1
|
Amiryaghoubi N, Fathi M, Barar J, Omidian H, Omidi Y. Advanced nanoscale drug delivery systems for bone cancer therapy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166739. [PMID: 37146918 DOI: 10.1016/j.bbadis.2023.166739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Bone tumors are relatively rare, which are complex cancers and mostly involve the long bones and pelvis. Bone cancer is mainly categorized into osteosarcoma (OS), chondrosarcoma, and Ewing sarcoma. Of these, OS is the most intimidating cancer of the bone tissue, which is mostly found in the log bones in young children and older adults. Conspicuously, the current chemotherapy modalities used for the treatment of OS often fail mainly due to (i) the non-specific detrimental effects on normal healthy cells/tissues, (ii) the possible emergence of drug resistance mechanisms by cancer cells, and (iii) difficulty in the efficient delivery of anticancer drugs to the target cells. To impose the maximal therapeutic impacts on cancerous cells, it is of paramount necessity to specifically deliver chemotherapeutic agents to the tumor site and target the diseased cells using advanced nanoscale multifunctional drug delivery systems (DDSs) developed using organic and inorganic nanosystems. In this review, we provide deep insights into the development of various DDSs applied in targeting and eradicating OS. We elaborate on different DDSs developed using biomaterials, including chitosan, collagen, poly(lactic acid), poly(lactic-co-glycolic acid), polycaprolactone, poly(ethylene glycol), polyvinyl alcohol, polyethyleneimine, quantum dots, polypeptide, lipid NPs, and exosomes. We also discuss DDSs established using inorganic nanoscale materials such as magnetic NPs, gold, zinc, titanium NPs, ceramic materials, silica, silver NPs, and platinum NPs. We further highlight anticancer drugs' role in bone cancer therapy and the biocompatibility of nanocarriers for OS treatment.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
2
|
Fatima T, Jolly R, Mushahid F, Khan N, Umar MS, Owais M, Shakir M. Combinatorial approach to fabricate silica doped polyvinyl alcohol/hydroxyapatite/carrageenan nanocomposite for bone regeneration applications. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
3
|
Recent Developments in Polymer Nanocomposites for Bone Regeneration. Int J Mol Sci 2023; 24:ijms24043312. [PMID: 36834724 PMCID: PMC9959928 DOI: 10.3390/ijms24043312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Most people who suffer acute injuries in accidents have fractured bones. Many of the basic processes that take place during embryonic skeletal development are replicated throughout the regeneration process that occurs during this time. Bruises and bone fractures, for example, serve as excellent examples. It almost always results in a successful recovery and restoration of the structural integrity and strength of the broken bone. After a fracture, the body begins to regenerate bone. Bone formation is a complex physiological process that requires meticulous planning and execution. A normal healing procedure for a fracture might reveal how the bone is constantly rebuilding as an adult. Bone regeneration is becoming more dependent on polymer nanocomposites, which are composites made up of a polymer matrix and a nanomaterial. This study will review polymer nanocomposites that are employed in bone regeneration to stimulate bone regeneration. As a result, we will introduce the role of bone regeneration nanocomposite scaffolds, and the nanocomposite ceramics and biomaterials that play a role in bone regeneration. Aside from that, recent advances in polymer nanocomposites might be used in a variety of industrial processes to help people with bone defects overcome their challenges will be discussed.
Collapse
|
4
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
5
|
Das A, Ringu T, Ghosh S, Pramanik N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull (Berl) 2022; 80:7247-7312. [PMID: 36043186 PMCID: PMC9409625 DOI: 10.1007/s00289-022-04443-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
Abstract
Biopolymers are mainly the polymers which are created or obtained from living creatures such as plants and bacteria rather than petroleum, which has traditionally been the source of polymers. Biopolymers are chain-like molecules composed of repeated chemical blocks derived from renewable resources that may decay in the environment. The usage of biomaterials is becoming more popular as a means of reducing the use of non-renewable resources and reducing environmental pollution produced by synthetic materials. Biopolymers' biodegradability and non-toxic nature help to maintain our environment clean and safe. This study discusses how to improve the mechanical and physical characteristics of biopolymers, particularly in the realm of bioengineering. The paper begins with a fundamental introduction and progresses to a detailed examination of synthesis and a unique investigation of several recent focused biopolymers with mechanical, physical, and biological characterization. Biopolymers' unique non-toxicity, biodegradability, biocompatibility, and eco-friendly features are boosting their applications, especially in bioengineering fields, including agriculture, pharmaceuticals, biomedical, ecological, industrial, aqua treatment, and food packaging, among others, at the end of this paper. The purpose of this paper is to provide an overview of the relevance of biopolymers in smart and novel bioengineering applications. Graphical abstract The Graphical abstract represents the biological sources and applications of biopolymers. Plants, bacteria, animals, agriculture wastes, and fossils are all biological sources for biopolymers, which are chemically manufactured from biological monomer units, including sugars, amino acids, natural fats and oils, and nucleotides. Biopolymer modification (chemical or physical) is recognized as a crucial technique for modifying physical and chemical characteristics, resulting in novel materials with improved capabilities and allowing them to be explored to their full potential in many fields of application such as tissue engineering, drug delivery, agriculture, biomedical, food industries, and industrial applications.
Collapse
Affiliation(s)
- Abinash Das
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Togam Ringu
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Sampad Ghosh
- Department of Chemistry, Nalanda College of Engineering, Nalanda, Bihar 803108 India
| | - Nabakumar Pramanik
- Department of Chemistry, National Institute of Technology, Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| |
Collapse
|
6
|
Shikha D, Kumari M, Mohanty A, Singh AK, Sinha SK. Microstructure and improvement in corrosion resistance of HAP and PVA/HAP. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polyvinyl alcohol (PVA) mixed with hydroxyapatite (HAP) has great potential for application as biomaterial. PVA/HAP powder was synthesized by sol–gel technique and was compressed to make pellets. These samples were examined with Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffraction (XRD) and electrochemical analysis (ECA) techniques. Compound formation of HAP and PVA were studied using XRD and microstructure was investigated by FESEM and AFM. Characteristics properties of the HAP and PVA/HAP composite are compared. Corrosion resistance of PVA/HAP in Ringer solution is better than HAP. Interesting microstructure features are correlated with the corrosion resistance. As the corrosion resistance is related with biocompatibility, the present work can be useful for the hard tissue implant.
Collapse
Affiliation(s)
- Deep Shikha
- Department of Chemistry , Birla Institute of Technology, Mesra , Ranchi 835215 , Jharkhand , India
| | - Monica Kumari
- Department of Chemistry , Birla Institute of Technology, Mesra , Ranchi 835215 , Jharkhand , India
| | - Anuradha Mohanty
- Department of Chemistry , Birla Institute of Technology, Mesra , Ranchi 835215 , Jharkhand , India
| | - Ashwini Kumar Singh
- Central Instrumentation Facility , Birla Institute of Technology, Mesra , Ranchi 835215 , Jharkhand , India
| | - Sanjay Kumar Sinha
- Department of Physics , Birla Institute of Technology, Mesra , Ranchi 835215 , Jharkhand , India
| |
Collapse
|
7
|
Development, Characterization and Cell Viability Inhibition of PVA Spheres Loaded with Doxorubicin and 4'-Amino-1-Naphthyl-Chalcone (D14) for Osteosarcoma. Polymers (Basel) 2021; 13:polym13162611. [PMID: 34451151 PMCID: PMC8401585 DOI: 10.3390/polym13162611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are naturally occurring polyphenols with known anticancer activity against a variety of tumor cell lines, including osteosarcoma (OS). In this paper, we present the preparation and characterization of spheres (~2 mm) from polyvinyl alcohol (PVA) containing a combination of 4′-Amino-1-Naphthyl-Chalcone (D14) and doxorubicin, to act as a new polymeric dual-drug anticancer delivery. D14 is a potent inhibitor of osteosarcoma progression and, when combined with doxorubicin, presents a synergetic effect; hence, physically crosslinked PVA spheres loaded with D14 and doxorubicin were prepared using liquid nitrogen and six freeze–thawing cycles. Physical-chemical characterization using a scanning electron microscope (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) presented that the drugs were incorporated into the spheres via weak interactions between the drugs and the polymeric chains, resulting in overall good drug stability. The cytotoxicity activity of the PVA spheres co-encapsulating both drugs was tested against the U2OS human osteosarcoma cell line by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay, and compared to the spheres carrying either D14 or doxorubicin alone. The co-delivery showed a cytotoxic effect 2.6-fold greater than doxorubicin alone, revealing a significant synergistic effect with a coefficient of drug interaction (CDI) of 0.49. The obtained results suggest this developed PVA sphere as a potential dual-drug delivery system that could be used for the prominent synergistic anticancer activity of co-delivering D14 and doxorubicin, providing a new potential strategy for improved osteosarcoma treatment.
Collapse
|
8
|
Quadros M, Momin M, Verma G. Design strategies and evolving role of biomaterial assisted treatment of osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111875. [PMID: 33579498 DOI: 10.1016/j.msec.2021.111875] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most commonly diagnosed form of bone cancer. It is characterized by a high risk of developing lung metastasis as the disease progresses. Standard treatment includes combination of surgical intervention, chemotherapy and radiotherapy. However, the non-specificity of potent chemotherapeutic agents often leads to major side effects. In this review, we discuss the role of various classes of biomaterials, including both organic as well as inorganic in realizing the local and systemic delivery of therapeutic agents like drugs, radioisotopes and even gene silencing agents to treat osteosarcoma. Biomaterial assisted unconventional therapies such as targeted therapy, nanotherapy, magnetic hyperthermia, gene therapy, photothermal and photodynamic therapies are also being explored. A wide variety of biomaterials including lipids, carbon-based materials, polymers, silica, bioactive glass, hydroxyapatite and metals are designed as delivery systems with the desired loading efficiency, release profile, and on-demand delivery. Among others, liposomal carriers have attracted a great deal of attention due to their capability to encapsulate both hydrophobic and hydrophilic drugs. Polymeric systems have high drug loading efficiency and stability and can even be tailored to achieve desired size and physiochemical properties. Carbon-based systems can also be seen as an upcoming class of therapeutics with great potential in treating different types of cancer. Inorganic materials like silica nanoparticles have high drug payload owing to their mesoporous structure. On the other hand, ceramic materials like bioactive glass and hydroxyapatite not only act as excellent delivery vectors but also participate in osteo-regeneration activity. These multifunctional biomaterials are also being investigated for their theranostic abilities to monitor cancer ablation. This review systematically discusses the vast landscape of biomaterials along with their challenges and respective opportunities for osteosarcoma therapy.
Collapse
Affiliation(s)
- Mural Quadros
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India; Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, First floor, V M Road, Vile Parle West, Mumbai, Maharashtra 400 056, India.
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar 400 094, India.
| |
Collapse
|
9
|
Effect of the Porosity, Roughness, Wettability, and Charge of Micro-Arc Coatings on the Efficiency of Doxorubicin Delivery and Suppression of Cancer Cells. COATINGS 2020. [DOI: 10.3390/coatings10070664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porous calcium phosphate coatings were formed by the micro-arc oxidation method on the surface of titanium for the loading and controlled release of the anticancer drug doxorubicin. The coatings’ morphology and microstructure were examined by scanning electron microscopy. The phase composition was determined with the help of X-ray diffraction analysis. Studies of the hydrophilic properties of the coatings and their zeta potential were carried out. Data on the kinetics of doxorubicin adsorption-desorption were obtained. In addition, the effect of calcium phosphate coatings impregnated with doxorubicin on the viability of the Neuro-2a cell line was revealed. The coating formed at low voltages of 200–250 V contained a greater number of branched communicating pores, and therefore they were able to adsorb a greater amount of doxorubicin. The surface charge also contributes to the process of the adsorption-desorption of doxorubicin, but this effect is not fully understood and further studies are required to identify it.
Collapse
|
10
|
Gold nanorods/polydopamine-capped hollow hydroxyapatite microcapsules as remotely controllable multifunctional drug delivery platform. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Pang L, Shen Y, Hu H, Zeng X, Huang W, Gao H, Wang H, Wang D. Chemically and physically cross-linked polyvinyl alcohol-borosilicate gel hybrid scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110076. [DOI: 10.1016/j.msec.2019.110076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
|
12
|
Cojocaru FD, Balan V, Popa IM, Munteanu A, Anghelache A, Verestiuc L. Magnetic Composite Scaffolds for Potential Applications in Radiochemotherapy of Malignant Bone Tumors. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E153. [PMID: 31108965 PMCID: PMC6572575 DOI: 10.3390/medicina55050153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
Background and objectives: Cancer is the second leading cause of death globally, an alarming but expected increase. In comparison to other types of cancer, malignant bone tumors are unusual and their treatment is a real challenge. This paper's main purpose is the study of the potential application of composite scaffolds based on biopolymers and calcium phosphates with the inclusion of magnetic nanoparticles in combination therapy for malignant bone tumors. Materials and Methods: The first step was to investigate if X-rays could modify the scaffolds' properties. In vitro degradation of the scaffolds exposed to X-rays was analyzed, as well as their interaction with phosphate buffer solutions and cells. The second step was to load an anti-tumoral drug (doxorubicin) and to study in vitro drug release and its interaction with cells. The chemical structure of the scaffolds and their morphology were studied. Results: Analyses showed that X-ray irradiation did not influence the scaffolds' features. Doxorubicin release was gradual and its interaction with cells showed cytotoxic effects on cells after 72 h of direct contact. Conclusions: The obtained scaffolds could be considered in further studies regarding combination therapy for malignant bone tumors.
Collapse
Affiliation(s)
- Florina Daniela Cojocaru
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, 700050 Iasi, Romania.
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 700454 Iasi, Romania.
| | - Vera Balan
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 700454 Iasi, Romania.
| | - Ionel Marcel Popa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, 700050 Iasi, Romania.
| | - Anca Munteanu
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania.
- Regional Institute of Oncology, Department of Radiotherapy, 700483 Iasi, Romania.
| | - Anisoara Anghelache
- Regional Institute of Oncology, Department of Radiotherapy, 700483 Iasi, Romania.
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 700454 Iasi, Romania.
| |
Collapse
|