1
|
Rad-Faraji M, Mousazadeh M, Nikkhah M, Rezaei A, Moradi S, Hosseinkhani S. A comparative study of structural and catalytic activity alterations in firefly luciferase induced by carbon quantum dots containing amine and carboxyl functional groups. Int J Biol Macromol 2024; 260:129503. [PMID: 38244744 DOI: 10.1016/j.ijbiomac.2024.129503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Despite of growing interest in use of carbon-based nanomaterials as carriers of functional proteins, less attention has been paid to the effects of these nanomaterials on the structure and function of the proteins. In this study, with the aim of shedding light on the mechanisms of interaction between carbon-based nanomaterials and proteins, the interactions of carbon quantum dots (CQDs) containing amine (CQD-NH2) or carboxyl groups (CQD-COOH) with Photinus pyralis firefly luciferase enzyme were investigated by experimental and computational approaches. The structural changes and reduction in activity of the luciferase upon treatment with CQDs were experimentally proved. CQD-NH2 induced more reduction in enzyme activity (15 %) compared to CQD-COOH (7.4 %). The interactions CQD-NH2 with luciferase led to higher affinity of the enzyme for its substrate. It was found by molecular dynamic simulations that CQD-NH2 binds to multiple regions on the surface of luciferase. Secondary structure analysis showed that CQD-NH2 had more profound effects on the active site amino acids, the adjacent amino acids to the active site and the residues involved in ATP binding site. In addition, CQD-NH2 interactions with luciferase were suggested to be stronger than CQD-COOH based on the number of hydrogen bonds and the binding energies.
Collapse
Affiliation(s)
- Mehrnaz Rad-Faraji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran.
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P. O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
2
|
Tripti T, Singh P, Rani N, Kumar S, Kumar K, Kumar P. Carbon dots as potential candidate for photocatalytic treatment of dye wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6738-6765. [PMID: 38157163 DOI: 10.1007/s11356-023-31437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Water is the utmost important element for the existence of life. In recent decades, water resources have become highly contaminated by a variety of pollutants, especially toxic dyes that are harmful to both living beings and environment. Hence, there is an urgent need to develop more effective methods than traditional wastewater treatment approaches for treatment of hazardous dyes. Herein, we have addressed the various aspects related to the effective and economically feasible method for photocatalytic degradation of these dyes employing carbon dots. The photocatalysts based on carbon dots including those mediated from biomass have many superiorities over conventional methods such as utilization of economically affordable, non-toxic, rapid reactions, and simple post-processing steps. The current study will also facilitate better insight into the understanding of photocatalytic treatment of dye-polluted wastewater for future wastewater treatment studies. Additionally, the possible mechanistic pathways of photocatalytic dye decontamination, several challenges, and future perspectives have also been summarized.
Collapse
Affiliation(s)
- Tripti Tripti
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Permender Singh
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Neeru Rani
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Krishan Kumar
- Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parmod Kumar
- J. C, Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India.
| |
Collapse
|
3
|
Cui P, Wu Q. Density functional theory investigation of photoelectric conversion in graphene quantum dot/Ir(III) complex nanocomposites: the influence of π-conjugation in cyclometalating ligands. Photochem Photobiol Sci 2023; 22:2621-2634. [PMID: 37718379 DOI: 10.1007/s43630-023-00477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Using density functional theory (DFT), this study investigates the photoelectric performance of nanocomposites formed by coupling graphene quantum dots (GQDs) with Ir(III) complexes. The goal is to evaluate the influence of different π-conjugation levels in cyclometalating ligands and determine the most efficient ligand for energy conversion in the nanocomposite. The analysis covers seven distinct Ir(III) complexes, each featuring a common bpy ligand but differing diimine ligands. These complexes are linked to GQDs through amide connections. The study comprehensively examines electronic structure, absorption spectra, charge transfer, and chemical reactivity. Our results show that increased ligand π-conjugation causes a redshift in the absorption spectrum due to smaller highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps, ultimately enhancing light harvesting. This effect becomes more pronounced when GQDs are incorporated. For less-conjugated ligands, attaching GQDs enhances metal-to-ligand charge transfer, facilitating electron injection into TiO2. Moreover, higher conjugation and GQD coupling reduce chemical hardness while increasing chemical potential and electrophilicity, thus improving electron acceptance. Furthermore, strategic structural variations modify free energy changes for electron injection and ground-state regeneration. Notable is the inclusion of perylene and pyrene moieties in the ligand, which accelerates injection and extends recombination lifetimes, while GQD incorporation accelerates injection across all ligands. Additionally, photocurrent generation primarily influences energy conversion efficiency. Finally, adding GQDs enhances the first-order hyperpolarizability, further boosting light harvesting. This study demonstrates the potential of tuning ligand π-conjugation and GQD interfaces to optimize optoelectronic properties and charge transfer dynamics, thereby enhancing solar energy conversion in GQD/Ir(III) complex systems.
Collapse
Affiliation(s)
- Peng Cui
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, China.
| | - Qiulan Wu
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, China
| |
Collapse
|
4
|
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1887. [PMID: 37100045 DOI: 10.1002/wnan.1887] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
Carbon dots (CDs) correspond to carbon-based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by "top-down" or "bottom-up" approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad-spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large-scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina J Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - David García
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | | | | | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Natalia Inada
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Vanderlei Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | | |
Collapse
|
5
|
Gulati S, Baul A, Amar A, Wadhwa R, Kumar S, Varma RS. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:554. [PMID: 36770515 PMCID: PMC9920802 DOI: 10.3390/nano13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Arikta Baul
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Anoushka Amar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rachit Wadhwa
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
6
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
7
|
Khatami M, Iravani S. Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1895127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|