use them in-situ for acylation reactions of amines to synthesize amides. This work is part of the recent progress in electrochemical dehydration, which - in contrast to electrochemical dehydrogenative reactions for example - is an underexplored field of research. The reaction mechanism was investigated by 18O isotope labeling, revealing the formation of sulfate by electrochemical oxidation and hydrolysis of the thiocyanate-supporting electrolyte. This transformation is not a classical Kolbe electrolysis, because it is non-decarboxylative, and all carbon atoms of the carboxylic acid starting material are contained in the carboxylic anhydride. In total, 20 examples are shown with NMR yields up to 71 %.
Collapse
Affiliation(s)
- Johannes Schneider
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
- Karlsruhe Institut für Technologie, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
9
|
Martins GM, Braga FC, de Castro PP, Brocksom TJ, de Oliveira KT. Continuous flow reactions in the preparation of active pharmaceutical ingredients and fine chemicals. Chem Commun (Camb) 2024; 60:3226-3239. [PMID: 38441166 DOI: 10.1039/d4cc00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we present an overview of continuous flow chemistry, including photoflow and electroflow technologies in the preparation of active pharmaceutical ingredients (APIs) and fine chemical intermediates. Examples highlighting the benefits and challenges associated with continuous flow processes, mainly involving continuous thermal, photo- and electrochemical transformations, are drawn from the relevant literature, especially our experience and collaborations in this area, with emphasis on the synthesis and prospective scale-up.
Collapse
Affiliation(s)
- Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Pedro P de Castro
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
10
|
Castillo-Garcia AA, Kappe CO, Cantillo D, Barta K. Aniline Derivatives from Lignin under Mild Conditions Enabled by Electrochemistry. CHEMSUSCHEM 2024; 17:e202301374. [PMID: 37988183 DOI: 10.1002/cssc.202301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
The development of environmentally friendly methods for the valorization of important phenolic platform chemicals originating directly from lignin-first depolymerization into value-added N-chemicals, such as aniline derivatives, is of high industrial interest. In this work, we tackle this challenging transformation by the judicious combination of electrochemical conversion and chemical functionalization steps. In the first step, lignin-derived para-substituted guaiacols and syringols undergo an atom-efficient, room-temperature anodic oxidation using methanol both as solvent and reagent towards the formation of the corresponding cyclohexadienone derivatives, which are subsequently converted to synthetically challenging ortho-methoxy substituted anilines by reaction with ethyl glycinate hydrochloride under mild conditions. The developed method was applied to crude lignin depolymerization bio-oils, derived from reductive catalytic fractionation (RCF) mediated either by copper-doped porous metal oxide (Cu20 PMO) or Ru/C, allowing the selective production of 4-propanol-2-methoxyaniline (1Gb) and 4-propyl-2-methoxyaniline (2Gb), respectively, from pine lignocellulose. Finally, the application of 2Gb was further studied in the synthesis of carbazole 2Gc, a lignin-derived analogue of biologically active alkaloid murrayafoline A.
Collapse
Affiliation(s)
- Antonio A Castillo-Garcia
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Groningen, The Netherlands
| | - Christian Oliver Kappe
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010, Graz, Austria
| | - Katalin Barta
- Institute of Chemistry, University of Graz, Heinchstrasse 28, A-8010, Graz, Austria
| |
Collapse
|
11
|
Wolf J, Pellumbi K, Haridas S, Kull T, Kleinhaus JT, Wickert L, Apfel UP, Siegmund D. Electroplated electrodes for continuous and mass-efficient electrochemical hydrogenation. Chemistry 2023:e202303808. [PMID: 38100290 DOI: 10.1002/chem.202303808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Electrocatalytic hydrogenations (ECH) enable the reduction of organic substrates upon usage of electric current and present a sustainable alternative to conventional processes if green electricity is used. Opposed to most current protocols for electrode preparation, this work presents a one-step binder- and additive-free production of silver- and copper-electroplated electrodes. Controlled adjustment of the preparation parameters allows for the tuning of catalyst morphology and its electrochemical properties. Upon optimization of the deposition protocol and carbon support, high faradaic efficiencies of 93 % for the ECH of the Vitamin A- and E-synthon 2-methyl-3-butyn-2-ol (MBY) are achieved that can be maintained at current densities of 240 mA cm-2 and minimal catalyst loadings of 0.2 mg cm-2 , corresponding to an unmatched production rate of 1.47 kgMBE gcat -1 h-1 . For a continuous hydrogenation process, the protocol can be directly transferred into a single-pass operation mode giving a production rate of 1.38 kgMBE gcat -1 h-1 . Subsequently, the substrate spectrum was extended to a total of 17 different C-C-, C-O- and N-O-unsaturated compounds revealing the general applicability of the reported process. Our results lay an important groundwork for the development of electrochemical reactors and electrodes able to directly compete with the palladium-based thermocatalytic state of the art.
Collapse
Affiliation(s)
- Jonas Wolf
- Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kevinjeorjios Pellumbi
- Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Sarankumar Haridas
- Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany
| | - Tobias Kull
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Julian T Kleinhaus
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Leon Wickert
- Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Ulf-Peter Apfel
- Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Daniel Siegmund
- Abteilung Elektrosynthese, Fraunhofer Institut für Umwelt-, Sicherheits-und Energietechnik UMSICHT, Osterfelder Straße 3, 46047, Oberhausen, Germany
- Anorganische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
12
|
Malviya BK, Hansen EC, Kong CJ, Imbrogno J, Verghese J, Guinness SM, Salazar CA, Desrosiers JN, Kappe CO, Cantillo D. Metal-Free Electrochemical Reduction of Disulfides in an Undivided Cell under Mass Transfer Control. Chemistry 2023; 29:e202302664. [PMID: 37608784 DOI: 10.1002/chem.202302664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Electroorganic synthesis is generally considered to be a green alternative to conventional redox reactions. Electrochemical reductions, however, are less advantageous in terms of sustainability, as sacrificial metal anodes are often employed. Divided cell operation avoids contact of the reduction products with the anode and allows for convenient solvent oxidation, enabling metal free greener electrochemical reductions. However, the ion exchange membranes required for divided cell operation on a commercial scale are not amenable to organic solvents, which hinders their applicability. Herein, we demonstrate that electrochemical reduction of oxidatively sensitive compounds can be carried out in an undivided cell without sacrificial metal anodes by controlling the mass transport to a small surface area electrode. The concept is showcased by an electrochemical method for the reductive cleavage of aryl disulfides. Fine tuning of the electrode surface area and current density has enabled the preparation of a wide variety of thiols without formation of any oxidation side products. This strategy is anticipated to encourage further research on greener, metal free electrochemical reductions.
Collapse
Affiliation(s)
- Bhanwar K Malviya
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Eric C Hansen
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - Caleb J Kong
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - Jenson Verghese
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - Steven M Guinness
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - Chase A Salazar
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - Jean-Nicolas Desrosiers
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut, 06340, USA
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
13
|
Murtaza A, Ulhaq Z, Shirinfar B, Rani S, Aslam S, Martins GM, Ahmed N. Arenes and Heteroarenes C-H Functionalization Under Enabling Conditions: Electrochemistry, Photoelectrochemistry & Flow Technology. CHEM REC 2023; 23:e202300119. [PMID: 37255348 DOI: 10.1002/tcr.202300119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/01/2023]
Abstract
C-H bond functionalization generates molecular complexity in single-step transformation. However, the activation of C-H bonds requires expensive metals or stoichiometric amounts of oxidizing/reducing species. In many cases, they often require pre-functionalization of starting molecules. Such pre-activating measures cause waste generation and their separation from the final product is also troublesome. In such a scenario, reactions activating elements generating from renewable energy resources such as electricity and light would be more efficient, green, and cost-effective. Further, incorporation of growing flow technology in chemical transformation processes will accelerate the safer accesses of valuable products. Arenes & heteroarenes are ubiquitous in pharmaceuticals, natural products, medicinal compounds, and other biologically important molecules. Herein, we discussed enabling tools and technologies used for the recent C-H bonds functionalization of arenes and heteroarenes.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zia Ulhaq
- Chemical Engineering Department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Bahareh Shirinfar
- Department of Chemistry, University of Bath, BA2 7AY, Bath, United Kingdom
- West Herts College, Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Guilherme M Martins
- Department of Chemistry, Federal University of Sao Carlos - UFS Car, 13565-905, São Carlos -SP, Brazil
- School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
- Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
14
|
Klein J, Waldvogel SR. Selective Electrochemical Degradation of Lignosulfonate to Bio-Based Aldehydes. CHEMSUSCHEM 2023; 16:e202202300. [PMID: 36651115 DOI: 10.1002/cssc.202202300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
A sustainable electrochemical pathway for degradation and thermal treatment of technical lignosulfonate is presented. This approach is an opportunity to produce remarkable quantities of low molecular weight compounds, such as vanillin and acetovanillone. For the electrochemical degradation, a simple two-electrode arrangement in aqueous media is used, which is also easily scalable. The oxidation of the biopolymer occurs at the anode whereas hydrogen is evolved at the cathode. The subsequent thermal treatment supports the degradation of the robust chemical structure of lignosulfonates. With optimized electrolytic conditions, vanillin could be obtained in 9.7 wt% relative to the dry mass of lignosulfonate used. Aside from vanillin, by-products such as acetovanillone or vanillic acid were observed in lower yields. A new and reliable one-pot, two-step degradation of different technically relevant lignosulfonates is established with the advantages of using electrons as an oxidizing agent, which results in low quantities of reagent waste.
Collapse
Affiliation(s)
- Jana Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Klein M, Troglauer DL, Waldvogel SR. Dehydrogenative Imination of Low-Valent Sulfur Compounds-Fast and Scalable Synthesis of Sulfilimines, Sulfinamidines, and Sulfinimidate Esters. JACS AU 2023; 3:575-583. [PMID: 36873686 PMCID: PMC9975850 DOI: 10.1021/jacsau.2c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Herein, we describe an electrochemical pathway for the synthesis of sulfilimines, sulfoximines, sulfinamidines, and sulfinimidate esters from readily available low-valent sulfur compounds and primary amides or their analogues. The combination of solvents and supporting electrolytes together act both as an electrolyte as well as a mediator, leading to efficient use of reactants. Both can be easily recovered, enabling an atom-efficient and sustainable process. A broad scope of sulfilimines, sulfinamidines, and sulfinimidate esters with N-EWGs is accessed in up to excellent yields with broad functional group tolerance. This fast synthesis can be easily scaled up to multigram quantities with high robustness for fluctuation of current densities of up to 3 orders of magnitude. The sulfilimines are converted into the corresponding sulfoximines in an ex-cell process in high to excellent yields using electro-generated peroxodicarbonate as a green oxidizer. Thereby, preparatively valuable NH sulfoximines are accessible.
Collapse
|
16
|
Tan X, Wang Q, Sun J. Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nat Commun 2023; 14:357. [PMID: 36690612 PMCID: PMC9870882 DOI: 10.1038/s41467-023-36000-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Electricity-driven asymmetric catalysis is an emerging powerful tool in organic synthesis. However, asymmetric induction so far has mainly relied on forming strong bonds with a chiral catalyst. Asymmetry induced by weak interactions with a chiral catalyst in an electrochemical medium remains challenging due to compatibility issues related to solvent polarity, electrolyte interference, etc. Enabled by a properly designed phase-transfer strategy, here we have achieved two efficient electricity-driven catalytic asymmetric bromocyclization processes induced by weak ion-pairing interaction. The combined use of a phase-transfer catalyst and a chiral phosphate catalyst, together with NaBr as the bromine source, constitutes the key advantages over the conventional chemical oxidation approach. Synergy over multiple events, including anodic oxidation, ion exchange, phase transfer, asymmetric bromination, and inhibition of Br2 decomposition by NaHCO3, proved critical to the success.
Collapse
Affiliation(s)
- Xuefeng Tan
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| | - Qingli Wang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.510951.90000 0004 7775 6738Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Jianwei Sun
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| |
Collapse
|
17
|
Hong JE, Yoon J, Baek W, Kim K, Kwak JH, Park Y. Electrochemical C(sp 3)-H Lactonization of 2-Alkylbenzoic Acids toward Phthalides. Org Lett 2023; 25:298-303. [PMID: 36583568 DOI: 10.1021/acs.orglett.2c04211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report direct electrochemical C(sp3)-H lactonization of 2-alkylbenzoic acids toward phthalides. The reaction provides a wide substrate scope of 2-alkylbenzoic acids bearing primary to tertiary C(sp3)-H bonds by utilizing a graphite anode, dichloromethane (DCM) solvent, hexafluoroisopropanol (HFIP) cosolvent, and n-Bu4NClO4 electrolyte. Our synthetic approach offers a simple, intuitive, and atom-economical protocol to synthesize various phthalides (25 examples, up to 92% yield) and obtain other 5- and 6-membered lactones (10 examples, up to 83% yield).
Collapse
Affiliation(s)
- Jee Eun Hong
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jisong Yoon
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Woohyun Baek
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Kyumin Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Yohan Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| |
Collapse
|
18
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
19
|
Sathya V, Gopi D, Jagatheesan R, Christopher C. Sodium salts mediated electrochemical reactions: Recent instances. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- V. Sathya
- Department of Chemistry, Periyar University, Salem, India
- Department of Chemistry, Namakkal Kavignar Ramaligam Government Arts College for Women, Namakkal, India
| | - D. Gopi
- Department of Chemistry, Periyar University, Salem, India
| | - R. Jagatheesan
- Department of Chemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, India
| | - C. Christopher
- Department of Chemistry, St. Xavier’s College, Tirunelveli, India
| |
Collapse
|
20
|
Zhang Y, Cai Z, Warratz S, Ma C, Ackermann L. Recent advances in electrooxidative radical transformations of alkynes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractDuring the past few years, electrochemical oxidative reactions through radical intermediates have emerged as an environmentally-benign, powerful platform for the facile formation of C–E (E = C, N, S, Se, O and Hal) bonds through single-electron-transfer (SET) processes at the electrodes. Functionalized unsaturated molecules and unusual structural motifs can, for instance, be directly constructed under exceedingly mild reaction conditions through initial radical attack onto alkynes. This minireview highlights the recent advances in electrooxidation in radical reactions until June 2022, with a particular focus on radical additions onto alkynes.
Collapse
|
21
|
Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFuel cell reactors can be tailored to simultaneously cogenerate value-added chemicals and electrical energy while releasing negligible CO2 emissions or other pollution; moreover, some of these reactors can even “breathe in” poisonous gas as feedstock. Such clean cogeneration favorably offsets the fast depletion of fossil fuel resources and eases growing environmental concerns. These unique reactors inherit advantages from fuel cells: a high energy conversion efficiency and high selectivity. Compared with similar energy conversion devices with sandwich structures, fuel cell reactors have successfully “hit three birds with one stone” by generating power, producing chemicals, and maintaining eco-friendliness. In this review, we provide a systematic summary on the state of the art regarding fuel cell reactors and key components, as well as the typical cogeneration reactions accomplished in these reactors. Most strategies fall short in reaching a win–win situation that meets production demand while concurrently addressing environmental issues. The use of fuel cells (FCs) as reactors to simultaneously produce value-added chemicals and electrical power without environmental pollution has emerged as a promising direction. The FC reactor has been well recognized due to its “one stone hitting three birds” merit, namely, efficient chemical production, electrical power generation, and environmental friendliness. Fuel cell reactors for cogeneration provide multidisciplinary perspectives on clean chemical production, effective energy utilization, and even pollutant treatment, with far-reaching implications for the wider scientific community and society. The scope of this review focuses on unique reactors that can convert low-value reactants and/or industrial wastes to value-added chemicals while simultaneously cogenerating electrical power in an environmentally friendly manner.
Graphical Abstract
A schematic diagram for the concept of fuel cell reactors for cogeneration of electrical energy and value-added chemicals
Collapse
|
22
|
Yamamoto K, Arita K, Shiota M, Kuriyama M, Onomura O. Electrochemical formal homocoupling of sec-alcohols. Beilstein J Org Chem 2022; 18:1062-1069. [PMID: 36105731 PMCID: PMC9443307 DOI: 10.3762/bjoc.18.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Electrochemical pinacol coupling of carbonyl compounds in an undivided cell with a sacrificial anode would be a promising approach toward synthetically valuable vic-1,2-diol scaffolds without using low-valent metal reductants. However, sacrificial anodes produce an equimolar amount of metal waste, which may be a major issue in terms of sustainable chemistry. Herein, we report a sacrificial anode-free electrochemical protocol for the synthesis of pinacol-type vic-1,2-diols from sec-alcohols, namely benzyl alcohol derivatives and ethyl lactate. The corresponding vic-1,2-diols are obtained in moderate to good yields, and good to high levels of stereoselectivity are observed for sec-benzyl alcohol derivatives. The present transformations smoothly proceed in a simple undivided cell under constant current conditions without the use of external chemical oxidants/reductants, and transition-metal catalysts.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhisa Arita
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masashi Shiota
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
23
|
Arndt S, Rücker R, Stenglein A, Waldvogel SR. Reactor Design for the Direct Electrosynthesis of Periodate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Richard Rücker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
24
|
Nordkamp MO, Mei B, Venderbosch R, Mul G. Study on the Effect of Electrolyte pH during Kolbe Electrolysis of Acetic Acid on Pt Anodes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Margot Olde Nordkamp
- PhotoCatalytic Synthesis Science and Technology Faculty University of Twente Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Bastian Mei
- PhotoCatalytic Synthesis Science and Technology Faculty University of Twente Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Robbie Venderbosch
- Biomass Technology Group Josink Esweg 34 7545 PN Enschede The Netherlands
| | - Guido Mul
- PhotoCatalytic Synthesis Science and Technology Faculty University of Twente Drienerlolaan 5 7522 NB Enschede The Netherlands
| |
Collapse
|
25
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
26
|
Asnaashariisfahani M, Azizi B, Poor Heravi MR, Mohammadi E, Arshadi S, Vessally E. Strategies for the direct oxidative esterification of thiols with alcohols. RSC Adv 2022; 12:14521-14534. [PMID: 35702200 PMCID: PMC9105656 DOI: 10.1039/d1ra08058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
This review paper provides an overview of the main strategies for the oxidative esterification of thiols with alcohols. The review is divided into two major parts according to final products. The first includes the methods for the synthesis of sulfinic esters, while the second contains the procedures for the fabrication of sulfonic ester derivatives.
Collapse
Affiliation(s)
| | - Bayan Azizi
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development Sulaymaniyah Iraq
| | | | | | - Sattar Arshadi
- Department of Chemistry, Payame Noor University P. O. Box 19395-4697 Tehran Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-4697 Tehran Iran
| |
Collapse
|
27
|
Allaka TR, Katari NK, Jonnalagadda SB. Synthesis of antiviral drugs by using carbon–carbon and carbon–heteroatom bond formation under greener conditions. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Antiviral medications are a branch of medicines notably used to treat that cause many significant diseases in humans and animals. This monograph mainly focuses on recent developments and synthesis of antiviral drugs using carbon-carbon and carbon–hetero bond cross-coupling chemistry. Viral infections exact several severe human diseases, accounting for remarkably high mortality rates. In this sense, academia and the pharmaceutical industry continuously search for novel compounds with better antiviral activity. The researchers face the challenge of developing greener and economical ways to synthesize these compounds and make significant progress.
Collapse
Affiliation(s)
- Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Institute of Science and Technology , Jawaharlal Nehru Technological University Hyderabad , Kukatpally , Hyderabad , Telangana 500085 , India
| | - Naresh Kumar Katari
- Department of Chemistry, School of Science , GITAM deemed to be University , Hyderabad , Telangana 502 329 , India
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus , University of KwaZulu-Natal , P Bag X 54001 , Durban 4000 , South Africa
| | - Sreekanth Babu Jonnalagadda
- School of Chemistry & Physics, College of Agriculture, Engineering & Science, Westville Campus , University of KwaZulu-Natal , P Bag X 54001 , Durban 4000 , South Africa
| |
Collapse
|
28
|
Bajada MA, Sanjosé-Orduna J, Di Liberto G, Tosoni S, Pacchioni G, Noël T, Vilé G. Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chem Soc Rev 2022; 51:3898-3925. [PMID: 35481480 DOI: 10.1039/d2cs00100d] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The global warming crisis has sparked a series of environmentally cautious trends in chemistry, allowing us to rethink the way we conduct our synthesis, and to incorporate more earth-abundant materials in our catalyst design. "Single-atom catalysis" has recently appeared on the catalytic spectrum, and has truly merged the benefits that homogeneous and heterogeneous analogues have to offer. Further still, the possibility to activate these catalysts by means of a suitable electric potential could pave the way for a true integration of diverse synthetic methodologies and renewable electricity. Despite their esteemed benefits, single-atom electrocatalysts are still limited to the energy sector (hydrogen evolution reaction, oxygen reduction, etc.) and numerous examples in the literature still invoke the use of precious metals (Pd, Pt, Ir, etc.). Additionally, batch electroreactors are employed, which limit the intensification of such processes. It is of paramount importance that the field continues to grow in a more sustainable direction, seeking new ventures into the space of organic electrosynthesis and flow electroreactor technologies. In this piece, we discuss some of the progress being made with earth abundant homogeneous and heterogeneous electrocatalysts and flow electrochemistry, within the context of organic electrosynthesis, and highlight the prospects of alternatively utilizing single-atom catalysts for such applications.
Collapse
Affiliation(s)
- Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Jesús Sanjosé-Orduna
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Giovanni Di Liberto
- Department of Materials Science, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Sergio Tosoni
- Department of Materials Science, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Department of Materials Science, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
29
|
Jud W, Salazar CA, Imbrogno J, Verghese J, Guinness SM, Desrosiers JN, Kappe CO, Cantillo D. Electrochemical Oxidation of Alcohols Using Nickel Oxide Hydroxide as Heterogeneous Electrocatalyst in Batch and Continuous Flow. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Chase A. Salazar
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jenson Verghese
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Steven M. Guinness
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jean-Nicolas Desrosiers
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - C. Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
30
|
Homann J, Zirbes M, Arndt‐Engelbart M, Scholz D, Waldvogel SR, Hoffmann T. Development of a Method for Anodic Degradation of Lignin for the Analysis of Paleo‐Vegetation Proxies in Speleothems. ChemElectroChem 2022. [DOI: 10.1002/celc.202101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julia Homann
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Michael Zirbes
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Meiko Arndt‐Engelbart
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Denis Scholz
- Institute for Geosciences Johannes Gutenberg University Mainz Johann-Joachim-Becher-Weg 21 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Thorsten Hoffmann
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
31
|
Cantillo D. Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability. Chem Commun (Camb) 2022; 58:619-628. [PMID: 34951414 DOI: 10.1039/d1cc06296d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organic electrochemistry is receiving renewed attention as a green and cost-efficient synthetic technology. Electrochemical methods promote redox transformations by electron exchange between electrodes and species in solution, thus avoiding the use of stoichiometric amounts of oxidizing or reducing agents. The rapid development of electroorganic synthesis over the past decades has enabled the preparation of molecules of increasing complexity. Redox steps that involve hazardous or waste-generating reagents during the synthesis of active pharmaceutical ingredients or their intermediates can be substituted by electrochemical procedures. In addition to enhance sustainability, increased selectivity toward the target compound has been achieved in some cases. Electroorganic synthesis can be safely and readily scaled up to production quantities. For this pupose, utilization of flow electrolysis cells is fundamental. Despite these advantages, the application of electrochemical methods does not guarantee superior sustainability when compared with conventional protocols. The utilization of large amounts of supporting electrolytes, enviromentally unfriendly solvents or sacrificial electrodes may turn electrochemistry unfavorable in some cases. It is therefore crucial to carefully select and optimize the electrolysis conditions and carry out green metrics analysis of the process to ensure that turning a process electrochemical is advantageous.
Collapse
Affiliation(s)
- David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
32
|
Strehl J, Hilt G. Synthesis of Symmetrical and Unsymmetrical Thiosulfonates from Disulfides through Electrochemically Induced Disulfide Bond Metathesis and Site‐Selective Oxidation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Julia Strehl
- Institut für Chemie Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Germany
| | - Gerhard Hilt
- Institut für Chemie Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Germany
| |
Collapse
|
33
|
Abd-Elsabour M, Assaf HF, Abo-Bakr AM, Alhamzani AG, Abou-Krisha MM, Al-Mutairi AA, Alsoghier HM. Green electro-organic synthesis of a novel catechol derivative based on o-benzoquinone nucleophilic addition. NEW J CHEM 2022. [DOI: 10.1039/d2nj04530c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this work, a green-electrochemical synthesis was applied to catechol oxidation (1) to o-benzoquinone (2) using cyclic voltammetry and potential controlled coulometry.
Collapse
Affiliation(s)
- Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hytham F. Assaf
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Ahmed M. Abo-Bakr
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Aamal A. Al-Mutairi
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hesham M. Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
34
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Guschakowski M, Schröder U. Direct and Indirect Electrooxidation of Glycerol to Value-Added Products. CHEMSUSCHEM 2021; 14:5216-5225. [PMID: 33945223 PMCID: PMC9290622 DOI: 10.1002/cssc.202100556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Indexed: 05/16/2023]
Abstract
In this work, different approaches for the direct and indirect electrooxidation of glycerol, a by-product of oleochemistry and biodiesel production, for the synthesis of value-added products and of intermediates for biofuel/electrofuel production, were investigated and compared. For the direct electrooxidation, metallic catalysts were used, whose surfaces were modified by promoters or second catalysts. Bi-modified Pt electrodes (Ptx Biy /C) served as model systems for promoter-supported electrocatalysis, whereas IrO2 -modified RuO2 electrodes were studied as catalyst combinations, which were compared under acidic conditions with the respective monometallic catalysts (Pt/C, RuO2 /Ti, IrO2 /Ti). Furthermore, inorganic halide mediators (chloride, bromide, iodide) and organic nitroxyl mediators (4-oxo-2,2,6,6-tetramethyl-piperidin-1-oxyl and 4-acetamido-2,2,6,6-tetramethyl-piperidin-1-oxyl) were evaluated for indirect electrooxidation. These different approaches were discussed regarding selectivity, conversion, and coulombic efficiency of the electrochemical glycerol oxidation.
Collapse
Affiliation(s)
- Michael Guschakowski
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
- Cluster of Excellence SE2A – Sustainable and Energy-Efficient AviationTechnische Universität BraunschweigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
- Cluster of Excellence SE2A – Sustainable and Energy-Efficient AviationTechnische Universität BraunschweigGermany
| |
Collapse
|
36
|
Saraswat A, Sharma A. Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Leclercq E, Boddaert M, Beaucamp M, Penhoat M, Chausset-Boissarie L. Electrochemical sulfonylation of imidazoheterocycles under batch and continuous flow conditions. Org Biomol Chem 2021; 19:9379-9385. [PMID: 34673877 DOI: 10.1039/d1ob01822a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and versatile protocol for the C-H sulfonylation of imidazoheterocycles via electrochemical activation was established under batch and flow conditions. The selective C-H bond functionalization proceeded under catalyst- and oxidant-free conditions and tolerated a wide range of functional groups. Various sodium sulfinates as well as imidazo[1,2-a]-pyridines, -pyrimidine, -quinolines, and -isoquinolines, imidazo[1,2-b]pyridazine, imidazo[2,1-b]thiazoles and benzo[d]imidazo[1,2-b]thiazoles reacted successfully. Interestingly, significant acceleration and higher yields were obtained under microfluidic conditions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Maxime Boddaert
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Mathieu Beaucamp
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Maël Penhoat
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France.
| |
Collapse
|
38
|
Klein M, Waldvogel SR. Anodic Dehydrogenative Cyanamidation of Thioethers: Simple and Sustainable Synthesis of N-Cyanosulfilimines. Angew Chem Int Ed Engl 2021; 60:23197-23201. [PMID: 34409715 PMCID: PMC8597142 DOI: 10.1002/anie.202109033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Indexed: 12/21/2022]
Abstract
A novel and very simple to perform electrochemical approach for the synthesis of several N-cyanosulfilimines in good to excellent yields was established. This method provides access to biologically relevant sulfoximines by consecutive oxidation using electro-generated periodate. This route can be easily scaled-up to gram quantities. The S,N coupling is carried out at an inexpensive carbon anode by direct oxidation of sulfide. Therefore, the designed process is atom economic and represents a new "green route" for the synthesis of sulfilimines and sulfoximines.
Collapse
Affiliation(s)
- Martin Klein
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
39
|
Klein M, Waldvogel SR. Anodische dehydrierende Cyaniminierung von Thioethern: eine einfache und nachhaltige Synthese von
N
‐Cyansulfiliminen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Klein
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
40
|
Nikpour F, Zandi S, Sharafi-Kolkeshvandi M. Electrochemically Catalyzed N–N Coupling and Ring Cleavage Reaction of 1H-Pyrazoles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractThe electrocatalyzed N–N coupling and ring cleavage reaction of 3-methyl-, 3,5-dimethyl-, 3-methyl-5-phenyl- and 3,5-diphenyl-1H-pyrazole was investigated and led to the electro-organic synthesis of new heterocyclic compounds. The results revealed that electrochemically produced 1H-pyrazoleox plays the role of acceptor in a reaction with the starting molecule via a N–N coupling and ring cleavage reaction of pyrazoles. The proposed reaction sequence consists of anodic oxidation, dimerization, rearrangement and reduction. The electrochemically catalyzed reactions were accomplished under constant-current and constant-potential conditions using an undivided electrochemical cell with the advantages of mild reaction conditions, remarkable yields and environmental compatibility.
Collapse
|
41
|
Zhong Z, Xu P, Ma J, Zhou A. Electrochemical cross-coupling reactions of sodium arenesulfinates with thiophenols and phenols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Nivetha N, Thangamani A. Dispirooxindole-pyrrolothiazoles: Synthesis, anti-cancer activity, molecular docking and green chemistry metrics evaluation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Gafurov ZN, Kantyukov AO, Kagilev AA, Sinyashin OG, Yakhvarov DG. Electrochemical methods for synthesis and in situ generation of organometallic compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Yamamoto K, Toguchi H, Kuriyama M, Watanabe S, Iwasaki F, Onomura O. Electrophotochemical Ring-Opening Bromination of tert-Cycloalkanols. J Org Chem 2021; 86:16177-16186. [PMID: 34461014 DOI: 10.1021/acs.joc.1c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An electrophotochemical ring-opening bromination of unstrained tert-cycloalkanols has been developed. This electrophotochemical method enables the oxidative transformation of cycloalkanols with 5- to 7-membered rings into synthetically useful ω-bromoketones without the use of chemical oxidants or transition-metal catalysts. Alkoxy radical species would be key intermediates in the present transformation, which generate through homolysis of the O-Br bond in hypobromite intermediates under visible light irradiation.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroyuki Toguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shin Watanabe
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Fumiaki Iwasaki
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
45
|
Jud W, Sommer F, Kappe CO, Cantillo D. Electrochemical α-Arylation of Ketones via Anodic Oxidation of In Situ Generated Silyl Enol Ethers. J Org Chem 2021; 86:16026-16034. [PMID: 34343004 DOI: 10.1021/acs.joc.1c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electrochemical procedure for the α-arylation of ketones has been developed. The method is based on the generation and one-pot anodic oxidation of silyl enol ethers in the presence of the arene. This strategy avoids isolation of the silyl enol intermediate and the utilization of external supporting electrolytes. Intermolecular arylations, which had not been reported so far, are possible when electron-rich arenes are utilized as coupling partners. The method has been demonstrated for a wide variety of aryl ketones and activated arenes, with moderate to good yields (up to 69%) obtained. Mechanistic insights and a theoretical rationale that explains the ketone α-arylation versus dimerization selectivity are also presented.
Collapse
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Florian Sommer
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
46
|
Brown RCD. The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. CHEM REC 2021; 21:2472-2487. [PMID: 34302434 DOI: 10.1002/tcr.202100163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Indexed: 01/01/2023]
Abstract
This personal account provides an overview of work conducted in my research group, and through collaborations with other chemists and engineers, to develop flow electrolysis cells and apply these cells in organic electrosynthesis. First, a brief summary of my training and background in organic synthesis is provided, leading in to the start of flow electrosynthesis in my lab in collaboration with Derek Pletcher. Our work on the development of extended path electrolysis flow reactors is described from a synthetic organic chemist's perspective, including laboratory scale-up to give several moles of an anodic methoxylation product in one day. The importance of cell design is emphasised with regards to achieving good performance in laboratory electrosynthesis with productivities from hundreds of mg h-1 to many g h-1 , at high conversion in a selective fashion. A simple design of recycle flow cell that can be readily constructed in a small University workshop is also discussed, including simple modifications to improve cell performance. Some examples of flow electrosyntheses are provided, including Shono-type oxidation, anodic cleavage of protecting groups, Hofer-Moest reaction of cubane carboxylic acids, oxidative esterification and amidation of aldehydes, and reduction of aryl halides.
Collapse
Affiliation(s)
- Richard C D Brown
- School of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
47
|
Gleede B, Selt M, Franke R, Waldvogel SR. Developments in the Dehydrogenative Electrochemical Synthesis of 3,3',5,5'-Tetramethyl-2,2'-biphenol. Chemistry 2021; 27:8252-8263. [PMID: 33453091 PMCID: PMC8248109 DOI: 10.1002/chem.202005197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/02/2021] [Indexed: 11/16/2022]
Abstract
The symmetric biphenol 3,3′,5,5′‐tetramethyl‐2,2′‐biphenol is a well‐known ligand building block and is used in transition‐metal catalysis. In the literature, there are several synthetic routes for the preparation of this exceptional molecule. Herein, the focus is on the sustainable electrochemical synthesis of 3,3′,5,5′‐tetramethyl‐2,2′‐biphenol. A brief overview of the developmental history of this inconspicuous molecule, which is of great interest for technical applications, but has many challenges for its synthesis, is provided. The electro‐organic method is a powerful, sustainable, and efficient alternative to conventional synthesis to obtain this symmetric biphenol up to the kilogram scale. Another section of this article is devoted to different process management strategies in batch‐type and flow electrolysis and their respective advantages.
Collapse
Affiliation(s)
- Barbara Gleede
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Maximilian Selt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Material Science IN MainZ (MAINZ), Graduate School of Excellence, Staudingerweg 9, 55128, Mainz, Germany
| | - Robert Franke
- Evonik Performance Materials GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany.,Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Material Science IN MainZ (MAINZ), Graduate School of Excellence, Staudingerweg 9, 55128, Mainz, Germany
| |
Collapse
|
48
|
Cembellín S, Batanero B. Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. CHEM REC 2021; 21:2453-2471. [PMID: 33955158 DOI: 10.1002/tcr.202100128] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The adoption of new measures that preserve our environment, on which our survival depends, is a necessity. Electro-organic processes are sustainable per se, by producing the activation of a substrate by electron transfer at normal pressure and room temperature. In the recent years, a highly crescent number of works on organic electrosynthesis are available. Novel strategies at the electrode are being developed enabling the construction of a great variety of complex organic molecules. However, the possibility of being scaled-up is mandatory in terms of sustainability. Thus, some electrochemical methodologies have demonstrated to report the best results in reducing pollution and saving energy. In this personal account, these methods have been compiled, being organized as follows: • Direct discharge electrosynthesis • Paired electrochemical reactions. and • Organic transformations utilizing electrocatalysis (in absence of heavy metals). Selected protocols are herein presented and discussed with representative recent examples. Final perspectives and reflections are also considered.
Collapse
Affiliation(s)
- Sara Cembellín
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain
| | - Belén Batanero
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR) University of Alcala
| |
Collapse
|
49
|
Tang HT, Jia JS, Pan YM. Halogen-mediated electrochemical organic synthesis. Org Biomol Chem 2021; 18:5315-5333. [PMID: 32638806 DOI: 10.1039/d0ob01008a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In general, halogenide anions are anodically oxidized into active species, which can be elemental halogen, halogen cations, or halogen radicals. These species subsequently react with substrates, such as olefins, ketones, or amines, to generate halogenated products. We review the mechanisms of these reactions.
Collapse
Affiliation(s)
- Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
50
|
Bortolami M, Chiarotto I, Mattiello L, Petrucci R, Rocco D, Vetica F, Feroci M. Organic electrochemistry: Synthesis and functionalization of β-lactams in the twenty-first century. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Organic electrochemistry is a technique that allows for the heterogeneous redox reactions avoiding both the use of stoichiometric amounts of redox reagents and the resulting formation of stoichiometric by-products. In fact, the redox reagent in these reactions is the electron, which is naturally eco-friendly and produces no side compounds. It is therefore quite obvious that electrochemistry can be classified as a “green” technology. The use of this methodology in the synthesis of β-lactams is not a novelty, but the growing interest in this class of biologically active compounds, due to the discovery of new fields of application (after a moment of decrease in interest due to antibiotic resistance) has been a stimulus for the search for more efficient electrochemical ways to synthesize and transform β-lactams. Thus, this review deals with the twenty-first-century applications of electroorganic technique to the chemistry of β-lactams, by analyzing first the syntheses classified by the type of reactions (cyclization, cycloaddition, etc.) and then by manipulating the β-lactam structure, using it as a synthon. Lastly, the importance of this technique is demonstrated by a study of a pilot plant scale reduction of a cephalosporanic acid derivative to a commercially important antibiotic.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Leonardo Mattiello
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University , p.le Aldo Moro, 5, I-00185 , Rome , Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University , via del Castro Laurenziano, 7, I-00161 , Rome , Italy
| |
Collapse
|