1
|
Szmit S, Długosz-Danecka M, Drozd-Sokołowska J, Joks M, Szeremet A, Jurczyszyn A, Jurczak W. Higher Mortality in Patients With Diffuse Large B-cell Lymphoma Pre-Existing Arterial Hypertension-Real World Data of the Polish Lymphoma Research Group. Heart Lung Circ 2024; 33:675-683. [PMID: 38616466 DOI: 10.1016/j.hlc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Arterial hypertension is mentioned as a risk factor in cardio-oncology. This study aimed to assess the long-term prognostic value of arterial hypertension (AH) in diffuse large B-cell lymphoma (DLBCL). METHODS We analysed data collected by the Polish Lymphoma Research Group for the evaluation of the outcomes associated with the use of first-line rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone therapy in patients with DLBCL with coexisting AH. Patients with other cardiovascular comorbidities or premature chemotherapy discontinuation due to cardiovascular toxicity were excluded. RESULTS Pre-existing AH was diagnosed in 65 of 232 patients with DLBCL (28%) included in the study, and was associated with significantly shorter overall survival values (p<0.00001). The rates of DLBCL recurrence, administration of second-, third-, or fourth-line chemotherapy, and lymphoma-related deaths were similar in patients with and those without AH. Cardiovascular deaths were significantly more frequently observed in patients with pre-existing AH (38.5% vs 3.6%, p<0.0001). In the univariate analysis, AH (p=0.000001), older age (p<0.000001), and diabetes (p=0.0065) were identified as significant predictors of all-cause mortality; however, cardiovascular mortality was associated with AH (p<0.000001), older age (p=0.000008), and dyslipidaemia (p=0.03). Multivariate analysis revealed AH as an age-independent significant predictor of all-cause (p=0.00045) and cardiovascular mortality (p<0.000001). CONCLUSION In the long-term follow-up of patients with DLBCL, the role of AH, as an important age-independent predictor of premature cardiovascular mortality, was so strong that it may have value for use in close surveillance in cardio-oncology clinics.
Collapse
Affiliation(s)
- Sebastian Szmit
- Department of Cardio-Oncology, Chair of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Monika Długosz-Danecka
- Department of Clinical Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Joanna Drozd-Sokołowska
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Monika Joks
- Department of Hematology, University of Medical Sciences, Poznań, Poland
| | | | - Artur Jurczyszyn
- Plasma Cell Dyscrasia Center, Department of Hematology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| |
Collapse
|
2
|
Chen W, Xie J, Gao C, Zhang C, Fu Z, Shi C. Hypertension associated with niraparib in cancer patients: A pharmacovigilance analysis based on the FAERS database and meta-analysis of randomized controlled trials. Gynecol Oncol 2024; 182:108-114. [PMID: 38295607 DOI: 10.1016/j.ygyno.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Niraparib plays a crucial role in the treatment of ovarian cancer. A comprehensive understanding of the incidence and risk of hypertension associated with niraparib would be of vital importance to healthcare practitioners. METHODS In this study, an observational, retrospective, pharmacovigilance study was conducted based on the FDA Adverse Event Reporting System (FAERS) database. Cases of hypertension related to niraparib were extracted for disproportionality analysis from the first quarter (Q1) of 2017 to Q1 of 2023. Moreover, a separate meta-analysis was performed using the randomized controlled trials (RCTs) on niraparib for cancer treatment published in PubMed, Embase, and Web of Science from inception to May 31st, 2023. The primary outcomes were the incidence and risk of hypertension associated with niraparib. RESULTS In the FAERS, 1196 hypertension cases were found to be related to niraparib treatment. Notably, niraparib exhibited the highest level of disproportionality, as indicated by a reporting odds ratio (ROR) of 2.85 (95% CI, 2.69-3.01), suggesting a greater likelihood of causing hypertension compared to other poly-ADP-ribose polymerase (PARP) inhibitors (P < 0.01). Our safety meta-analysis included five pivotal RCTs of niraparib that reported hypertension. In comparison to placebo treatment, the meta-analysis demonstrated a significant increase in the risk of hypertension with niraparib (OR 2.84 [95% CI, 2.17-3.72], P < 0.01), with no heterogeneity observed among the studies (I2 = 0%, χ2 = 2.02, P = 0.73). The incidence of niraparib-induced hypertension was determined to be 16.9% (95% CI, 14.9-18.9; I2 = 34%). CONCLUSIONS These findings suggest that hypertension is a distinctive adverse event associated with niraparib compared to other PARP inhibitors. Niraparib significantly increases the risk of hypertension that needs early recognition and management in clinical medication.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiyi Xie
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Cardiovascular Disease as a Consequence or a Cause of Cancer: Potential Role of Extracellular Vesicles. Biomolecules 2023; 13:biom13020321. [PMID: 36830690 PMCID: PMC9953640 DOI: 10.3390/biom13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Both cardiovascular disease and cancer continue to be causes of morbidity and mortality all over the world. Preventing and treating heart disease in patients undergoing cancer treatment remain an important and ongoing challenge for improving the lives of cancer patients, but also for their survival. Despite ongoing efforts to improve patient survival, minimal advances have been made in the early detection of cardiovascular disease in patients suffering from cancer. Understanding the communication between cancer and cardiovascular disease can be based on a deeper knowledge of the molecular mechanisms that define the profile of the bilateral network and establish disease-specific biomarkers and therapeutic targets. The role of exosomes, microvesicles, and apoptotic bodies, together defined as extracellular vesicles (EVs), in cross talk between cardiovascular disease and cancer is in an incipient form of research. Here, we will discuss the preclinical evidence on the bilateral connection between cancer and cardiovascular disease (especially early cardiac changes) through some specific mediators such as EVs. Investigating EV-based biomarkers and therapies may uncover the responsible mechanisms, detect the early stages of cardiovascular damage and elucidate novel therapeutic approaches. The ultimate goal is to reduce the burden of cardiovascular diseases by improving the standard of care in oncological patients treated with anticancer drugs or radiotherapy.
Collapse
|
4
|
Wang G, Truong H, Dang R. Impact of a Pharmacist-Led Hypertension Management Program for Oral Chemotherapy in a Specialty Pharmacy Setting. J Oncol Pharm Pract 2023; 29:52-59. [PMID: 34738845 DOI: 10.1177/10781552211052636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Oral chemotherapy agents are a growing area of oncology treatment, but some are associated with a high incidence of hypertension. Management of hypertension in oncology patients may be insufficient due to a variety of reasons. A pharmacist-led hypertension management service within the specialty pharmacy setting has the potential to help patients on oral chemotherapy achieve and maintain adequate blood pressure control. The objective of this study was to assess the impact of a pharmacist-led hypertension management program on the blood pressure control of patients on oral chemotherapy. METHODS This retrospective, single-center study compared data from two groups of patients receiving oral chemotherapy agents from a health systems specialty pharmacy within an academic medical center, before and after the establishment of a pharmacist-led hypertension management program. RESULTS Twenty-one of 50 (0.42) patients in the control group had blood pressure overall at goal, compared to 19 of 29 (0.66) patients in the intervention group who had blood pressures at goal at the end of the specified 3-month time period (p = 0.04). In cases where a pharmacist intervention was necessary per the hypertension management program's protocol, the rate of provider acceptance of recommendations regarding modifying or initiating antihypertensive therapy was high. CONCLUSION When followed with a pharmacist-led hypertension management program, patients on oral chemotherapy showed improved blood pressure control and reduced mean blood pressure readings over time.
Collapse
Affiliation(s)
- Gabriel Wang
- 5116University of Southern California, Los Angeles, California, United States
| | - Havan Truong
- 5116University of Southern California, Los Angeles, California, United States
| | - Richard Dang
- 5116University of Southern California, Los Angeles, California, United States
| |
Collapse
|
5
|
The use of renin angiotensin aldosterone system inhibitors may be associated with decreased mortality after cancer surgery. Sci Rep 2022; 12:6838. [PMID: 35477724 PMCID: PMC9046295 DOI: 10.1038/s41598-022-10759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Renin–angiotensin–aldosterone system (RAAS) inhibitors are antihypertensive agents with conflicting results on protective effects against some types of cancer. In light of these controversies, we aimed to study the effects of RAAS inhibitors in patients undergoing cancer surgery. From March 2010 to December 2019, consecutive adult patients with antihypertensive drug prescription at discharge after cancer surgery were enrolled and divided into two groups according to RAAS inhibitors prescription. The primary outcome was 5-year mortality after surgery. Secondary outcomes included mortalities during 3-year and 1-year follow-ups and cancer-specific mortality and recurrence rates during 5-, 3-, and 1-year follow-ups. A total of 19,765 patients were divided into two groups according to RAAS inhibitor prescription at discharge: 8,374 (42.4%) patients in the no RAAS inhibitor group and 11,391 (57.6%) patients in the RAAS inhibitor group. In 5022 pairs of propensity-score matched population, 5-year mortality was significantly lower in the RAAS inhibitor group (11.4% vs. 7.4%, hazard ratio [HR] 0.73, 95% confidence interval [CI] 0.64–0.83, P < 0.001), and 5-year recurrence rate was also lower for the RAAS inhibitor group (5.3% vs. 3.7%, HR 0.82, 95% CI 0.68–0.99, P = 0.04). In our analysis, RAAS inhibitor was associated with decreased 5-year mortality in hypertensive patients who underwent cancer surgery. Prescription of RAAS inhibitor in accordance with current guidelines may be associated with improved mortality after cancer surgery.
Collapse
|
6
|
Vaibavi SR, Sivasubramaniapandian M, Vaippully R, Edwina P, Roy B, Bajpai SK. Calcium-channel-blockers exhibit divergent regulation of cancer extravasation through the mechanical properties of cancer cells and underlying vascular endothelial cells. Cell Biochem Biophys 2021; 80:171-190. [PMID: 34643835 DOI: 10.1007/s12013-021-01035-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular and cancer illnesses often co-exist, share pathological pathways, and complicate therapy. In the context of the potential oncological role of cardiovascular-antihypertensive drugs (AHD), here we examine the role of calcium-channel blocking drugs on mechanics of extravasating cancer cells, choosing two clinically-approved calcium-channel blockers (CCB): Verapamil-hydrochloride and Nifedipine, as model AHD to simultaneously target cancer cells (MCF7 and or MDA231) and an underlying monolayer of endothelial cells (HUVEC). First, live-cell microscopy shows that exposure to Nifedipine increases the spreading-area, migration-distance, and frequency of transmigration of MCF-7 cells through the HUVEC monolayer, whereas Verapamil has the opposite effect. Next, impedance-spectroscopy shows that for monolayers of either endothelial or cancer cells, Nifedipine-treatment alone decreases the impedance of both cases, suggesting compromised cell-cell integrity. Furthermore, upon co-culturing MCF-7 on the HUVEC monolayers, Nifedipine-treated MCF-7 cells exhibit weaker impedance than Verapamil-treated MCF-7 cells. Following, fluorescent staining of CCB-treated cytoskeleton, focal adhesions, and cell-cell junction also indicated that Nifedipine treatment diminished the cell-cell integrity, whereas verapamil treatment preserved the integrity. Since CCBs regulate intracellular Ca2+, we next investigated if cancer cell's exposure to CCBs regulates calcium-dependent processes critical to extravasation, specifically traction and mechanics of plasma membrane. Towards this end, first, we quantified the 2D-cellular traction of cells in response to CCBs. Results show that exposure to F-actin depolymerizing drug decreases traction stress significantly only for Nifedipine-treated cells, suggesting an actin-independent mechanism of Verapamil activity. Next, using an optical tweezer to quantify the mechanics of plasma membrane (PM), we observe that under constant, externally-applied tensile strain, PM of Nifedipine-treated cells exhibits smaller relaxation-time than Verapamil and untreated cells. Finally, actin depolymerization significantly decreases MSD only for Verapamil treated cancer-cells and endothelial cells and not for Nifedipine-treated cells. Together, our results show that CCBs can have varied, mechanics-regulating effects on cancer-cell transmigration across endothelial monolayers. A judicious choice of CCBs is critical to minimizing the pro-metastatic effects of antihypertension therapy.
Collapse
Affiliation(s)
- S R Vaibavi
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India
| | | | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology, Madras, India
| | - Privita Edwina
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology, Madras, India
| | | |
Collapse
|
7
|
Unravelling the tangled web of hypertension and cancer. Clin Sci (Lond) 2021; 135:1609-1625. [PMID: 34240734 DOI: 10.1042/cs20200307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease remains the primary cause of mortality globally, being responsible for an estimated 17 million deaths every year. Cancer is the second leading cause of death on a global level with roughly 9 million deaths per year being attributed to neoplasms. The two share multiple common risk factors such as obesity, poor physical exercise, older age, smoking and there exists rare monogenic hypertension syndromes. Hypertension is the most important risk factor for cardiovascular disease and affects more than a billion people worldwide and may also be a risk factor for the development of certain types of cancer (e.g. renal cell carcinoma (RCC)). The interaction space of the two conditions becomes more complicated when the well-described hypertensive effect of certain antineoplastic drugs is considered along with the extensive amount of literature on the association of different classes of antihypertensive drugs with cancer risk/prevention. The cardiovascular risks associated with antineoplastic treatment calls for efficient management of relative adverse events and the development of practical strategies for efficient decision-making in the clinic. Pharmacogenetic interactions between cancer treatment and hypertension-related genes is not to be ruled out, but the evidence is not still ample to be incorporated in clinical practice. Precision Medicine has the potential to bridge the gap of knowledge regarding the full spectrum of interactions between cancer and hypertension (and cardiovascular disease) and provide novel solutions through the emerging field of cardio-oncology. In this review, we aimed to examine the bidirectional associations between cancer and hypertension including pharmacotherapy.
Collapse
|
8
|
Dong M, Wang R, Sun P, Zhang D, Zhang Z, Zhang J, Tse G, Zhong L. Clinical significance of hypertension in patients with different types of cancer treated with antiangiogenic drugs. Oncol Lett 2021; 21:315. [PMID: 33692847 PMCID: PMC7933774 DOI: 10.3892/ol.2021.12576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a common comorbidity in patients receiving antiangiogenic therapy. Prior studies have reported worsening or new-onset hypertension as an adverse event of antiangiogenetic therapy, which can be managed by dose reduction or discontinuation of the culprit medication. By contrast, other studies have found that the occurrence of hypertension is a potential biomarker associated with greater efficacy of antiangiogenic therapy and predicts improved survival. At present, there is no consensus on the effects of hypertension in patients treated with antiangiogenic drugs. The present study reviewed the relationship between antiangiogenic drugs and hypertension in different types of cancer. It was demonstrated that the use of antiangiogenic drugs was associated with an increased risk of hypertension in most types of solid cancers. There was no significant difference in the incidence of hypertension between monoclonal antibody and small-molecule tyrosine kinase inhibitor treatments. Hypertension was more likely to occur in patients younger than 75 years old, female, and those with no history of bevacizumab use. Discontinuation or death caused by hypertension was rare, although previous studies have reported that hypertension was a risk factor for acute and chronic cardiovascular diseases and ischemic stroke. Of note, the early development of hypertension may serve as a potential biomarker associated with greater efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Mei Dong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Rujian Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dongxia Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhenzhen Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
9
|
Venturini E, Gilchrist S, Corsi E, DI Lorenzo A, Cuomo G, D'Ambrosio G, Pacileo M, D'Andrea A, Canale ML, Iannuzzo G, Sarullo FM, Vigorito C, Barni S, Giallauria F. The core components of cardio-oncology rehabilitation. Panminerva Med 2021; 63:170-183. [PMID: 33528152 DOI: 10.23736/s0031-0808.21.04303-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The increased efficacy of cancer therapy has resulted in greater cancer survival and increasing number of people with cancer and cardiovascular diseases. The sharing of risk factors, the bidirectional relationship between cancer and cardiovascular diseases and the cardiotoxic effect of chemotherapy and radiotherapy, are the cause of the rapid expansion of cardio-oncology. All strategies to preserve cardiovascular health and mitigate the negative effect of cancer therapy, by reducing the cardiovascular risk, must be pursued to enable the timely and complete delivery of anticancer therapy and to achieve the longest remission of the disease. Comprehensive cardiac rehabilitation is an easy-to-use model, even in cancer care, and is the basis of Cardio-Oncology REhabilitation (CORE), an exercise-based multi-component intervention. In addition, CORE, besides using the rationale and knowledge of cardiac rehabilitation, can leverage the network of cardiac rehabilitation services to offer to cancer patients exercise programs, control of risk factors, psychological support, and nutrition counseling. The core components of CORE will be discussed, describing the beneficial effect on cardiorespiratory fitness, quality of life, psychological and physical well-being, and weight management. Furthermore, particular attention will be paid to how CORE can counterbalance the negative effect of therapies in those at heightened cardiovascular risk after a cancer diagnosis. Barriers for implementation, including personal, family, social and of the health care system barriers for a widespread diffusion of the CORE will also be discussed. Finally, there will be a call-to-action, for randomized clinical trials that can test the impact of CORE, on morbidity and mortality.
Collapse
Affiliation(s)
- Elio Venturini
- Unit of Cardiac Rehabilitation, AUSL Toscana Nord-Ovest, Cecina Civil Hospital, Cecina, Livorno, Italy -
| | - Susan Gilchrist
- Department of Clinical Cancer Prevention, Anderson Cancer Center, the University of Texas, Houston, TX, USA.,Department of Cardiology, Anderson Cancer Center, the University of Texas, Houston, TX, USA
| | - Elisabetta Corsi
- Unit of Cardiac Rehabilitation, AUSL Toscana Nord-Ovest, Cecina Civil Hospital, Cecina, Livorno, Italy
| | - Anna DI Lorenzo
- Division of Internal Medicine and Cardiac Rehabilitation, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Gianluigi Cuomo
- Division of Internal Medicine and Cardiac Rehabilitation, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Giuseppe D'Ambrosio
- Division of Internal Medicine and Cardiac Rehabilitation, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Mario Pacileo
- Unit of Cardiology and Intensive Care, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | - Antonello D'Andrea
- Unit of Cardiology and Intensive Care, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | - Maria L Canale
- Department of Cardiology, AUSL Toscana Nord-Ovest, Versilia Hospital, Lido di Camaiore, Lucca, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Filippo M Sarullo
- Unit of Cardiovascular Rehabilitation, Buccheri La Ferla Fatebenefratelli Hospital, Palermo, Italy
| | - Carlo Vigorito
- Division of Internal Medicine and Cardiac Rehabilitation, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Sandro Barni
- Department of Oncology, ASST Bergamo Ovest, Bergamo, Italy
| | - Francesco Giallauria
- Division of Internal Medicine and Cardiac Rehabilitation, Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Faculty of Sciences and Technology, University of New England, Armidale, Australia
| |
Collapse
|
10
|
Risk Stratification and Management of Arterial Hypertension and Cardiovascular Adverse Events Related to Cancer Treatments: An Oncology Network from Piedmont and Aosta Valley (North-Western Italy) Consensus Document. HEARTS 2021. [DOI: 10.3390/hearts2010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer patients receiving a potentially cardiotoxic oncologic therapy have an increased risk of cardiovascular adverse events (CVAEs), especially in presence of concomitant arterial hypertension (AH). Therefore, cancer patients should be evaluated before, during and after cardiotoxic treatments, to early identify new-onset or worsening AH or CVAEs. An expert panel of oncology networks from Piedmont and Aosta Valley (North-Western Italy) aimed to provide recommendations to support health professionals in selecting the best management strategies for patients, considering the impact on outcome and the risk–benefit ratio of diagnostic/therapeutic tools. We proposed an useful document for evaluating and managing AH related to cancer treatments. Patients should be divided into 4 cardiovascular (CV) risk groups before starting potentially cardiotoxic therapies: patients with low/moderate risk who should be entirely evaluated by oncologists and patients with high/very high risk who should be referred to a cardiologist or arterial hypertension specialist. According to the CV risk class, every patient should be followed up during cancer treatment to monitor any possible CV complications. Adequate control of AH related to antineoplastic treatments is crucial to prevent severe CVAEs. In the presence of high-profile risk or lack of response to anti-hypertensive therapy, the patients should be managed with a cardiovascular-oncology expert center.
Collapse
|
11
|
Manganaro R, Marchetta S, Dulgheru R, Ilardi F, Sugimoto T, Robinet S, Cimino S, Go YY, Bernard A, Kacharava G, Athanassopoulos GD, Barone D, Baroni M, Cardim N, Hagendorff A, Hristova K, López-Fernández T, de la Morena G, Popescu BA, Penicka M, Ozyigit T, Rodrigo Carbonero JD, van de Veire N, Von Bardeleben RS, Vinereanu D, Zamorano JL, Rosca M, Calin A, Moonen M, Magne J, Cosyns B, Galli E, Donal E, Carerj S, Zito C, Santoro C, Galderisi M, Badano LP, Lang RM, Oury C, Lancellotti P. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 2020; 20:582-590. [PMID: 30590562 DOI: 10.1093/ehjci/jey188] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS To obtain the normal ranges for 2D echocardiographic (2DE) indices of myocardial work (MW) from a large group of healthy volunteers over a wide range of ages and gender. METHODS AND RESULTS A total of 226 (85 men, mean age: 45 ± 13 years) healthy subjects were enrolled at 22 collaborating institutions of the Normal Reference Ranges for Echocardiography (NORRE) study. Global work index (GWI), global constructive work (GCW), global work waste (GWW), and global work efficiency (GWE) were estimated from left ventricle (LV) pressure-strain loops. Peak LV systolic pressure was non-invasively derived from brachial artery cuff pressure. The lowest values of MW indices in men and women were 1270 mmHg% and 1310 mmHg% for GWI, 1650 mmHg% and 1544 mmHg% for GCW, and 90% and 91% for GWE, respectively. The highest value for GWW was 238 mmHg% in men and 239 mmHg% in women. Men had significant lower values of GWE and higher values of GWW. GWI and GCW significantly increased with age in women. CONCLUSION The NORRE study provides useful 2DE reference ranges for novel indices of non-invasive MW.
Collapse
Affiliation(s)
- Roberta Manganaro
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Stella Marchetta
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Raluca Dulgheru
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Federica Ilardi
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Tadafumi Sugimoto
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Clinical Laboratory, Mie University Hospital, Mie, 2-174 Edobashi, Tsu, Japan
| | - Sébastien Robinet
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Sara Cimino
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Yun Yun Go
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
| | - Anne Bernard
- Cardiology Department, CHU Tours, France et Université de Tours, Tours, France
| | - George Kacharava
- Cardiology Department, Tbilisi Institute of Medicine (TIM), 16 Tsintsadze, Tbilisi, Georgia
| | | | - Daniele Barone
- Laboratory of Cardiovascular Ecography, Cardiology Department, S. Andrea Hospital, La Spezia, Italy
| | - Monica Baroni
- Laboratorio Di Ecocardiografia Adulti, Fondazione Toscana "G.Monasterio" - Ospedale Del Cuore, Massa, Italy
| | - Nuno Cardim
- Echocardiography Laboratory, Hospital da Luz, Lisbon, Portugal
| | | | - Krasimira Hristova
- Department of Noninvasive Functional Diagnostic and Imaging, University National Heart Hospital, Sofia, Bulgaria
| | - Teresa López-Fernández
- Cardiology Department, La Paz University Hospital, IdiPAz, Ciber CV, Paseo de la Castellana 261, Madrid, Spain
| | - Gonzalo de la Morena
- Unidad de Imagen Cardiaca, Servicio de Cardiologia, Hospital Clinico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute of Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, Bucharest, Romania
| | - Martin Penicka
- Cardiovascular Center Aalst, OLV-Clinic Moorselbaan 164, Aalst, Belgium
| | - Tolga Ozyigit
- VKV Amerikan Hastanesi, Kardiyoloji Bölümü, Istanbul, Turkey
| | | | | | | | - Dragos Vinereanu
- Department of Cardiology, Splaiul Independentei 169, Bucharest, Romania
| | | | - Monica Rosca
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute of Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, Bucharest, Romania
| | - Andreea Calin
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute of Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, Bucharest, Romania
| | - Marie Moonen
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Julien Magne
- CHU Limoges, Hôpital Dupuytren, Service Cardiologie, Limoges, France. INSERM 1094, Faculté de Médecine de Limoges, Limoges, France
| | - Bernard Cosyns
- CHVZ (Centrum voor Hart en Vaatziekten), Universitair ziekenhuis Brussel, ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Brussels, Belgium
| | - Elena Galli
- CIC-IT U 1414, CHU Rennes, Université Rennes 1, Service de Cardiologie, CHU Rennes, France
| | - Erwan Donal
- CIC-IT U 1414, CHU Rennes, Université Rennes 1, Service de Cardiologie, CHU Rennes, France
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Section of Cardiology, University of Messina, 1, Via Consolare Valeria - Messina (IT), Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine, Section of Cardiology, University of Messina, 1, Via Consolare Valeria - Messina (IT), Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University Hospital Via S. Pansini 5, Naples, Italy
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University Hospital Via S. Pansini 5, Naples, Italy
| | - Luigi P Badano
- Department of Cardiac, Thoracic and Vascular Sciences University of Padova, School of Medicine, Padova, Italy
| | - Roberto M Lang
- Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Cecile Oury
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- Departments of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Department of Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| |
Collapse
|
12
|
|
13
|
Abstract
BACKGROUND Cardio-oncology aims to mitigate adverse cardiovascular manifestations in cancer survivors, but treatment-induced hypertension or aggravated hypertension has received less attention in these high cardiovascular risk patients. METHODS In this systematic review, we searched literature for contemporary data on the prevalence, pathophysiologic mechanisms, treatment implications and preventive strategies of hypertension in patients under antineoplastic therapy. RESULTS Several classes of antineoplastic drugs, including mainly vascular endothelial growth factor inhibitors, proteasome inhibitors, cisplatin derivatives, corticosteroids or radiation therapy were consistently associated with increased odds for new-onset hypertension or labile hypertensive status in previous controlled patients. Moreover, hypertension constitutes a major risk factor for chemotherapy-induced cardiotoxicity, which is the most serious cardiovascular adverse effect of antineoplastic therapy. Despite the heterogeneity of pooled studies, the pro-hypertensive profile of examined drug classes could be attributed to common structural and functional disorders. Importantly, certain antihypertensive drugs are considered to be more effective in the management of hypertension in this population and may partially attenuate indirect complications of cancer treatment, such as progressive development of cardiomyopathy and/or cardiovascular death. Nonpharmacological approaches to alleviate hypertension in cancer patients are also described, albeit adjudicated as less effective in general. CONCLUSION A growing body of evidence suggests that multiple antineoplastic agents increase the rate of progression of hypertension. Physicians need to balance the life-saving cancer treatment and the inflated risk of adverse cardiovascular events due to suboptimal management of hypertension in order to achieve improved clinical outcomes and sustained survival for their patients.
Collapse
|
14
|
Kobalava ZD, Konradi AO, Nedogoda SV, Shlyakhto EV, Arutyunov GP, Baranova EI, Barbarash OL, Boitsov SA, Vavilova TV, Villevalde SV, Galyavich AS, Glezer MG, Grineva EN, Grinstein YI, Drapkina OM, Zhernakova YV, Zvartau NE, Kislyak OA, Koziolova NA, Kosmacheva ED, Kotovskaya YV, Libis RA, Lopatin YM, Nebiridze DV, Nedoshivin AO, Ostroumova OD, Oschepkova EV, Ratova LG, Skibitsky VV, Tkacheva ON, Chazova IE, Chesnikova AI, Chumakova GA, Shalnova SA, Shestakova MV, Yakushin SS, Yanishevsky SN. Arterial hypertension in adults. Clinical guidelines 2020. ACTA ACUST UNITED AC 2020. [DOI: 10.15829/1560-4071-2020-3-3786] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arterial hypertension in adults. Clinical guidelines 2020
Collapse
|
15
|
Gilchrist SC, Barac A, Ades PA, Alfano CM, Franklin BA, Jones LW, La Gerche A, Ligibel JA, Lopez G, Madan K, Oeffinger KC, Salamone J, Scott JM, Squires RW, Thomas RJ, Treat-Jacobson DJ, Wright JS. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A Scientific Statement From the American Heart Association. Circulation 2020; 139:e997-e1012. [PMID: 30955352 DOI: 10.1161/cir.0000000000000679] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is a competing cause of death in patients with cancer with early-stage disease. This elevated cardiovascular disease risk is thought to derive from both the direct effects of cancer therapies and the accumulation of risk factors such as hypertension, weight gain, cigarette smoking, and loss of cardiorespiratory fitness. Effective and viable strategies are needed to mitigate cardiovascular disease risk in this population; a multimodal model such as cardiac rehabilitation may be a potential solution. This statement from the American Heart Association provides an overview of the existing knowledge and rationale for the use of cardiac rehabilitation to provide structured exercise and ancillary services to cancer patients and survivors. This document introduces the concept of cardio-oncology rehabilitation, which includes identification of patients with cancer at high risk for cardiac dysfunction and a description of the cardiac rehabilitation infrastructure needed to address the unique exposures and complications related to cancer care. In this statement, we also discuss the need for future research to fully implement a multimodal model of cardiac rehabilitation for patients with cancer and to determine whether reimbursement of these services is clinically warranted.
Collapse
|
16
|
Yang LQ, Li RY, Yang XY, Cui QF, Wang FY, Lin GQ, Zhang JG. Co-administration of Shexiang Baoxin Pill and Chemotherapy Drugs Potentiated Cancer Therapy by Vascular-Promoting Strategy. Front Pharmacol 2019; 10:565. [PMID: 31178734 PMCID: PMC6543272 DOI: 10.3389/fphar.2019.00565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 01/15/2023] Open
Abstract
Effective delivery of chemotherapeutic agents to tumors is a critical objective of improved cancer therapy. Traditional antiangiogenic therapy aims at eradicating tumor blood vessels, but the subsequently reduced blood perfusion may limit the drug amount delivered into the tumor and potentially lead to tumor hypoxia, which has been proved to be unable to meet the therapeutic expectations. “Shexiang Baoxin Pill” (SBP) is a well-known traditional Chinese medicine (TCM) used in clinical treatment of cardiovascular diseases, which has the pharmacological effect of pro-angiogenesis demonstrated recently. In this study, we disclosed our finding that SBP could enhance the effective treatment performance of gemcitabine (GEM) while minimizing the toxic side effects caused by GEM. Mechanistically, SBP increased tumor angiogenesis, blood perfusion, vascular permeability, and vessel dilation, which subsequently favored the delivery of GEM to the tumor lesion. Moreover, combined treatment with SBP and GEM could modify tumor microenvironment and consequently overcome multidrug resistance, and this combination therapy is also suitable for combination of SBP with some other chemotherapeutic drugs as well. These results suggest that combining SBP with chemotherapeutic agents achieves better treatment efficiency, which can open an avenue for expanding the combined treatment of anti-cancer chemotherapeutic drugs with TCM.
Collapse
Affiliation(s)
- Liu-Qing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ru-Yi Li
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Yan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian-Fei Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei-Yun Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Ge Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Neves KB, Rios FJ, Jones R, Evans TRJ, Montezano AC, Touyz RM. Microparticles from vascular endothelial growth factor pathway inhibitor-treated cancer patients mediate endothelial cell injury. Cardiovasc Res 2019; 115:978-988. [PMID: 30753341 PMCID: PMC6452312 DOI: 10.1093/cvr/cvz021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor pathway inhibitors (VEGFi), used as anti-angiogenic drugs to treat cancer are associated with cardiovascular toxicities through unknown molecular mechanisms. Endothelial cell-derived microparticles (ECMPs) are biomarkers of endothelial injury and are also functionally active since they influence downstream target cell signalling and function. We questioned whether microparticle (MP) status is altered in cancer patients treated with VEGFi and whether they influence endothelial cell function associated with vascular dysfunction. Plasma MPs were isolated from cancer patients before and after treatment with VEGFi (pazopanib, sunitinib, or sorafenib). Human aortic endothelial cells (HAECs) were stimulated with isolated MPs (106 MPs/mL). Microparticle characterization was assessed by flow cytometry. Patients treated with VEGFi had significantly increased levels of plasma ECMP. Endothelial cells exposed to post-VEGFi treatment ECMPs induced an increase in pre-pro-ET-1 mRNA expression, corroborating the increase in endothelin-1 (ET-1) production in HAEC stimulated with vatalanib (VEGFi). Post-VEGFi treatment MPs increased generation of reactive oxygen species in HAEC, effects attenuated by ETA (BQ123) and ETB (BQ788) receptor blockers. VEGFi post-treatment MPs also increased phosphorylation of the inhibitory site of endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO), and increased ONOO- levels in HAEC, responses inhibited by ETB receptor blockade. Additionally, gene expression of proinflammatory mediators was increased in HAEC exposed to post-treatment MPs, effects inhibited by BQ123 and BQ788. Our findings define novel molecular mechanism involving interplay between microparticles, the ET-1 system and endothelial cell pro-inflammatory and redox signalling, which may be important in cardiovascular toxicity and hypertension associated with VEGFi anti-cancer treatment. New and noteworthy: our novel data identify MPs as biomarkers of VEGFi-induced endothelial injury and important mediators of ET-1-sensitive redox-regulated pro-inflammatory signalling in effector endothelial cells, processes that may contribute to cardiovascular toxicity in VEGFi-treated cancer patients.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| | - Robert Jones
- Beatson West of Scotland Cancer Centre, Glasgow, UK
- Cancer Research UK Glasgow Clinical Trials Unit, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas Ronald Jeffry Evans
- Beatson West of Scotland Cancer Centre, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, UK
| |
Collapse
|
18
|
Intriguing relationship between antihypertensive therapy and cancer. Pharmacol Res 2019; 141:501-511. [DOI: 10.1016/j.phrs.2019.01.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
|
19
|
2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36:1953-2041. [PMID: 30234752 DOI: 10.1097/hjh.0000000000001940] [Citation(s) in RCA: 1851] [Impact Index Per Article: 308.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
: Document reviewers: Guy De Backer (ESC Review Co-ordinator) (Belgium), Anthony M. Heagerty (ESH Review Co-ordinator) (UK), Stefan Agewall (Norway), Murielle Bochud (Switzerland), Claudio Borghi (Italy), Pierre Boutouyrie (France), Jana Brguljan (Slovenia), Héctor Bueno (Spain), Enrico G. Caiani (Italy), Bo Carlberg (Sweden), Neil Chapman (UK), Renata Cifkova (Czech Republic), John G. F. Cleland (UK), Jean-Philippe Collet (France), Ioan Mircea Coman (Romania), Peter W. de Leeuw (The Netherlands), Victoria Delgado (The Netherlands), Paul Dendale (Belgium), Hans-Christoph Diener (Germany), Maria Dorobantu (Romania), Robert Fagard (Belgium), Csaba Farsang (Hungary), Marc Ferrini (France), Ian M. Graham (Ireland), Guido Grassi (Italy), Hermann Haller (Germany), F. D. Richard Hobbs (UK), Bojan Jelakovic (Croatia), Catriona Jennings (UK), Hugo A. Katus (Germany), Abraham A. Kroon (The Netherlands), Christophe Leclercq (France), Dragan Lovic (Serbia), Empar Lurbe (Spain), Athanasios J. Manolis (Greece), Theresa A. McDonagh (UK), Franz Messerli (Switzerland), Maria Lorenza Muiesan (Italy), Uwe Nixdorff (Germany), Michael Hecht Olsen (Denmark), Gianfranco Parati (Italy), Joep Perk (Sweden), Massimo Francesco Piepoli (Italy), Jorge Polonia (Portugal), Piotr Ponikowski (Poland), Dimitrios J. Richter (Greece), Stefano F. Rimoldi (Switzerland), Marco Roffi (Switzerland), Naveed Sattar (UK), Petar M. Seferovic (Serbia), Iain A. Simpson (UK), Miguel Sousa-Uva (Portugal), Alice V. Stanton (Ireland), Philippe van de Borne (Belgium), Panos Vardas (Greece), Massimo Volpe (Italy), Sven Wassmann (Germany), Stephan Windecker (Switzerland), Jose Luis Zamorano (Spain).The disclosure forms of all experts involved in the development of these Guidelines are available on the ESC website www.escardio.org/guidelines.
Collapse
|
20
|
Manolis AA, Manolis TA, Mikhailidis DP, Manolis AS. Cardiovascular safety of oncologic agents: A double-edged sword even in the era of targeted therapies - part 1. Expert Opin Drug Saf 2018; 17:875-892. [PMID: 30126304 DOI: 10.1080/14740338.2018.1513488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Patients with cancer are subject to the cardiotoxic effects of cancer therapy and as more patients survive cancer due to improved treatment they are exposed to various forms of cardiovascular (CV) disease as they age, and vice-versa. Such an interplay of age with both malignancy and CV disease may contribute to increased morbidity and mortality. AREAS COVERED This two-part review considers the effects of cancer drug treatment on the CV system. In Part I, the various types of CV and cardiometabolic toxicity of anti-cancer drugs and the possible mechanisms involved are discussed. Also, among the specific oncologic agents, the CV effects of the classical agents and of the large molecule immunological agents (monoclonal antibodies, including immune checkpoint inhibitors) are detailed. EXPERT OPINION Oncologic agents produce a variety of CV adverse effects, including cardiomyopathy and heart failure, peri-myocarditis, coronary artery disease, peripheral vascular disease, hypertension (HTN), cardiac arrhythmias, valvular heart disease, and pulmonary HTN. Both the oncologist and the cardiologist need to be aware of such adverse effects and of the specific agents that produce them. They need to join forces to prevent, anticipate, recognize, and manage such complications.
Collapse
Affiliation(s)
| | | | - Dimitri P Mikhailidis
- c Department of Clinical Biochemistry , University College London Medical School , London , UK
| | - Antonis S Manolis
- d Third Department of Cardiology , Athens University School of Medicine , Athens , Greece
| |
Collapse
|
21
|
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39:3021-3104. [PMID: 30165516 DOI: 10.1093/eurheartj/ehy339] [Citation(s) in RCA: 5810] [Impact Index Per Article: 968.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Sanidas E, Papadopoulos DP, Velliou M, Tsioufis K, Mantzourani M, Iliopoulos D, Perrea D, Barbetseas J, Papademetriou V. The Role of Angiogenesis Inhibitors in Hypertension: Following "Ariadne's Thread". Am J Hypertens 2018; 31:961-969. [PMID: 29788148 DOI: 10.1093/ajh/hpy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Arterial hypertension (HT) is one of the most frequently recorded comorbidities among patients under antiangiogenic therapy. Inhibitors of vascular endothelial growth factor and vascular endothelial growth factor receptors are most commonly involved in new onset or exacerbation of pre-existing controlled HT. From the pathophysiology point of view, data support that reduced nitric oxide release and sodium and fluid retention, microvascular rarefaction, elevated vasoconstrictor levels, and globular injury might contribute to HT. The purpose of this review was to present recent evidence regarding the incidence of HT induced by antiangiogenic agents, to analyze the pathophysiological mechanisms, and to summarize current recommendations for the management of elevated blood pressure in this field.
Collapse
Affiliation(s)
- Elias Sanidas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Dimitris P Papadopoulos
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Maria Velliou
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Kostas Tsioufis
- First Department of Cardiology, Hippokration Hospital, University of Athens, Medical School, Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine, LAIKO General Hospital, University of Athens, Medical School, Athens, Greece
| | - Dimitris Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research N.S.Christeas, University of Athens, Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S.Christeas, University of Athens, Medical School, Athens, Greece
| | - John Barbetseas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Vasilios Papademetriou
- Hypertension and Cardiovascular Research Clinic, Veterans Affairs and Georgetown University Medical Centers, Washington DC, USA
| |
Collapse
|
23
|
Neves KB, Rios FJ, van der Mey L, Alves-Lopes R, Cameron AC, Volpe M, Montezano AC, Savoia C, Touyz RM. VEGFR (Vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes. Hypertension 2018; 71:638-647. [DOI: 10.1161/hypertensionaha.117.10490] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/07/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
Although VEGF (vascular endothelial growth factor) inhibitors (VEGFIs), are effective anticancer therapies, they cause hypertension through unknown mechanisms. We questioned whether changes in vascular redox state may be important, because VEGF signaling involves nitric oxide (NO) and reactive oxygen species. Molecular mechanisms, including NOS, NADPH oxidase (Nox)–derived reactive oxygen species, antioxidant systems, and vasoconstrictor signaling pathways, were probed in human endothelial cells and vascular smooth muscle exposed to vatalanib, a VEGFI. Vascular functional effects of VEGFI were assessed ex vivo in mouse arteries. Cardiovascular and renal in vivo effects were studied in vatalanib- or gefitinib (EGFI [epidermal growth factor inhibitor])-treated mice. In endothelial cells, vatalanib decreased eNOS (Ser
1177
) phosphorylation and reduced NO and H
2
O
2
production, responses associated with increased Nox-derived O
2
−
and ONOO
−
formation. Inhibition of Nox1/4 (GKT137831) or Nox1 (NoxA1ds), prevented vatalanib-induced effects. Nrf-2 (nuclear factor erythroid 2–related factor 2) nuclear translocation and expression of Nrf-2–regulated antioxidant enzymes were variably downregulated by vatalanib. In human vascular smooth muscles, VEGFI increased Nox activity and stimulated Ca
2+
influx and MLC
20
phosphorylation. Acetylcholine-induced vasodilatation was impaired and U46619-induced vasoconstriction was enhanced by vatalanib, effects normalized by N-acetyl-cysteine and worsened by L-NAME. In vatalanib-, but not gefitinib-treated mice vasorelaxation was reduced and media:lumen ratio of mesenteric arteries was increased with associated increased cardiovascular and renal oxidative stress, decreased Nrf-2 activity and downregulation of antioxidant genes. We demonstrate that inhibition of VEGF signaling induces vascular dysfunction through redox-sensitive processes. Our findings identify Noxs and antioxidant enzymes as novel targets underling VEGFI-induced vascular dysfunction. These molecular processes may contribute to vascular toxicity and hypertension in VEGFI-treated patients.
Collapse
Affiliation(s)
- Karla B. Neves
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Francisco J. Rios
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Lucas van der Mey
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Rheure Alves-Lopes
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Alan C. Cameron
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Massimo Volpe
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Augusto C. Montezano
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Carmine Savoia
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| | - Rhian M. Touyz
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.)
| |
Collapse
|
24
|
Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 2. J Am Coll Cardiol 2017; 70:2552-2565. [PMID: 29145955 PMCID: PMC5825188 DOI: 10.1016/j.jacc.2017.09.1095] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In this second part of a 2-part review, we will review cancer or cancer therapy-associated systemic and pulmonary hypertension, QT prolongation, arrhythmias, pericardial disease, and radiation-induced cardiotoxicity. This review is based on a MEDLINE search of published data, published clinical guidelines, and best practices in major cancer centers. Newly developed targeted therapy can exert off-target effects causing hypertension, thromboembolism, QT prolongation, and atrial fibrillation. Radiation therapy often accelerates atherosclerosis. Furthermore, radiation can damage the heart valves, the conduction system, and pericardium, which may take years to manifest clinically. Management of pericardial disease in cancer patients also posed clinical challenges. This review highlights the unique opportunity of caring for cancer patients with heart problems caused by cancer or cancer therapy. It is an invitation to action for cardiologists to become familiar with this emerging subspecialty.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Tochukwu M Okwuosa
- Division of Cardiology, Rush University Medical Center, Chicago, Illinois
| | - Tiziano Scarabelli
- Division of Cardiology, Virginia Common Wealth University, Richmond, Virginia
| | - Rohit Moudgil
- Department of Cardiology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
25
|
Carter JJ, Fretwell LV, Woolard J. Effects of 4 multitargeted receptor tyrosine kinase inhibitors on regional hemodynamics in conscious, freely moving rats. FASEB J 2016; 31:1193-1203. [PMID: 27986807 PMCID: PMC5295730 DOI: 10.1096/fj.201600749r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/03/2016] [Indexed: 11/17/2022]
Abstract
VEGF inhibitors, including receptor tyrosine kinase inhibitors, are used as adjunct therapies in a number of cancer treatments. An emerging issue with these drugs is that most cause hypertension. To gain insight into the physiological mechanisms involved, we evaluated their regional hemodynamic effects in conscious rats. Male Sprague Dawley rats (350–450 g) were chronically implanted with pulsed Doppler flow probes (renal and mesenteric arteries, and the descending abdominal aorta) and catheters (jugular vein, peritoneal cavity, and distal abdominal aorta). Regional hemodynamics were measured over 4 d, before and after daily administration of cediranib (3 and 6 mg/kg, 3 and 6 mg/kg/h for 1 h, i.v.), sorafenib (10 and 20 mg/kg, 10 and 20 mg kg/h for 1 h, i.v.), pazopanib (30 and100 mg/kg, i.p.), or vandetanib (12.5 and 25 mg/kg, i.p.). All drugs evoked significant increases (P < 0.05; n = 7–8) in mean arterial pressure, which were generally accompanied by significant mesenteric and hindquarters, but not renal, vasoconstrictions. The hypertensive effects of cediranib were unaffected by losartan (10 mg/kg/h), bosentan (20 mg/kg/h), or a combination of phentolamine and propranolol (each 1 mg/kg/h), suggesting a need for new strategies to overcome them.—Carter, J. J., Fretwell, L. V., Woolard, J. Effects of 4 multitargeted receptor tyrosine kinase inhibitors on regional hemodynamics in conscious, freely moving rats.
Collapse
Affiliation(s)
- Joanne J Carter
- Cell Signalling Research Group, School of Life Sciences, Medical School, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom; and
| | - Laurice V Fretwell
- Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Jeanette Woolard
- Cell Signalling Research Group, School of Life Sciences, Medical School, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom; and
| |
Collapse
|
26
|
Vascular Complications of Cancer Chemotherapy. Can J Cardiol 2015; 32:852-62. [PMID: 26968393 PMCID: PMC4989034 DOI: 10.1016/j.cjca.2015.12.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Development of new anticancer drugs has resulted in improved mortality rates and 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increase cardiovascular risk in cancer patients, including hypertension, thrombosis, heart failure, cardiomyopathy, and arrhythmias. These limitations restrict treatment options and might negatively affect the management of cancer. The cardiotoxic effects of older chemotherapeutic drugs such as alkylating agents, antimetabolites, and anticancer antibiotics have been known for a while. The newer agents, such as the antiangiogenic drugs that inhibit vascular endothelial growth factor signalling are also associated with cardiovascular pathology, especially hypertension, thromboembolism, myocardial infarction, and proteinuria. Exact mechanisms by which vascular endothelial growth factor inhibitors cause these complications are unclear but impaired endothelial function, vascular and renal damage, oxidative stress, and thrombosis might be important. With increasing use of modern chemotherapies and prolonged survival of cancer patients, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care so that prolonged cancer survival is not at the expense of increased cardiovascular events.
Collapse
|
27
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|