1
|
Cetinkaya A, Kaya SI, Budak F, Ozkan SA. Current Analytical Methods for the Sensitive Assay of New-Generation Ovarian Cancer Drugs in Pharmaceutical and Biological Samples. Crit Rev Anal Chem 2024:1-17. [PMID: 38630637 DOI: 10.1080/10408347.2024.2339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Ovarian cancer, which affects the female reproductive organs, is one of the most common types of cancer. Since this type of cancer has a high mortality rate from gynaecological cancers, the scientific community shows great interest in studies on its treatment. Chemotherapy, radiotherapy, and surgical treatment methods are used in its treatment. In the absence of targeted treatments in these treatment methods, side effects occur in patients, and patients show resistance to the drug. In addition, the underlying causes of ovarian cancer are still not fully known. The scientific world thinks that genetic factors, environmental conditions, and consumed foods may cause this cancer. The most important factor in the treatment of ovarian cancer is early diagnosis. Therefore, the drugs used in the treatment of ovarian cancer are platinum-based anticancer drugs. In addition to these drugs, the most preferred treatment method recently is targeted treatment approaches using poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In this review, studies on the sensitive analysis of the treatment methods of these new-generation drugs used in the treatment of ovarian cancer have been comprehensively examined. In addition, the basic features, structural aspects, and biological data of analytical methods used in treatments with new-generation drugs are explained. Analytical studies carried out in the literature in recent years aim to show future developments in how these new-generation drugs are used today and to guide future studies by comprehensively examining and explaining the structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies. Finally, in this study, the methods used in the analysis of drugs used in the treatment of ovarian cancer and the studies conducted between 2015 and 2023 were discussed in detail.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Lee SW, Lee H, Lee KW, Kim MJ, Kang SW, Lee YJ, Kim H, Kim YM. CD8α+ dendritic cells potentiate antitumor and immune activities against murine ovarian cancers. Sci Rep 2023; 13:98. [PMID: 36596856 PMCID: PMC9810613 DOI: 10.1038/s41598-022-27303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dendritic cell (DC)-based immunotherapies have been shown to be a potential treatment option for various cancers; however, the exact strategies in ovarian cancer remain unknown. Here, we report the effectiveness of mouse CD8α+ DCs derived from bone marrow hematopoietic stem cells (BM-HSCs), equivalent to human CD141+ DCs, which have proven to be a highly superior subset. Mono-DCs from monocytes and stem-DCs from HSCs were characterized by CD11c+ CD80+ CD86+ and CD8α+ Clec9a+ expression, respectively. Despite a lower dose compared with Mono-DCs, mice treated with pulsed Stem-DCs showed a reduced amount of ascitic fluid and lower body weights compared with those of vehicle-treated mice. These mice treated with pulsed stem-DCs appeared to have fewer tumor implants, which were usually confined in the epithelium of tumor-invaded organs. All mice treated with DCs showed longer survival than the vehicle group, especially in the medium/high dose pulsed Stem-DC treatment groups. Moreover, the stem-DC-treated group demonstrated a low proportion of myeloid-derived suppressor cells and regulatory T cells, high interleukin-12 and interferon-γ levels, and accumulation of several tumor-infiltrating lymphocytes. Together, these results indicate that mouse CD8α+ DCs derived from BM-HSCs decrease tumor progression and enhance antitumor immune responses against murine ovarian cancer, suggesting that better DC vaccines can be used as an effective immunotherapy in EOC treatment. Further studies are necessary to develop potent DC vaccines using human CD141+ DCs.
Collapse
Affiliation(s)
- Shin-Wha Lee
- grid.267370.70000 0004 0533 4667Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| | - Hyunah Lee
- grid.497660.aPharmicell Co., Seoul, Republic of Korea
| | - Kyung-Won Lee
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Min-Je Kim
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Sung Wan Kang
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Young-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Obstetrics and Gynecology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - HyunSoo Kim
- grid.497660.aPharmicell Co., Seoul, Republic of Korea
| | - Yong-Man Kim
- grid.267370.70000 0004 0533 4667Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
3
|
Moore KN, Chambers SK, Hamilton EP, Chen LM, Oza AM, Ghamande SA, Konecny GE, Plaxe SC, Spitz DL, Geenen JJJ, Troso-Sandoval TA, Cragun JM, Rodrigo Imedio E, Kumar S, Mugundu GM, Lai Z, Chmielecki J, Jones SF, Spigel DR, Cadoo KA. Adavosertib with Chemotherapy in Patients with Primary Platinum-Resistant Ovarian, Fallopian Tube, or Peritoneal Cancer: An Open-Label, Four-Arm, Phase II Study. Clin Cancer Res 2021; 28:36-44. [PMID: 34645648 DOI: 10.1158/1078-0432.ccr-21-0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This study assessed the efficacy, safety, and pharmacokinetics of adavosertib in combination with four chemotherapy agents commonly used in patients with primary platinum-resistant ovarian cancer. PATIENTS AND METHODS Women with histologically or cytologically confirmed epithelial ovarian, fallopian tube, or peritoneal cancer with measurable disease were enrolled between January 2015 and January 2018 in this open-label, four-arm, multicenter, phase II study. Patients received adavosertib (oral capsules, 2 days on/5 days off or 3 days on/4 days off) in six cohorts from 175 mg once daily to 225 mg twice daily combined with gemcitabine, paclitaxel, carboplatin, or pegylated liposomal doxorubicin. The primary outcome measurement was overall response rate. RESULTS Three percent of patients (3/94) had confirmed complete response and 29% (27/94) had confirmed partial response. The response rate was highest with carboplatin plus weekly adavosertib, at 66.7%, with 100% disease control rate, and median progression-free survival of 12.0 months. The longest median duration of response was in the paclitaxel cohort (12.0 months). The most common grade ≥3 adverse events across all cohorts were neutropenia [45/94 (47.9%) patients], anemia [31/94 (33.0%)], thrombocytopenia [30/94 (31.9%)], and diarrhea and vomiting [10/94 (10.6%) each]. CONCLUSIONS Adavosertib showed preliminary efficacy when combined with chemotherapy. The most promising treatment combination was adavosertib 225 mg twice daily on days 1-3, 8-10, and 15-17 plus carboplatin every 21 days. However, hematologic toxicity was more frequent than would be expected for carboplatin monotherapy, and the combination requires further study to optimize the dose, schedule, and supportive medications.
Collapse
Affiliation(s)
- Kathleen N Moore
- Sarah Cannon Research Institute, Nashville, Tennessee. .,Stephenson Cancer Center at the University of Oklahoma HSC, Oklahoma City, Oklahoma
| | | | - Erika P Hamilton
- Sarah Cannon Research Institute, Nashville, Tennessee.,Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Lee-May Chen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Amit M Oza
- Bras Drug Development Program, Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | | | - Daniel L Spitz
- Sarah Cannon Research Institute, Nashville, Tennessee.,Florida Cancer Specialists & Research Institute, Wellington, Florida
| | | | | | | | | | - Sanjeev Kumar
- Oncology Global Medicines Development (GMD), AstraZeneca, Cambridge, United Kingdom
| | - Ganesh M Mugundu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts
| | - Zhongwu Lai
- Translational Medicine, Oncology Research and Development, AstraZeneca, Boston, Massachusetts
| | - Juliann Chmielecki
- Translational Medicine, Oncology Research and Development, AstraZeneca, Boston, Massachusetts
| | | | - David R Spigel
- Sarah Cannon Research Institute, Nashville, Tennessee.,Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Karen A Cadoo
- Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
4
|
Lee SW, Lee HY, Kang SW, Kim MJ, Lee YJ, Sung CO, Kim YM. Application of Immunoprofiling Using Multiplexed Immunofluorescence Staining Identifies the Prognosis of Patients with High-Grade Serous Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22179638. [PMID: 34502561 PMCID: PMC8431807 DOI: 10.3390/ijms22179638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/14/2023] Open
Abstract
Immunoprofiling has an established impact on the prognosis of several cancers; however, its role and definition in high-grade serous ovarian cancer (HGSOC) are mostly unknown. This study is to investigate immunoprofiling which could be a prognostic factor in HGSOC. We produced tumor microarrays of 187 patients diagnosed with HGSOC. We performed a multiplexed immunofluorescence staining using Opal Multiplex IHC kit and quantitative analysis with Vectra-Inform system. The expression intensities of programmed death-ligand 1 (PD-L1), CD4, CD8, CD20, FoxP3, and CK in whole tumor tissues were evaluated. The enrolled patients showed general characteristics, mostly FIGO stage III/IV and responsive to chemotherapy. Each immune marker showed diverse positive densities, and each tumor sample represented its immune characteristics as an inflamed tumor or noninflamed tumor. No marker was associated with survival as a single one. Interestingly, high ratios of CD8 to FoxP3 and CD8 to PD-L1 were related to the favorable overall survival (77 vs. 39 months, 84 vs. 47 months, respectively), and CD8 to PD-L1 ratio was also a significant prognostic factor (HR 0.621, 95% CI 0.420-0.917, p = 0.017) along with well-known clinical prognostic factors. Additionally, CD8 to PD-L1 ratio was found to be higher in the chemosensitive group (p = 0.034). In conclusion, the relative expression levels of CD8, FoxP3, and PD-L1 were significantly related to the clinical outcome of patients with HGSOC, which could be a kind of significant immunoprofiling of ovarian cancer patients to apply for treatment.
Collapse
Affiliation(s)
- Shin-Wha Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence:
| | - Ha-Young Lee
- Asan Institute for Life Science, Seoul 05505, Korea; (H.-Y.L.); (S.W.K.); (M.J.K.)
| | - Sung Wan Kang
- Asan Institute for Life Science, Seoul 05505, Korea; (H.-Y.L.); (S.W.K.); (M.J.K.)
| | - Min Je Kim
- Asan Institute for Life Science, Seoul 05505, Korea; (H.-Y.L.); (S.W.K.); (M.J.K.)
| | - Young-Jae Lee
- Department of Obstetrics and Gynecology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Korea;
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| |
Collapse
|
5
|
Yeku OO, Rao TD, Laster I, Kononenko A, Purdon TJ, Wang P, Cui Z, Liu H, Brentjens RJ, Spriggs D. Bispecific T-Cell Engaging Antibodies Against MUC16 Demonstrate Efficacy Against Ovarian Cancer in Monotherapy and in Combination With PD-1 and VEGF Inhibition. Front Immunol 2021; 12:663379. [PMID: 33936101 PMCID: PMC8079980 DOI: 10.3389/fimmu.2021.663379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy for ovarian cancer is an area of intense investigation since the majority of women with relapsed disease develop resistance to conventional cytotoxic therapy. The paucity of safe and validated target antigens has limited the development of clinically relevant antibody-based immunotherapeutics for this disease. Although MUC16 expression is almost universal in High Grade Serous Ovarian Cancers, engagement of the shed circulating MUC16 antigen (CA-125) presents a theoretical risk of systemic activation and toxicity. We designed and evaluated a series of bispecific tandem single-chain variable fragments specific to the retained portion of human MUC16 ectodomain (MUC16ecto) and human CD3. These MUC16ecto- BiTEDs retain binding in the presence of soluble MUC16 (CA-125) and show cytotoxicity against a panel of ovarian cancer cells in vitro. MUC16ecto- BiTEDs delay tumor progression in vivo and significantly prolong survival in a xenograft model of ovarian peritoneal carcinomatosis. This effect was significantly enhanced by antiangiogenic (anti-VEGF) therapy and immune checkpoint inhibition (anti-PD1). However, the combination of BiTEDs with anti-VEGF was superior to combination with anti-PD1, based on findings of decreased peritoneal tumor burden and ascites with the former. This study shows the feasibility and efficacy of MUC16ecto- specific BiTEDs and provides a basis for the combination with anti-VEGF therapy for ovarian cancer.
Collapse
Affiliation(s)
- Oladapo O Yeku
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Thapi Dharma Rao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ian Laster
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Artem Kononenko
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pei Wang
- Eureka Therapeutics Inc., Emeryville, California, United States
| | - Ziyou Cui
- Eureka Therapeutics Inc., Emeryville, California, United States
| | - Hong Liu
- Eureka Therapeutics Inc., Emeryville, California, United States
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David Spriggs
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Endocytic degradation of ErbB2 mediates the effectiveness of neratinib in the suppression of ErbB2-positive ovarian cancer. Int J Biochem Cell Biol 2019; 117:105640. [PMID: 31689531 DOI: 10.1016/j.biocel.2019.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
The tyrosine kinase receptor ErbB2 is frequently found to be overexpressed in multiple cancer types. Targeted therapeutic approaches against ErbB2 have shown promising results and received FDA approvals in the treatment of breast cancer. However, this approach has not been granted in ovarian cancers till now. In order to assess the validity of ErbB2-targeted therapy in ovarian cancer, we investigated the effectiveness of two FDA-approved tyrosine kinase inhibitors of ErbB2, lapatinib and neratinib, on the growth of ovarian cancers. We observed that both lapatinib and neratinib displayed inhibitory effects towards the proliferation and migration of ErbB2-positive ovarian cancer cells in vitro, with neratinib showing stronger suppression in general. Neratinib treatment led to the reduction of ErbB2 protein levels, with concomitant attenuation of the phosphorylation of AKT, MEK, and ERK1/2. Immunofluorescence assays revealed that neratinib induced the internalization and lysosomal degradation of ErbB2, which was accompanied by its hyperubiquitylation. Lapatinib and neratinib also repressed the in vivo growth of SKOV3 cells, and neratinib downregulated ErbB2 levels in xenograft tumors to cause potent inhibition. Therefore, the ubiquitylation-mediated endocytic degradation of ErbB2 incurred by neratinib treatment conferred potent inhibition of ovarian cancer growth. Clinical investigations of neratinib in ErbB2-positive ovarian cancer are warranted.
Collapse
|
7
|
Surgical Efforts Might Mitigate Difference in Response to Neoadjuvant Chemotherapy in Stage IIIC–IV Unresectable Ovarian Cancer: A Case-Control Multi-institutional Study. Int J Gynecol Cancer 2018; 28:1706-1713. [DOI: 10.1097/igc.0000000000001286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ObjectiveThe aim of the study was to evaluate outcomes of patients with unresectable advanced ovarian cancer experiencing complete response (CR) to neoadjuvant chemotherapy.MethodsData of consecutive patients undergoing neoadjuvant chemotherapy plus interval debulking surgery (IDS) were retrospectively reviewed in 4 Italian centers. Using a propensity-matching algorithm, we compared data of patients achieving CR with neoadjuvant chemotherapy (no macroscopic either microscopic residual disease (RD) at the time of IDS) with patients achieving partial response (PR). This latter group was stratified by the presence of RD (RD = 0 vs RD > 0).ResultsOverall, 193 had IDS after neoadjuvant chemotherapy: 25 (13%), 81 (41.9%), and 74 (38.3%) patients had CR, PR with RD of 0, and PR with RD of more than 0, respectively. In addition, 13 (6.7%) patients had no macroscopic disease detected at DS but just microscopic disease at pathological examination. For the study purpose, 25 patients achieving CR were matched (1:2) with 50 patients having PR and RD of 0 and 50 patients having PR and RD of more than 0. As the result of propensity matching, baseline characteristics were similar between groups. Comparing survival outcomes of patients having CR and PR with RD of 0, we observed that type of response to chemotherapy did not influence disease-free (hazard ratio = 1.53 [95% confidence interval = 0.88–2.66], P = 0.127) and overall (hazard ratio = 1.74 [95% confidence interval = 0.76–4.01], P = 0.189) survivals. Patients achieving CR experienced significantly better disease-free survival (P = 0.004) and a trend toward better overall survival (P = 0.06) than patients achieving PR with RD of more than 0 at IDS.ConclusionsComplete cytoreduction might mitigate the difference in response to neoadjuvant chemotherapy. The presence of RD at IDS is associated with worse survival outcomes.
Collapse
|
8
|
Moore KN, Vergote I, Oaknin A, Colombo N, Banerjee S, Oza A, Pautier P, Malek K, Birrer MJ. FORWARD I: a Phase III study of mirvetuximab soravtansine versus chemotherapy in platinum-resistant ovarian cancer. Future Oncol 2018; 14:1669-1678. [DOI: 10.2217/fon-2017-0646] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mirvetuximab soravtansine, an antibody–drug conjugate that binds with high affinity to folate receptor-α to provide tumor-directed delivery of the potent microtubule-disrupting agent DM4, has emerged as a promising investigational agent for the treatment of ovarian cancer, particularly in the setting of platinum-resistant disease. Here we describe the rationale and design of FORWARD I (NCT02631876), the first randomized, multicenter Phase III study to compare the safety and efficacy of mirvetuximab soravtansine versus investigator's choice of chemotherapy in women with folate receptor-α-positive, platinum-resistant epithelial ovarian, primary peritoneal or fallopian tube cancer. Patients will be randomized in a 2:1 ratio. The primary end point is progression-free survival, and key secondary objectives include comparison of overall response rates, overall survival and duration of response.
Collapse
Affiliation(s)
- Kathleen N Moore
- Department of Obstetrics & Gynecology, Stephenson Oklahoma Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignace Vergote
- Gynaecological Oncology, Leuven Cancer Institute, Leuven 3000, Belgium
| | - Ana Oaknin
- Medical Oncology Department, Vall D'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Nicoletta Colombo
- Gynecologic Oncology, The European Institute of Oncology, Milan 20141, Italy
| | - Susana Banerjee
- Gynaecology Unit, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Amit Oza
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto M5G 2M9, Canada
| | - Patricia Pautier
- Department of Adult Medicine, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Karim Malek
- Clinical Development, ImmunoGen, Inc., Waltham, MA 02451, USA
| | - Michael J Birrer
- Division of Hematology–Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
|
10
|
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Vergote I, Ponte JF, Birrer MJ. A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol 2018; 14:123-136. [DOI: 10.2217/fon-2017-0379] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance to platinum-based therapy poses a significant clinical challenge for the management of advanced ovarian cancer, a leading cause of cancer mortality among women. Mirvetuximab soravtansine is a novel antibody–drug conjugate that targets folate receptor-α, a validated molecular target for therapeutic intervention in this disease. Here, we examine mirvetuximab soravtansine's mechanism of action and pharmacology, and review its clinical evaluation in ovarian cancer to date. We focus on the favorable tolerability and encouraging signals of efficacy that have emerged, most notably in patients with platinum-resistant disease. Ongoing Phase III monotherapy and Phase Ib/II combination trials evaluating its activity in the setting of platinum resistance are emphasized, which will help define its role in the evolving landscape of ovarian cancer therapy.
Collapse
Affiliation(s)
- Kathleen N Moore
- Department of Obstetrics & Gynecology, Stephenson Oklahoma Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lainie P Martin
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David M O'Malley
- Department of Obstetrics & Gynecology, The Ohio State University, Columbus, OH 43210, USA
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Jason A Konner
- Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignace Vergote
- Gynaecological Oncology, Leuven Cancer Institute, Leuven 3000, Belgium
| | - Jose F Ponte
- Pharmacology, ImmunoGen, Inc, Waltham, MA 02451, USA
| | - Michael J Birrer
- Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
11
|
Falcetta F, Bizzaro F, D'Agostini E, Bani MR, Giavazzi R, Ubezio P. Modeling Cytostatic and Cytotoxic Responses to New Treatment Regimens for Ovarian Cancer. Cancer Res 2017; 77:6759-6769. [PMID: 28951463 DOI: 10.1158/0008-5472.can-17-1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
The margin for optimizing polychemotherapy is wide, but a quantitative comparison of current and new protocols is rare even in preclinical settings. In silico reconstruction of the proliferation process and the main perturbations induced by treatment provides insight into the complexity of drug response and grounds for a more objective rationale to treatment schemes. We analyzed 12 treatment groups in trial on an ovarian cancer xenograft, reproducing current therapeutic options for this cancer including one-, two-, and three-drug schemes of cisplatin (DDP), bevacizumab (BEV), and paclitaxel (PTX) with conventional and two levels ("equi" and "high") of dose-dense schedules. All individual tumor growth curves were decoded via separate measurements of cell death and other antiproliferative effects, gaining fresh insight into the differences between treatment options. Single drug treatments were cytostatic, but only DDP and PTX were also cytotoxic. After treatment, regrowth stabilized with increased propensity to quiescence, particularly with BEV. More cells were killed by PTX dose-dense-equi than with PTX conventional, but with the addition of DDP, cytotoxicity was similar and considerably less than expected from that of individual drugs. In the DDP/PTX dose-dense-high scheme, both cell death and regrowth impairment were intensified enough to achieve complete remission, and addition of BEV increased cell death in all schemes. The results support the option for dose-dense PTX chemotherapy with active single doses, showing the relative additional contribution of BEV, but also indicate negative drug interactions in concomitant DDP/PTX treatments, suggesting that sequential schedules could improve antitumor efficacy. Cancer Res; 77(23); 6759-69. ©2017 AACR.
Collapse
Affiliation(s)
- Francesca Falcetta
- Biophysics Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Francesca Bizzaro
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Elisa D'Agostini
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria Rosa Bani
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Paolo Ubezio
- Biophysics Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
12
|
Wang Q, Lou W, Di W, Wu X. Prognostic value of tumor PD-L1 expression combined with CD8 + tumor infiltrating lymphocytes in high grade serous ovarian cancer. Int Immunopharmacol 2017; 52:7-14. [PMID: 28846888 DOI: 10.1016/j.intimp.2017.08.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Expression of programmed cell death-ligand 1 (PD-L1) is known to be a mechanism whereby cancer can escape immune surveillance, but the relationship between tumor PD-L1 expression and tumor-infiltrating lymphocytes (TILs), and their association with clinical outcomes in patients with high grade serous ovarian cancer (HGSOC) remain ambiguous. We detected the expression of PD-L1 and CD3+, CD4+, CD8+ TILs in 107 patients with HGSOC by immunohistochemical analysis. Using a 5% threshold, 24.30% and 15.89% cases were found with positive expression of PD-L1 in the membrane of tumor cells and TILs respectively. Carcinoma PD-L1 expression mainly localized to the tumor invasive front and was associated with advanced FIGO stage (p=0.023) and abundant stromal CD8+ TILs infiltration (p=0.020). Tumors containing PD-L1+ TILs were more likely to have PD-L1 expression by the carcinoma cells (p<0.001). Univariate and multivariate analyses demonstrated that a higher number of intraepithelial CD3+ or CD8+ TILs was an independent prognostic factor for longer overall survival (OS), whereas tumor PD-L1 expression was a predictive factor for poorer OS only in univariate analysis. PD-L1 expression in TILs was not a prognostic factor in univariate analysis. The Kaplan-Meier curves of the four sub-groups and log-rank test showed that patients with negative tumor PD-L1 expression/higher numbers of intraepithelial CD8+ TILs had the longest median OS, while those with positive tumor PD-L1 expression/lower numbers of intraepithelial CD8+ TILs had the shortest median OS (p<0.001). Our results indicate that tumor PD-L1 expression in combination with intraepithelial CD8+ TILs infiltration has prognostic impact in patients with HGSOC. These biomarkers may be useful for the stratification of patients. Further evaluation of PD-1/PD-L1 as therapeutic targets for HGSOC is warranted.
Collapse
Affiliation(s)
- Qiaohong Wang
- Department of Obstetrics & Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Weihua Lou
- Department of Obstetrics & Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Wen Di
- Department of Obstetrics & Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Xia Wu
- Department of Obstetrics & Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China.
| |
Collapse
|
13
|
El Bairi K, Amrani M, Kandhro AH, Afqir S. Prediction of therapy response in ovarian cancer: Where are we now? Crit Rev Clin Lab Sci 2017; 54:233-266. [PMID: 28443762 DOI: 10.1080/10408363.2017.1313190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Therapy resistance is a major challenge in the management of ovarian cancer (OC). Advances in detection and new technology validation have led to the emergence of biomarkers that can predict responses to available therapies. It is important to identify predictive biomarkers to select resistant and sensitive patients in order to reduce important toxicities, to reduce costs and to increase survival. The discovery of predictive and prognostic biomarkers for monitoring therapy is a developing field and provides promising perspectives in the era of personalized medicine. This review article will discuss the biology of OC with a focus on targetable pathways; current therapies; mechanisms of resistance; predictive biomarkers for chemotherapy, antiangiogenic and DNA-targeted therapies, and optimal cytoreductive surgery; and the emergence of liquid biopsy using recent studies from the Medline database and ClinicalTrials.gov.
Collapse
Affiliation(s)
- Khalid El Bairi
- a Faculty of Medicine and Pharmacy , Mohamed Ist University , Oujda , Morocco
| | - Mariam Amrani
- b Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department , National Institute of Oncology, Université Mohamed V , Rabat , Morocco
| | - Abdul Hafeez Kandhro
- c Department of Biochemistry , Healthcare Molecular and Diagnostic Laboratory , Hyderabad , Pakistan
| | - Said Afqir
- d Department of Medical Oncology , Mohamed VI University Hospital , Oujda , Morocco
| |
Collapse
|
14
|
Perroud HA, Scharovsky OG, Rozados VR, Alasino CM. Clinical response in patients with ovarian cancer treated with metronomic chemotherapy. Ecancermedicalscience 2017; 11:723. [PMID: 28275392 PMCID: PMC5336390 DOI: 10.3332/ecancer.2017.723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynaecological cancer. It is extremely hard to diagnose in the early stages and around 70% of patients present with advanced disease. Metronomic chemotherapy (MCT) is described as the chronic administration of, generally low, equally spaced, doses of chemotherapeutic drugs with therapeutic efficacy and low toxicity. This is an effective and low-cost way to treat several types of tumours, including ovarian cancer. Here, we present six cases of advanced ovarian cancer treated with MCT with low doses of cyclophosphamide, which showed clinical response and stable disease.
Collapse
Affiliation(s)
- Herman Andrés Perroud
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina; National Scientific and Technical Research Council (CONICET), Rosario 2000, Argentina.; Italian Hospital of Rosario, Department of Clinical Oncology, Rosario 2000, Argentina
| | - O Graciela Scharovsky
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina; National Scientific and Technical Research Council (CONICET), Rosario 2000, Argentina.; Research Council of the National University of Rosario (CIUNR), Rosario 2000, Argentina
| | - Viviana Rosa Rozados
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina
| | - Carlos María Alasino
- Italian Hospital of Rosario, Department of Clinical Oncology, Rosario 2000, Argentina; Institute of Oncology of Rosario, Rosario 2000, Argentina
| |
Collapse
|
15
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
16
|
Cimpean AM, Cobec IM, Ceaușu RA, Popescu R, Tudor A, Raica M. Platelet Derived Growth Factor BB: A "Must-have" Therapeutic Target "Redivivus" in Ovarian Cancer. Cancer Genomics Proteomics 2017; 13:511-517. [PMID: 27807074 DOI: 10.21873/cgp.20014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We aimed to validate PDGF-BB protein expression by RNAscope, a sensitive method for PDGF-BB mRNA evaluation on paraffin embedded (FFPE) specimens of ovarian tumors. MATERIALS AND METHODS Seventy-five FFPE ovarian cancer biopsies were assessed by immunohistochemistry followed by PDGF-BB mRNA RNAscope validation. RESULTS AND CONCLUSION Dual PDGF-BB expression in tumor and stromal cells have been observed, being highly suggestive for PDGF-BB mediated stromal-tumor cells reciprocal interaction in ovarian cancer (p=0.008). It seems that the nuclear expression of the PDGF-BB represents a negative prognostic factor in ovarian tumors. Being a controversial issue in the literature, PDGF-BB nuclear expression detected by immunohistochemistry was validated by RNAscope in situ hybridization. More than 65% of cases had PDGF-BB mRNA amplification, confirming immunohistochemical results. We herein validated PDGF-BB as a potential therapeutic and prognostic tool of ovarian cancer aggressiveness.
Collapse
Affiliation(s)
- Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ionut Marcel Cobec
- Department of Obstetrics and Gynecology, Diakonie Klinikum, Academic Hospital of the Heidelberg University, Schwäbisch Hall, Germany
| | - Raluca Amalia Ceaușu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology/ Cell and Molecular Biology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Tudor
- Department of Medical Informatics and Biostatistics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
17
|
Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, Potentiates the Activity of Standard of Care Therapeutics in Ovarian Cancer Models. Neoplasia 2016; 18:775-784. [PMID: 27889646 PMCID: PMC5126132 DOI: 10.1016/j.neo.2016.11.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
Elevated folate receptor alpha (FRα) expression is characteristic of epithelial ovarian cancer (EOC), thus establishing this receptor as a candidate target for the development of novel therapeutics to treat this disease. Mirvetuximab soravtansine (IMGN853) is an antibody-drug conjugate (ADC) that targets FRα for tumor-directed delivery of the maytansinoid DM4, a potent agent that induces mitotic arrest by suppressing microtubule dynamics. Here, combinations of IMGN853 with approved therapeutics were evaluated in preclinical models of EOC. Combinations of IMGN853 with carboplatin or doxorubicin resulted in synergistic antiproliferative effects in the IGROV-1 ovarian cancer cell line in vitro. IMGN853 potentiated the cytotoxic activity of carboplatin via growth arrest and augmented DNA damage; cell cycle perturbations were also observed in cells treated with the IMGN853/doxorubicin combination. These benefits translated into improved antitumor activity in patient-derived xenograft models in vivo in both the platinum-sensitive (IMGN853/carboplatin) and platinum-resistant (IMGN853/pegylated liposomal doxorubicin) settings. IMGN853 co-treatment also improved the in vivo efficacy of bevacizumab in platinum-resistant EOC models, with combination regimens causing significant regressions and complete responses in the majority of tumor-bearing mice. Histological analysis of OV-90 ovarian xenograft tumors revealed that concurrent administration of IMGN853 and bevacizumab caused rapid disruption of tumor microvasculature and extensive necrosis, underscoring the superior bioactivity profile of the combination regimen. Overall, these demonstrations of combinatorial benefit conferred by the addition of the first FRα-targeting ADC to established therapies provide a compelling framework for the potential application of IMGN853 in the treatment of patients with advanced ovarian cancer.
Collapse
|
18
|
Yin X, Wang X, Shen B, Jing Y, Li Q, Cai MC, Gu Z, Yang Q, Zhang Z, Liu J, Li H, Di W, Zhuang G. A VEGF-dependent gene signature enriched in mesenchymal ovarian cancer predicts patient prognosis. Sci Rep 2016; 6:31079. [PMID: 27498762 PMCID: PMC4976329 DOI: 10.1038/srep31079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
We have previously reported surrogate biomarkers of VEGF pathway activities with the potential to provide predictive information for anti-VEGF therapies. The aim of this study was to systematically evaluate a new VEGF-dependent gene signature (VDGs) in relation to molecular subtypes of ovarian cancer and patient prognosis. Using microarray profiling and cross-species analysis, we identified 140-gene mouse VDGs and corresponding 139-gene human VDGs, which displayed enrichment of vasculature and basement membrane genes. In patients who received bevacizumab therapy and showed partial response, the expressions of VDGs (summarized to yield VDGs scores) were markedly decreased in post-treatment biopsies compared with pre-treatment baselines. In contrast, VDGs scores were not significantly altered following bevacizumab treatment in patients with stable or progressive disease. Analysis of VDGs in ovarian cancer showed that VDGs as a prognostic signature was able to predict patient outcome. Correlation estimation of VDGs scores and molecular features revealed that VDGs was overrepresented in mesenchymal subtype and BRCA mutation carriers. These findings highlighted the prognostic role of VEGF-mediated angiogenesis in ovarian cancer, and proposed a VEGF-dependent gene signature as a molecular basis for developing novel diagnostic strategies to aid patient selection for VEGF-targeted agents.
Collapse
Affiliation(s)
- Xia Yin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boqiang Shen
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ying Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuowei Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Yang
- Lingyun Community Health Service Center of Xuhui District, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|