1
|
Teng Y, Yang H, Tian Y. The Development and Application of Tritium-Labeled Compounds in Biomedical Research. Molecules 2024; 29:4109. [PMID: 39274956 PMCID: PMC11397416 DOI: 10.3390/molecules29174109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
With low background radiation, tritiate compounds exclusively emit intense beta particles without structural changes. This makes them a useful tool in the drug discovery arsenal. Thanks to the recent rapid progress in tritium chemistry, the preparation and analysis of tritium-labeled compounds are now much easier, simpler, and cheaper. Pharmacokinetics, autoradiography, and protein binding studies have been much more efficient with the employment of tritium-labeled compounds. This review provides a comprehensive overview of tritium-labeled compounds regarding their properties, synthesis strategies, and applications.
Collapse
Affiliation(s)
- Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
2
|
Ramar T, Ilangovan A, A M Subbaiah M. Promoting Catalytic C-Selective Sulfonylation of Cyclopropanols against Conventional O-Sulfonylation Using Readily Available Sulfonyl Chlorides. J Org Chem 2023; 88:13553-13567. [PMID: 37708032 DOI: 10.1021/acs.joc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed β-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu PIN 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka PIN 560099, India
| |
Collapse
|
3
|
Tortajada A, Hevia E. Alkali-metal bases in catalytic hydrogen isotope exchange processes. Catal Sci Technol 2023; 13:4919-4925. [PMID: 38013748 PMCID: PMC10465149 DOI: 10.1039/d3cy00825h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 11/29/2023]
Abstract
The preparation of compounds labelled with deuterium or tritium has become an essential tool in a range of research fields. Hydrogen isotope exchange (HIE) offers direct access to said compounds, introducing these isotopes in a late stage. Even though the field has rapidly advanced with the use of transition metal catalysis, alkali-metal bases, used as catalysts or under stoichiometric conditions, have also emerged as a viable alternative. In this minireview we describe the latest advances in the use of alkali-metal bases in HIE processes, showcasing their synthetic potential as well as current challenges in the field. It is divided in different sections based on the isotope source used, emphasizing their benefits, disadvantages and limitations. The influence on the choice of alkali-metal in these processes as well as their possible mechanistic pathways are also discussed.
Collapse
Affiliation(s)
- Andreu Tortajada
- Department für Chemie und Biochemie, Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
4
|
Polimera SR, Ilangovan A, Subbaiah MAM. Examining the Scope of Deriving β-Aryl Enones from Enol Silanes as Ketone Equivalents via Pd(II)-Mediated Sequential Dehydrosilylation and Arylation. J Org Chem 2023. [PMID: 37192466 DOI: 10.1021/acs.joc.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Silyl enol ethers were examined as a masked source of saturated ketones to derive β-aryl enones and their derivatives by dehydrosilylation to generate enones in situ and subsequent oxidative arylation with arylboronic acids as transmetallation coupling partners using relayed Pd(II) catalysis in one pot under base-free conditions. Oxygen was found to be an efficient and green oxidant to enable both dehydrosilylation of enol silanes and arylation. Additionally, arylation conditions can be custom-designed to take advantage of aryl halides as an alternative source of arylating agents. The preparative scope was investigated with 35 examples (up to 95% yield), and mechanistic studies implied a cationic Pd(II)-based catalytic system.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India
| |
Collapse
|
5
|
Fluoride-Ion-Mediated 1H/2D Exchange in Anion Receptors: A 19F NMR Probe. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Barranco S, Pérez-Temprano MH. Merging homogeneous transition metal catalysis and hydrogen isotope exchange. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Zhang X, Cheng X. Electrochemical Reductive Functionalization of Alkenes with Deuterochloroform as a One-Carbon Deuteration Block. Org Lett 2022; 24:8645-8650. [DOI: 10.1021/acs.orglett.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Road 163, Qixia District, Nanjing 210023, China
| | - Xu Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Road 163, Qixia District, Nanjing 210023, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijing Road 93, Nankai District, Tianjin 300071, China
| |
Collapse
|
8
|
Polimera SR, Ilangovan A, Meanwell NA, Subbaiah MAM. Synthetic Access to α-Oxoketene Aminals by the Nucleophilic Addition of Enol Silane-Derived Palladium(II) Enolates to Carbodiimides. J Org Chem 2022; 87:14778-14792. [PMID: 36285601 DOI: 10.1021/acs.joc.2c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthetically important α-oxoketene aminal intermediates can now be accessed from readily available and inexpensive carbodiimides as starting materials via the nucleophilic addition of palladium enolates derived from enol silane precursors. This operationally simple method features mild reaction conditions, including open air atmosphere, ligand-free metal catalysis, broad substrate scope, and multi-gram scalability. Select synthetic applications that take advantage of the enamine character of α-oxoketene aminals and involve C-nucleophilic additions to electrophilic systems, including an α,β-unsaturated ester, an azo dicarboxylate, an aralkyl halide, and an aldehyde, are demonstrated.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| |
Collapse
|
9
|
Ramar T, Ilangovan A, Meanwell NA, Subbaiah MAM. Electrophilic Hydrazination of Cyclopropanols Using Azodicarboxylates via Copper(II) Catalysis: An Umpolung Strategy to Access β-Hydrazino Ketone Motifs. J Org Chem 2022; 87:14596-14608. [PMID: 36190309 DOI: 10.1021/acs.joc.2c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The scope of an umpolung approach to expand synthetic access to bifunctional γ-keto hydrazine intermediates via electrophilic amination of β-homoenolates derived from cyclopropanol precursors that took advantage of azodicarboxylates or azodicarboxamides as electron-deficient nitrogen sources was examined. This new synthetic procedure avails commercially available or readily accessible starting materials along with a ligand-free Cu(II) salt as an inexpensive catalyst. Using this operationally simple reaction, which proceeds under mild conditions (open-flask and ambient temperature) and is suitable for multigram scale, preparative applications were established with a range of aryl- and alkyl-substituted cyclopropanols and azodicarboxylate/azodicarboxamide substrates (26 examples, 74-95% yields). Further, the obtained products have been shown to provide convenient synthetic access to γ-hydroxy hydrazide, γ-amino hydrazide, and heterocyclic derivatives.
Collapse
Affiliation(s)
- Thangeswaran Ramar
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli 620024, Tamil Nadu, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, Karnataka, India
| |
Collapse
|
10
|
Chang X, Cheng X, Wang CJ. Catalytic asymmetric synthesis of enantioenriched α-deuterated pyrrolidine derivatives. Chem Sci 2022; 13:4041-4049. [PMID: 35440992 PMCID: PMC8985513 DOI: 10.1039/d2sc00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
The recent promising applications of deuterium-labeled pharmaceutical compounds have led to an urgent need for the efficient synthetic methodologies that site-specifically incorporate a deuterium atom into bioactive molecules. Nevertheless, precisely building a deuterium-containing stereogenic center, which meets the requirement for optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of chiral drug candidates, remains a significant challenge in organic synthesis. Herein, a catalytic asymmetric strategy combining H/D exchange (H/D-Ex) and azomethine ylide-involved 1,3-dipolar cycloaddition (1,3-DC) was developed for the construction of biologically important enantioenriched α-deuterated pyrrolidine derivatives in good yields with excellent stereoselectivities and uniformly high levels of deuterium incorporation. Directly converting glycine-derived aldimine esters into the deuterated counterparts with D2O via Cu(i)-catalyzed H/D-Ex, and the subsequent thermodynamically/kinetically favored cleavage of the α-C-H bond rather than the α-C-D bond to generate the key N-metallated α-deuterated azomethine ylide species for the ensuing 1,3-DC are crucial to the success of α-deuterated chiral pyrrolidine synthesis. The current protocol exhibits remarkable features, such as readily available substrates, inexpensive and safe deuterium source, mild reaction conditions, and easy manipulation. Notably, the synthetic utility of a reversed 1,3-DC/[H/D-Ex] protocol has been demonstrated by catalytic asymmetric synthesis of deuterium-labelled MDM2 antagonist idasanutlin (RG7388) with high deuterium incorporation.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Hao W, Joe CL, Ayers S, Darù A, Daley RA, Chen JS, Domanski M, Schmidt MA, Blackmond DG. Ru-Catalyzed Enantioselective Hydrogenation of 2-Pyridyl-Substituted Alkenes and Substrate-Mediated H/D Exchange. ACS Catal 2022; 12:1150-1160. [PMID: 36386561 PMCID: PMC9648516 DOI: 10.1021/acscatal.1c05061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A highly efficient and enantioselective asymmetric hydrogenation catalyzed by Ru-DTBM-segphos is reported for a broad range of pyridine-pyrroline tri-substituted alkenes. Kinetic, spectroscopic, and computational studies suggest that addition of H2 is rate-determining and that alkene insertion is the enantio-determining step. These studies also reveal an intriguing Ru-catalyzed H/D exchange process that is facilitated by the substrate at room temperature and low pressure where hydrogenation activity is suppressed. These studies lead to a mechanistic proposal that further defines the roles of hydrogen gas, Ru-H species, and protic solvents in this catalytic system.
Collapse
Affiliation(s)
- Wei Hao
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Candice L. Joe
- Chemical Development, Bristol Myers Squibb Corp., New Brunswick, NJ 08903 USA
| | - Sloan Ayers
- Chemical Development, Bristol Myers Squibb Corp., New Brunswick, NJ 08903 USA
| | - Andrea Darù
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Ryan A. Daley
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Jason S. Chen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
- Automated Synthesis Facility, Scripps Research, La Jolla, CA 92037, USA
| | - Michal Domanski
- Department of Chemistry, Scripps Research, La Jolla, CA 92037 USA
| | - Michael A. Schmidt
- Chemical Development, Bristol Myers Squibb Corp., New Brunswick, NJ 08903 USA
| | | |
Collapse
|
12
|
Babón JC, Esteruelas MA, López AM. Homogeneous catalysis with polyhydride complexes. Chem Soc Rev 2022; 51:9717-9758. [DOI: 10.1039/d2cs00399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review analyzes the role of transition metal polyhydrides as homogeneous catalysts for organic reactions. Discussed reactions involve nearly every main organic functional group.
Collapse
Affiliation(s)
- Juan C. Babón
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M. López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Polimera SR, A M Subbaiah M, Ilangovan A. The Ligand Free Palladium(II)-Catalyzed Regioselective 1,2-Addition of Enol Silanes to Quinones to Access 4-Hydroxy-4-(2-oxo-2-arylethyl)cyclohexadien-1-ones and Synthetic Applications. J Org Chem 2021; 86:14356-14370. [PMID: 34554740 DOI: 10.1021/acs.joc.1c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In contrast to the conventional 1,4-addition process, regioselective 1,2-addition of silyl enol ethers to quinones can now be achieved via a palladium(II) enolate pathway that provides access to 4-hydroxy-4-(2-oxo-2-arylethyl)cyclohexa-2,5-dien-1-one derivatives. This quinone alkylation protocol proceeds under mild reaction conditions at ambient temperature under open air and does not require either an external ligand for the palladium or the use of a base. Additionally, the cyclohexadienone products have been exploited as synthetic precursors for the construction of fused heteroaryl systems.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, BBRC, Syngene, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560009, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, BBRC, Syngene, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560009, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| |
Collapse
|
14
|
Farizyan M, Mondal A, Mal S, Deufel F, van Gemmeren M. Palladium-Catalyzed Nondirected Late-Stage C-H Deuteration of Arenes. J Am Chem Soc 2021; 143:16370-16376. [PMID: 34582686 PMCID: PMC8517979 DOI: 10.1021/jacs.1c08233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 12/11/2022]
Abstract
We describe a palladium-catalyzed nondirected late-stage deuteration of arenes. Key aspects include the use of D2O as a convenient and easily available deuterium source and the discovery of highly active N,N-bidentate ligands containing an N-acylsulfonamide group. The reported protocol enables high degrees of deuterium incorporation via a reversible C-H activation step and features extraordinary functional group tolerance, allowing for the deuteration of complex substrates. This is exemplified by the late-stage isotopic labeling of various pharmaceutically relevant motifs and related scaffolds. We expect that this method, among other applications, will prove useful as a tool in drug development processes and for mechanistic studies.
Collapse
Affiliation(s)
| | | | | | | | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
15
|
Yang X, Ben H, Ragauskas AJ. Recent Advances in the Synthesis of Deuterium‐Labeled Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoli Yang
- State Key Laboratory of BioFibers and Eco-textiles Qingdao University Qingdao 266071 P. R. China
| | - Haoxi Ben
- State Key Laboratory of BioFibers and Eco-textiles Qingdao University Qingdao 266071 P. R. China
| | - Arthur J. Ragauskas
- Center for Renewable Carbon Department of Forestry Wildlife and Fisheries University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
- Department of Chemical and Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- Joint Institute for Biological Science Biosciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- The Center for Bioenergy Innovation (CBI) Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
16
|
Uttry A, Mal S, van Gemmeren M. Late-Stage β-C(sp 3)-H Deuteration of Carboxylic Acids. J Am Chem Soc 2021; 143:10895-10901. [PMID: 34279928 DOI: 10.1021/jacs.1c06474] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carboxylic acids are highly abundant in bioactive molecules. In this study, we describe the late-stage β-C(sp3)-H deuteration of free carboxylic acids. On the basis of the finding that C-H activation with our catalysts is reversible, the de-deuteration process was first optimized. The resulting method uses ethylenediamine-based ligands and can be used to achieve the desired deuteration when using a deuterated solvent. The reported method allows for the functionalization of a wide range of free carboxylic acids with diverse substitution patterns, as well as the late-stage deuteration of bioactive molecules and related frameworks and enables the functionalization of nonactivated methylene β-C(sp3)-H bonds for the first time.
Collapse
Affiliation(s)
- Alexander Uttry
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Sourjya Mal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
17
|
Garhwal S, Kaushansky A, Fridman N, Shimon LJW, Ruiter GD. Facile H/D Exchange at (Hetero)Aromatic Hydrocarbons Catalyzed by a Stable Trans-Dihydride N-Heterocyclic Carbene (NHC) Iron Complex. J Am Chem Soc 2020; 142:17131-17139. [PMID: 32902969 PMCID: PMC7586338 DOI: 10.1021/jacs.0c07689] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Earth-abundant
metal pincer complexes have played an important
role in homogeneous catalysis during the last ten years. Yet, despite
intense research efforts, the synthesis of iron PCcarbeneP pincer complexes has so far remained elusive. Here we report the
synthesis of the first PCNHCP functionalized iron complex
[(PCNHCP)FeCl2] (1) and the reactivity
of the corresponding trans-dihydride iron(II) dinitrogen
complex [(PCNHCP)Fe(H)2N2)] (2). Complex 2 is stable under an atmosphere of
N2 and is highly active for hydrogen isotope exchange at
(hetero)aromatic hydrocarbons under mild conditions (50 °C, N2). With benzene-d6 as the deuterium
source, easily reducible functional groups such as esters and amides
are well tolerated, contributing to the overall wide substrate scope
(e.g., halides, ethers, and amines). DFT studies suggest a complex
assisted σ-bond metathesis pathway for C(sp2)–H
bond activation, which is further discussed in this study.
Collapse
Affiliation(s)
- Subhash Garhwal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
18
|
Corpas J, Viereck P, Chirik PJ. C(sp2)–H Activation with Pyridine Dicarbene Iron Dialkyl Complexes: Hydrogen Isotope Exchange of Arenes Using Benzene-d6 as a Deuterium Source. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Javier Corpas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Martin J, Eyselein J, Grams S, Harder S. Hydrogen Isotope Exchange with Superbulky Alkaline Earth Metal Amide Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Johannes Martin
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Jonathan Eyselein
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Samuel Grams
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
20
|
Valero M, Derdau V. Highlights of aliphatic C(sp 3 )-H hydrogen isotope exchange reactions. J Labelled Comp Radiopharm 2020; 63:266-280. [PMID: 31278771 DOI: 10.1002/jlcr.3783] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
This review summarizes the highlights of aliphatic C (sp3 )-H carbon hydrogen isotope exchange (HIE) methods developed in the last 10 years. In particular, new highly selective and reactive protocols in the areas of nanoparticle and metal-catalyzed homogeneous catalysis are reported.
Collapse
Affiliation(s)
- Mégane Valero
- R&D, Integrated Drug Discovery, Isotope Chemistry, Sanofi Germany, Frankfurt, Germany
| | - Volker Derdau
- R&D, Integrated Drug Discovery, Isotope Chemistry, Sanofi Germany, Frankfurt, Germany
| |
Collapse
|
21
|
Valero M, Kruissink T, Blass J, Weck R, Güssregen S, Plowright AT, Derdau V. C-H Functionalization-Prediction of Selectivity in Iridium(I)-Catalyzed Hydrogen Isotope Exchange Competition Reactions. Angew Chem Int Ed Engl 2020; 59:5626-5631. [PMID: 31917506 PMCID: PMC7232431 DOI: 10.1002/anie.201914220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/22/2022]
Abstract
An assessment of the C-H activation catalyst [(COD)Ir(IMes)(PPh3 )]PF6 (COD=1,5-cyclooctadiene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) in the deuteration of phenyl rings containing different functional directing groups is divulged. Competition experiments have revealed a clear order of the directing groups in the hydrogen isotope exchange (HIE) with an iridium (I) catalyst. Through DFT calculations the iridium-substrate coordination complex has been identified to be the main trigger for reactivity and selectivity in the competition situation with two or more directing groups. We postulate that the competition concept found in this HIE reaction can be used to explain regioselectivities in other transition-metal-catalyzed functionalization reactions of complex drug-type molecules as long as a C-H activation mechanism is involved.
Collapse
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Thomas Kruissink
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Jennifer Blass
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Alleyn T. Plowright
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&DIntegrated Drug DiscoveryIndustriepark Höchst65926Frankfurt am MainGermany
| |
Collapse
|
22
|
Valero M, Kruissink T, Blass J, Weck R, Güssregen S, Plowright AT, Derdau V. C−H Functionalization—Prediction of Selectivity in Iridium(I)‐Catalyzed Hydrogen Isotope Exchange Competition Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mégane Valero
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Thomas Kruissink
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Jennifer Blass
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Remo Weck
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Stefan Güssregen
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Alleyn T. Plowright
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Volker Derdau
- Sanofi-Aventis (Deutschland) GmbH, R&D Integrated Drug Discovery Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
23
|
Iridium Catalysts for Hydrogen Isotope Exchange. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Rothermel N, Bouzouita D, Röther T, de Rosal I, Tricard S, Poteau R, Gutmann T, Chaudret B, Limbach H, Buntkowsky G. Surprising Differences of Alkane C‐H Activation Catalyzed by Ruthenium Nanoparticles: Complex Surface‐Substrate Recognition? ChemCatChem 2018. [DOI: 10.1002/cctc.201801022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Niels Rothermel
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Str. 8 Darmstadt 64287 Germany
| | - Donia Bouzouita
- Laboratoire de Physique et Chimie de Nano-Objets (LPCNO) UMR 5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135 Avenue de Rangueil Toulouse 31077 France
| | - Tobias Röther
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Str. 8 Darmstadt 64287 Germany
| | - Iker de Rosal
- Laboratoire de Physique et Chimie de Nano-Objets (LPCNO) UMR 5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135 Avenue de Rangueil Toulouse 31077 France
| | - Simon Tricard
- Laboratoire de Physique et Chimie de Nano-Objets (LPCNO) UMR 5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135 Avenue de Rangueil Toulouse 31077 France
| | - Romuald Poteau
- Laboratoire de Physique et Chimie de Nano-Objets (LPCNO) UMR 5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135 Avenue de Rangueil Toulouse 31077 France
| | - Torsten Gutmann
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Str. 8 Darmstadt 64287 Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie de Nano-Objets (LPCNO) UMR 5215 INSA-CNRS-UPSInstitut National des Sciences Appliquées 135 Avenue de Rangueil Toulouse 31077 France
| | - Hans‐Heinrich Limbach
- Institut für Chemie und BiochemieFreie Universität Berlin Takustr. 3 Berlin 14195 Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität Darmstadt Alarich-Weiss-Str. 8 Darmstadt 64287 Germany
| |
Collapse
|
25
|
Valero M, Burhop A, Jess K, Weck R, Tamm M, Atzrodt J, Derdau V. Evaluation of a P,N-ligated iridium(I) catalyst in hydrogen isotope exchange reactions of aryl and heteroaryl compounds. J Labelled Comp Radiopharm 2018; 61:380-385. [PMID: 29271003 DOI: 10.1002/jlcr.3595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
We have developed a novel and efficient iridium-catalyzed hydrogen isotope exchange reaction method with secondary and tertiary sulfonamides at ambient temperatures. Furthermore N-oxides and phosphonamides have been successfully applied in hydrogen isotope exchange reactions with moderate to excellent deuterium introduction.
Collapse
Affiliation(s)
- Mégane Valero
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Annina Burhop
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Kristof Jess
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Remo Weck
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jens Atzrodt
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| | - Volker Derdau
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi, Frankfurt/Main, Germany
| |
Collapse
|
26
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Methoden der C-H-Funktionalisierung für den Wasserstoffisotopenaustausch. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708903] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
27
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. C-H Functionalisation for Hydrogen Isotope Exchange. Angew Chem Int Ed Engl 2018; 57:3022-3047. [PMID: 29024330 DOI: 10.1002/anie.201708903] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 11/06/2022]
Abstract
The various applications of hydrogen isotopes (deuterium, D, and tritium, T) in the physical and life sciences demand a range of methods for their installation in an array of molecular architectures. In this Review, we describe recent advances in synthetic C-H functionalisation for hydrogen isotope exchange.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
28
|
Vondung L, Sattler LE, Langer R. Ambireactive (R3
P)2
BH2
Groups Facilitating Temperature-Switchable Bond Activation by an Iron Complex. Chemistry 2017; 24:1358-1364. [DOI: 10.1002/chem.201704018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Lisa Vondung
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 4 35032 Marburg Germany
| | - Lars E. Sattler
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 4 35032 Marburg Germany
| | - Robert Langer
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Str. 4 35032 Marburg Germany
| |
Collapse
|
29
|
Burhop A, Prohaska R, Weck R, Atzrodt J, Derdau V. Burgess iridium(I)-catalyst for selective hydrogen isotope exchange. J Labelled Comp Radiopharm 2017; 60:343-348. [PMID: 28406535 DOI: 10.1002/jlcr.3512] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Abstract
We have evaluated the commercially available Burgess catalyst in hydrogen isotope exchange reactions with several substrates bearing different directing group functionalities and have obtained moderate to high (50%-97%D) deuterium incorporations. The broad applicability in hydrogen isotope exchange reactions makes the Burgess catalyst a possible alternative compared to other commercially available iridium(I)-catalysts.
Collapse
Affiliation(s)
- Annina Burhop
- Integrated Drug Discovery, Med. Chem., Isotope Chemistry and Metabolite Synthesis, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Raphail Prohaska
- Integrated Drug Discovery, Med. Chem., Isotope Chemistry and Metabolite Synthesis, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Remo Weck
- Integrated Drug Discovery, Med. Chem., Isotope Chemistry and Metabolite Synthesis, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Jens Atzrodt
- Integrated Drug Discovery, Med. Chem., Isotope Chemistry and Metabolite Synthesis, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Volker Derdau
- Integrated Drug Discovery, Med. Chem., Isotope Chemistry and Metabolite Synthesis, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| |
Collapse
|
30
|
Cabeza JA, García-Álvarez P, González-Álvarez L. Facile cyclometallation of a mesitylsilylene: synthesis and preliminary catalytic activity of iridium(iii) and iridium(v) iridasilacyclopentenes. Chem Commun (Camb) 2017; 53:10275-10278. [DOI: 10.1039/c7cc04832g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cyclometallation of a monosilylene has been achieved in iridium(iii) and iridium(v) complexes; the former catalyse arene deuteriations and borylations.
Collapse
Affiliation(s)
- Javier A. Cabeza
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- 33071 Oviedo
- Spain
| | - Pablo García-Álvarez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- 33071 Oviedo
- Spain
| | - Laura González-Álvarez
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica
- Universidad de Oviedo
- 33071 Oviedo
- Spain
| |
Collapse
|
31
|
King CR, Gustafson SJ, Black BR, Butler SK, Konnick MM, Periana RA, Hashiguchi BM, Ess DH. Arene C–H Functionalization by p-Block Metal Tl(III) Occurs at the Borderline of C–H Activation and Electron Transfer. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clinton R. King
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samantha J. Gustafson
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Benjamin R. Black
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven K. Butler
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Michael M. Konnick
- Hyconix, Inc., 4575 Weaver Parkway, Warrenville, Illinois 60555, United States
| | - Roy A. Periana
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Brian M. Hashiguchi
- Hyconix, Inc., 4575 Weaver Parkway, Warrenville, Illinois 60555, United States
| | - Daniel H. Ess
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
32
|
Bhatia S, Spahlinger G, Boukhumseen N, Boll Q, Li Z, Jackson JE. Stereoretentive H/D Exchange via an Electroactivated Heterogeneous Catalyst at sp3C-H Sites Bearing Amines or Alcohols. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Souful Bhatia
- Department of Chemistry; Michigan State University; 48824 E. Lansing MI USA
| | - Greg Spahlinger
- Department of Chemistry; Michigan State University; 48824 E. Lansing MI USA
| | - Nehal Boukhumseen
- Department of Chemistry; Michigan State University; 48824 E. Lansing MI USA
| | - Quentin Boll
- Department of Chemistry; Michigan State University; 48824 E. Lansing MI USA
| | - Zhenglong Li
- Oak Ridge National Laboratory; 37831 Oak Ridge TN USA
| | - James E. Jackson
- Department of Chemistry; Michigan State University; 48824 E. Lansing MI USA
| |
Collapse
|
33
|
Hatano M, Nishimura T, Yorimitsu H. Selective H/D Exchange at Vinyl and Methylidene Groups with D2O Catalyzed by an Iridium Complex. Org Lett 2016; 18:3674-7. [DOI: 10.1021/acs.orglett.6b01721] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miyuki Hatano
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takahiro Nishimura
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Di Giuseppe A, Castarlenas R, Oro LA. Rhodium Catalysts for C–S Bond Formation. TOP ORGANOMETAL CHEM 2016. [DOI: 10.1007/3418_2016_171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Giles R, Ahn G, Jung KW. H-D exchange in deuterated trifluoroacetic acid via ligand-directed NHC-palladium catalysis: a powerful method for deuteration of aromatic ketones, amides, and amino acids. Tetrahedron Lett 2015; 56:6231-6235. [PMID: 26494929 PMCID: PMC4610012 DOI: 10.1016/j.tetlet.2015.09.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method has been developed for one-step ortho-selective ligand-directed H-D exchange, accompanied in some cases by concurrent acid-catalyzed electrophilic deuteration. This method is effective for deuteration of aromatic substrates ranging from ketones to amides and amino acids, including compounds of biological and pharmaceutical interest such as acetaminophen and edaravone. Use of a palladium catalyst featuring an NHC ligand is critical for the observed reactivity. Experimental evidence strongly suggests that palladium facilitates C-H activation of the aromatic substrates, a mechanism seldom observed under strongly acidic conditions. 2015 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Richard Giles
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Green Ahn
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Kyung Woon Jung
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|