1
|
Geng X, Azarbarzin S, Yang Z, Lapidus RG, Fan X, Teng Y, Mehra R, Cullen KJ, Dan H. Evaluation of co‑inhibition of ErbB family kinases and PI3K for HPV‑negative head and neck squamous cell carcinoma. Oncol Rep 2025; 53:38. [PMID: 39886949 PMCID: PMC11800064 DOI: 10.3892/or.2025.8871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/29/2024] [Indexed: 02/01/2025] Open
Abstract
The ErbB/HER family of protein‑tyrosine kinases and PI3K represent crucial targets in the treatment of head and neck squamous cell carcinoma (HNSCC). A combination therapy of afatinib (ErbB inhibitor) and copanlisib (PI3K inhibitor), both Food and Drug Administration‑approved kinase inhibitors, can suppress the growth of human papillomavirus (HPV)‑positive HNSCC. The current study further evaluated the efficacy and clinical potential of this combination therapy for the treatment of HPV‑negative HNSCC in vitro and in vivo. Sulforhodamine B cell viability assay and Annexin V/propidium iodide staining demonstrated that this combination treatment markedly enhanced inhibition of cell viability and reduced cell survival when compared with treatment with either inhibitor alone in two HPV‑negative HNSCC cell lines. Notably, this combination also led to significant inhibition of xenograft tumor growth in mice, without any apparent effects on body weight. Western blot analysis found that copanlisib alone effectively blocked PI3K/Akt signaling but caused upregulation of HER2 and HER3 phosphorylation, as reported in other types of cancer. However, the combination of copanlisib and afatinib completely blocked phosphorylation of the ErbB family (including HER3) and Akt, while also increasing apoptosis. In conclusion, these results suggested that co‑targeting the ErbB family kinases and PI3K using a combination treatment of afatinib and copanlisib may have clinical potential for patients with HPV‑negative HNSCC.
Collapse
Affiliation(s)
- Xinyan Geng
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shirin Azarbarzin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rena G. Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kevin J. Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Liao J, Yang Z, Azarbarzin S, Cullen KJ, Dan H. Differential modulation of PI3K/Akt/mTOR activity by EGFR inhibitors: A rationale for co-targeting EGFR and PI3K in cisplatin-resistant HNSCC. Head Neck 2024; 46:1126-1135. [PMID: 38429897 PMCID: PMC11003831 DOI: 10.1002/hed.27718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
PURPOSE To find a new strategy to treat cisplatin-resistant head and neck squamous cell carcinoma (HNSCC), we investigated the effects of EGFR inhibitors on the PI3K/Akt/mTOR pathway and determined the efficacy of EGFR inhibitors in combination with PI3K inhibitors to suppress cell proliferation in cisplatin-resistant-HNSCC. METHODS The cisplatin-resistant HNSCC cell lines were treated with four FDA approved EGFR inhibitors, which included Gefitinb or Erlotinib alone, or in combination with the pan-PI3K inhibitor, BKM120. Phosphorylation and total protein levels of cells were assessed by Western blot analysis. Cell proliferation was examined by MTS assay. Apoptosis was analyzed by flow cytometry. RESULTS Cisplatin-resistant HNSCC cells were also resistant to EGFR inhibitors. However, a combination of EGFR inhibitors with PI3K inhibitor BKM120 dramatically improved the efficacy of EGFR inhibitors to inhibit cell proliferation and induce apoptosis. Furthermore, treatment with EGFR inhibitors differentially affected the phosphorylation of Akt and mTOR, which included partial inhibition, no inhibition, and induction. A combination of EGFR inhibitors and BKM120 completely blocked phosphorylation of EGFR, Akt, and S6K (an mTOR target). CONCLUSION Our data provided a rationale for EGFR inhibitors in combination with PI3K inhibitors to treat cisplatin-resistant HNSCC.
Collapse
Affiliation(s)
- Jipei Liao
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zejia Yang
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shirin Azarbarzin
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin J. Cullen
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hancai Dan
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Panikar SS, Keltee N, Berry NK, Shmuel S, Fisher ZT, Brown E, Zidel A, Mabry A, Pereira PMR. Metformin-Induced Receptor Turnover Alters Antibody Accumulation in HER-Expressing Tumors. J Nucl Med 2023; 64:1195-1202. [PMID: 37268425 PMCID: PMC10394312 DOI: 10.2967/jnumed.122.265248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Indexed: 06/04/2023] Open
Abstract
Metformin has effects beyond its antihyperglycemic properties, including altering the localization of membrane receptors in cancer cells. Metformin decreases human epidermal growth factor receptor (HER) membrane density. Depletion of cell-surface HER decreases antibody-tumor binding for imaging and therapeutic approaches. Here, we used HER-targeted PET to annotate antibody-tumor binding in mice treated with metformin. Methods: Small-animal PET annotated antibody binding in HER-expressing xenografts on administration of an acute versus a daily dose schedule of metformin. Analyses at the protein level in the total, membrane, and internalized cell extracts were performed to determine receptor endocytosis, HER surface and internalized protein levels, and HER phosphorylation. Results: At 24 h after injection of radiolabeled anti-HER antibodies, control tumors had higher antibody accumulation than tumors treated with an acute dose of metformin. These differences were temporal, and by 72 h, tumor uptake in acute cohorts was similar to uptake in control. Additional PET imaging revealed a sustained decrease in tumor uptake on daily metformin treatment compared with control and acute metformin cohorts. The effects of metformin on membrane HER were reversible, and after its removal, antibody-tumor binding was restored. The time- and dose-dependent effects of metformin-induced HER depletion observed preclinically were validated with immunofluorescence, fractionation, and protein analysis cell assays. Conclusion: The findings that metformin decreases cell-surface HER receptors and reduces antibody-tumor binding may have significant implications for the use of antibodies targeting these receptors in cancer treatment and molecular imaging.
Collapse
Affiliation(s)
- Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nai Keltee
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Na-Keysha Berry
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zachary T Fisher
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Emma Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Abbey Zidel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Alex Mabry
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Patrícia M R Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
4
|
Chen Y, Dang H, Wu X, Zhang Z, Shi X, Zhang T, Chen X, Zhu X, Su T, Wang Y, Hou B, Jin Z. Correlation between 18F-FDG PET/MR parameters with the expression level of epidermal growth factor receptor and the diagnostic value of PET/MR in head and neck squamous cell carcinoma. Heliyon 2023; 9:e14822. [PMID: 37089359 PMCID: PMC10119563 DOI: 10.1016/j.heliyon.2023.e14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Objective To investigate the correlation between parameters of PET/MR and the expression level of epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinoma (HNSCC) and to evaluate diagnostic efficacy of independent and combined PET/MR parameters for the expression level of EGFR. Materials and methods 21 patients who had undergone PET/MR and been proven HNSCC pathologically were included in this retrospective study. The PET/MR sequences included 18-flurodeoxyglucose (18F-FDG) PET, T1, T2-weighted imaging, DWI, ADC and DCE. Parameters including ADCmean from DWI, Ktrans, Ve, Kep from DCE, and SUVmean, SUVmax from PET were obtained. Immunohistochemical method was used to detect the expression level of EGFR. The associations between parameters of PET/MR and EGFR expression level were analyzed by Spearman's analysis. Logistic regression was utilized to establish the diagnostic model of EGFR expression level with PET/MR parameters. The efficacy of the independent and combined diagnostic model for EGFR expression level in HNSCC was analyzed by ROC curve. P value ≤ 0.05 was considered statistically significant. Results (1) Expression level of EGFR was correlated to SUVmean with correlation coefficient of 0.47 (p = 0.05). (2) There was significant difference of SUVmean between the EGFR high- and low-expression groups (p = 0.02). (3) Combination of PET/MR improved the diagnostic efficacy for expression level of EGFR, with AUC = 0.93. Conclusion There were different degrees of correlation between PET/MR parameters and EGFR expression level in HNSCC. Combination of PET/MR might improve diagnostic efficacy of EGFR expression level.
Collapse
Affiliation(s)
- Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Haodan Dang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Fuxing Road 28, Beijing, China
| | - Xiaoqian Wu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Zhuhua Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
- Corresponding author.
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai Fu Yuan 1, Dong Cheng District, Beijing 100730, China
| | - Xingming Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai Fu Yuan 1, Dong Cheng District, Beijing 100730, China
| | - Xiaoli Zhu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai Fu Yuan 1, Dong Cheng District, Beijing 100730, China
| | - Tong Su
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Yunting Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Bo Hou
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing 100730, China
| |
Collapse
|
5
|
Lin YC, Hua CH, Lu HM, Huang SW, Chen Y, Tsai MH, Lin FY, Canoll P, Chiu SC, Huang WH, Cho DY, Jan CI. CAR-T cells targeting HLA-G as potent therapeutic strategy for EGFR-mutated and overexpressed oral cancer. iScience 2023; 26:106089. [PMID: 36876120 PMCID: PMC9978640 DOI: 10.1016/j.isci.2023.106089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the world. Recently, scientists have focused on therapeutic strategies to determine the regulation of tumors and design molecules for specific targets. Some studies have demonstrated the clinical significance of human leukocyte antigen G (HLA-G) in malignancy and NLR family pyrin domain-containing 3 (NLRP3) inflammasome in promoting tumorigenesis in OSCC. This is the first study to investigate whether aberrant epidermal growth factor receptor (EGFR) induces HLA-G expression through NLRP3 inflammasome-mediated IL-1β secretion in OSCC. Our results showed that the upregulation of NLRP3 inflammasome leads to abundant HLA-G in the cytoplasm and cell membrane of FaDu cells. In addition, we also generated anti-HLA-G chimeric antigen receptor (CAR)-T cells and provided evidence for their effects in EGFR-mutated and overexpressed oral cancer. Our results may be integrated with OSCC patient data to translate basic research into clinical significance and may lead to novel EGFR-aberrant OSCC treatment.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsin-Man Lu
- Department of Psychology, Asia University, Taichung 404, Taiwan
| | - Shi-Wei Huang
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Yu Lin
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Shao-Chih Chiu
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Hua Huang
- Dr. Jean Landsborough Memorial Hospice Ward, Changhua Christian Hospital, Changhua 500, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Der-Yang Cho
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Ing Jan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
6
|
Combination RSL3 Treatment Sensitizes Ferroptosis- and EGFR-Inhibition-Resistant HNSCCs to Cetuximab. Int J Mol Sci 2022; 23:ijms23169014. [PMID: 36012290 PMCID: PMC9409433 DOI: 10.3390/ijms23169014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are a type of cancer originating in the mucosal epithelium of the mouth, pharynx, and larynx, the sixth most common cancer in the world. However, there is no effective treatment for HNSCCs. More than 90% of HNSCCs overexpress epidermal growth factor receptors (EGFRs). Although small molecule inhibitors and monoclonal antibodies have been developed to target EGFRs, few EGFR-targeted therapeutics are approved for clinical use. Ferroptosis is a new kind of programmed death induced by the iron catalyzed excessive peroxidation of polyunsaturated fatty acids. A growing body of evidence suggests that ferroptosis plays a pivotal role in inhibiting the tumor process. However, whether and how ferroptosis-inducers (FINs) play roles in hindering HNSCCs are unclear. In this study, we analyzed the sensitivity of different HNSCCs to ferroptosis-inducers. We found that only tongue squamous cell carcinoma cells and laryngeal squamous cell carcinoma cells, but not nasopharyngeal carcinoma cells, actively respond to ferroptosis-inducers. The different sensitivities of HNSCC cells to ferroptosis induction may be attributed to the expression of KRAS and ferritin heavy chain (FTH1) since a high level of FTH1 is associated with the poor prognostic survival of HNSCCs, but knocked down FTH1 can promote HNSCC cell death. Excitingly, the ferroptosis-inducer RSL3 plays a synthetic role with EGFR monoclonal antibody Cetuximab to inhibit the survival of nasopharyngeal carcinoma cells (CNE-2), which are insensitive to both ferroptosis induction and EGFR inhibition due to a high level of FTH1 and a low level of EGFR, respectively. Our findings prove that FTH1 plays a vital role in ferroptosis resistance in HNSCCs and also provide clues to target HNSCCs resistant to ferroptosis induction and/or EGFR inhibition.
Collapse
|
7
|
Targeting Wee1 kinase to suppress proliferation and survival of cisplatin-resistant head and neck squamous cell carcinoma. Cancer Chemother Pharmacol 2022; 89:469-478. [PMID: 35212780 DOI: 10.1007/s00280-022-04410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/11/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE We investigated the role of Wee1 kinase in cisplatin-resistant head and neck squamous cell carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines and determined the efficacy of either Wee1 inhibitor, AZD1775 alone, or in combination with cisplatin, on cisplatin-resistant HNSCC inhibition. METHODS Phosphorylation and total protein levels of cells were assessed by Western blot analysis. Cell viability and apoptosis were examined by MTS assay and flow cytometry, respectively. RESULTS Wee1 kinase protein expression levels in five cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin-sensitive partners. Importantly, Wee1 knockdown inhibited cell proliferation and re-sensitized cells to cisplatin treatment. Interestingly, previous studies have also shown that Wee1 inhibitor AZD1775 synergizes with cisplatin to suppress cell proliferation of cisplatin-sensitive HNSCC. We found that AZD1775 inhibited both cisplatin-sensitive and resistant HNSCC with similar IC50 values, which suggested that AZD1775 could overcome cisplatin resistance in cisplatin-resistant HNSCC. Mechanistically, AZD1775 and cisplatin cooperatively induced DNA damage and apoptosis. CONCLUSION Wee1 inhibitor, AZD1775, and cisplatin coordinately suppressed proliferation and survival of HNSCC.
Collapse
|
8
|
Tsompana M, Gluck C, Sethi I, Joshi I, Bard J, Nowak NJ, Sinha S, Buck MJ. Reactivation of super-enhancers by KLF4 in human Head and Neck Squamous Cell Carcinoma. Oncogene 2019; 39:262-277. [PMID: 31477832 DOI: 10.1038/s41388-019-0990-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a disease of significant morbidity and mortality and rarely diagnosed in early stages. Despite extensive genetic and genomic characterization, targeted therapeutics and diagnostic markers of HNSCC are lacking due to the inherent heterogeneity and complexity of the disease. Herein, we have generated the global histone mark based epigenomic and transcriptomic cartogram of SCC25, a representative cell type of mesenchymal HNSCC and its normal oral keratinocyte counterpart. Examination of genomic regions marked by differential chromatin states and associated with misregulated gene expression led us to identify SCC25 enriched regulatory sequences and transcription factors (TF) motifs. These findings were further strengthened by ATAC-seq based open chromatin and TF footprint analysis which unearthed Krüppel-like Factor 4 (KLF4) as a potential key regulator of the SCC25 cistrome. We reaffirm the results obtained from in silico and chromatin studies in SCC25 by ChIP-seq of KLF4 and identify ΔNp63 as a co-oncogenic driver of the cancer-specific gene expression milieu. Taken together, our results lead us to propose a model where elevated KLF4 levels sustains the oncogenic state of HNSCC by reactivating repressed chromatin domains at key downstream genes, often by targeting super-enhancers.
Collapse
Affiliation(s)
- Maria Tsompana
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christian Gluck
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Isha Sethi
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ishita Joshi
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jonathan Bard
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Norma J Nowak
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Satrajit Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| | - Michael J Buck
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
9
|
Receptor Tyrosine Kinase-Targeted Cancer Therapy. Int J Mol Sci 2018; 19:ijms19113491. [PMID: 30404198 PMCID: PMC6274851 DOI: 10.3390/ijms19113491] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
Collapse
|
10
|
Chen CF, Lu CC, Chiang JH, Chiu HY, Yang JS, Lee CY, Way TD, Huang HJ. Synergistic inhibitory effects of cetuximab and curcumin on human cisplatin-resistant oral cancer CAR cells through intrinsic apoptotic process. Oncol Lett 2018; 16:6323-6330. [PMID: 30333889 PMCID: PMC6176463 DOI: 10.3892/ol.2018.9418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR)-targeting monoclonal antibody (mAb), is a novel targeted therapy for the treatment of patients with oral cancer. Cetuximab can be used in combination with chemotherapeutic agents to prolong the overall survival rates of patients with oral cancer. Curcumin is a traditional Chinese medicine, and it has been demonstrated to have growth-inhibiting effects on oral cancer cells. However, information regarding the combination of cetuximab and curcumin in drug-resistant oral cancer cells is lacking, and its underlying mechanism remains unclear. The purpose of the present study was to explore the oral anticancer effects of cetuximab combined with curcumin on cisplatin-resistant oral cancer CAR cell apoptosis in vitro. The results demonstrated that combination treatment synergistically potentiated the effect of cetuximab and curcumin on the suppression of cell viability and induction of apoptosis in CAR cells. Cetuximab and curcumin combination induced apoptosis and dramatically increased caspase-3 and caspase-9 activities compared with singular treatment. Combination treatment also markedly suppressed the protein expression levels of EGFR and mitogen-activated protein kinases (MAPKs) signaling (phosphorylation of ERK, JNK and p38). The results demonstrated that co-treatment with cetuximab and curcumin exerts synergistic oral anticancer effects on CAR cells through the suppression of the EGFR signaling by regulation of the MAPK pathway.
Collapse
Affiliation(s)
- Chin-Fu Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi County 622, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Ying Lee
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C.,Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
11
|
Chen R, Jin G, Li W, McIntyre TM. Epidermal Growth Factor (EGF) Autocrine Activation of Human Platelets Promotes EGF Receptor-Dependent Oral Squamous Cell Carcinoma Invasion, Migration, and Epithelial Mesenchymal Transition. THE JOURNAL OF IMMUNOLOGY 2018; 201:2154-2164. [PMID: 30150285 DOI: 10.4049/jimmunol.1800124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Activated platelets release functional, high m.w. epidermal growth factor (HMW-EGF). In this study, we show platelets also express epidermal growth factor (EGF) receptor (EGFR) protein, but not ErbB2 or ErbB4 coreceptors, and so might respond to HMW-EGF. We found HMW-EGF stimulated platelet EGFR autophosphorylation, PI3 kinase-dependent AKT phosphorylation, and a Ca2+ transient that were blocked by EGFR tyrosine kinase inhibition. Strong (thrombin) and weak (ADP, platelet-activating factor) G protein-coupled receptor agonists and non-G protein-coupled receptor collagen recruited EGFR tyrosine kinase activity that contributed to platelet activation because EGFR kinase inhibition reduced signal transduction and aggregation induced by each agonist. EGF stimulated ex vivo adhesion of platelets to collagen-coated microfluidic channels, whereas systemic EGF injection increased initial platelet deposition in FeCl3-damaged murine carotid arteries. EGFR signaling contributes to oral squamous cell carcinoma (OSCC) tumorigenesis, but the source of its ligand is not established. We find individual platelets were intercalated within OSCC tumors. A portion of these platelets expressed stimulation-dependent Bcl-3 and IL-1β and so had been activated. Stimulated platelets bound OSCC cells, and material released from stimulated platelets induced OSCC epithelial-mesenchymal transition and stimulated their migration and invasion through Matrigel barriers. Anti-EGF Ab or EGFR inhibitors abolished platelet-induced tumor cell phenotype transition, migration, and invasion; so the only factor released from activated platelets necessary for OSCC metastatic activity was HMW-EGF. These results establish HMW-EGF in platelet function and elucidate a previously unsuspected connection between activated platelets and tumorigenesis through rapid, and prolonged, autocrine-stimulated release of HMW-EGF by tumor-associated platelets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ge Jin
- Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
| | - Wei Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106; and.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
12
|
Raulf N, Lucarelli P, Thavaraj S, Brown S, Vicencio JM, Sauter T, Tavassoli M. Annexin A1 regulates EGFR activity and alters EGFR-containing tumour-derived exosomes in head and neck cancers. Eur J Cancer 2018; 102:52-68. [PMID: 30142511 DOI: 10.1016/j.ejca.2018.07.123] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer with approximately half a million cases diagnosed each year worldwide. HNSCC has a poor survival rate which has not improved for over 30 years. The molecular pathogenesis of HNSCCs remains largely unresolved; there is high prevalence of p53 mutations and EGFR overexpression; however, the contribution of these molecular changes to disease development and/or progression remains unknown. We have recently identified microRNA miR-196a to be highly overexpressed in HNSCC with poor prognosis. Oncogenic miR-196a directly targets Annexin A1 (ANXA1). Although increased ANXA1 expression levels have been associated with breast cancer development, its role in HNSCC is debatable and its functional contribution to HNSCC development remains unclear. METHODS ANXA1 mRNA and protein expression levels were determined by RNA Seq analysis and immunohistochemistry, respectively. Gain- and loss-of-function studies were performed to analyse the effects of ANXA1 modulation on cell proliferation, mechanism of activation of EGFR signalling as well as on exosome production and exosomal phospho-EGFR. RESULTS ANXA1 was found to be downregulated in head and neck cancer tissues, both at mRNA and protein level. Its anti-proliferative effects were mediated through the intracellular form of the protein. Importantly, ANXA1 downregulation resulted in increased phosphorylation and activity of EGFR and its downstream PI3K-AKT signalling. Additionally, ANXA1 modulation affected exosome production and influenced the release of exosomal phospho-EGFR. CONCLUSIONS ANXA1 acts as a tumour suppressor in HNSCC. It is involved in the regulation of EGFR activity and exosomal phospho-EGFR release and could be an important prognostic biomarker.
Collapse
Affiliation(s)
- N Raulf
- Department of Molecular Oncology, King's College London, Guy's Hospital Campus, Hodgkin Building, London SE1 1UL, UK
| | - P Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, 4367 Belvaux, Luxembourg
| | - S Thavaraj
- Department of Head and Neck Pathology, Mucosal and Salivary Biology, Guy's Hospital Campus, King's College London, SE1 9RT, UK
| | - S Brown
- DCT3 Oral and Maxillofacial Histopathology, Department of Head & Neck Pathology, Guy's Hospital Campus, King's College London, SE1 9RT, UK
| | - J M Vicencio
- Research Department of Cancer Biology, Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - T Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, 4367 Belvaux, Luxembourg
| | - M Tavassoli
- Department of Molecular Oncology, King's College London, Guy's Hospital Campus, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
13
|
Albert S, Arndt C, Koristka S, Berndt N, Bergmann R, Feldmann A, Schmitz M, Pietzsch J, Steinbach J, Bachmann M. From mono- to bivalent: improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells in vitro and in vivo. Oncotarget 2018; 9:25597-25616. [PMID: 29876011 PMCID: PMC5986651 DOI: 10.18632/oncotarget.25390] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/28/2018] [Indexed: 02/06/2023] Open
Abstract
CAR-modified T cells show impressive results in clinical trials. However, cytokine release syndrome and "on-target, off-tumor" reactions represent most concerning side effects. To improve the safety of CAR-T cell therapy, we established a switchable CAR platform termed UniCAR system consisting of two components: UniCAR-modified T cells and tumor-specific target modules (TM). For treatment of EGFR+ epithelial tumors, we recently described a monovalent nanobody-based α-EGFR TM, either expressed in bacteria or eukaryotic cells. In spite of the identical primary sequence the eukaryotic TM showed a reduced killing capability and affinity. Here we describe a novel bivalent α-EGFR-EGFR TM. As expected, the avidity of the bivalent TM is higher than that of its monovalent counterpart. Binding of neither the monovalent α-EGFR TM nor the bivalent α-EGFR-EGFR TM to EGFR effected the EGF-mediated signaling. While the monovalent α-EGFR TM could only mediate the killing of tumor cells expressing high levels of EGFR, the bivalent α-EGFR-EGFR TM could redirect UniCAR T cells to tumor cells expressing low levels of EGFR. According to PET experiments in vivo, the increased avidity of the bivalent α-EGFR-EGFR TM improves the enrichment at the tumor site and its use for PET imaging.
Collapse
Affiliation(s)
- Susann Albert
- UniversityCancerCenter (UCC) Dresden, Tumor Immunology, ‘Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- German Cancer Consortium (DKTK), part\ner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), part\ner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Medical Faculty, ‘Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Germany
| | - Michael Bachmann
- UniversityCancerCenter (UCC) Dresden, Tumor Immunology, ‘Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- German Cancer Consortium (DKTK), part\ner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| |
Collapse
|
14
|
Becher F, Ciccolini J, Imbs DC, Marin C, Fournel C, Dupuis C, Fakhry N, Pourroy B, Ghettas A, Pruvost A, Junot C, Duffaud F, Lacarelle B, Salas S. A simple and rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: a GPCO-UNICANCER proof of concept study in head-and-neck cancer patients. Sci Rep 2017; 7:2714. [PMID: 28578404 PMCID: PMC5457398 DOI: 10.1038/s41598-017-02821-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Administration of first-in-class anti-EGFR monoclonal antibody cetuximab is contingent upon extensive pharmacogenomic testing. However in addition to tumor genomics, drug exposure levels could play a critical, yet largely underestimated role, because several reports have demonstrated that cetuximab pharmacokinetic parameters, in particular clearance values, were associated with survival in patients. Here, we have developed an original bioanalytical method based upon the use of LC-MS/MS technology and a simplified sample preparation procedure to assay cetuximab in plasma samples from patients, thus meeting the requirements of standard Therapeutic Drug Monitoring in routine clinical practice. When tested prospectively in a pilot study in 25 head-and-neck cancer patients, this method showed that patients with clinical benefit had cetixumab residual concentrations higher than non-responding patients (i.e., 49 ± 16.3 µg/ml VS. 25.8 ± 17 µg/ml, p < 0.01 t test). Further ROC analysis showed that 33.8 µg/ml was the Cmin threshold predictive of response with an acceptable sensitivity (87%) and specificity (78%). Mass spectrometry-based therapeutic drug monitoring of cetuximab in head-and-neck cancer patients could therefore help to rapidly predict cetuximab efficacy and to adapt dosing if required.
Collapse
Affiliation(s)
- François Becher
- Service de Pharmacologie et d'Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, 91191, Gif sur Yvette, France.,Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France
| | - Joseph Ciccolini
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France. .,Clinical Pharmacokinetics Laboratory, SMARTc unit, Inserm S_911 CRO2, Aix Marseille Univ and La Timone University Hospital of Marseille, Marseille, France.
| | - Diane-Charlotte Imbs
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France.,Clinical Pharmacokinetics Laboratory, SMARTc unit, Inserm S_911 CRO2, Aix Marseille Univ and La Timone University Hospital of Marseille, Marseille, France
| | - Clémence Marin
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France.,Clinical Pharmacokinetics Laboratory, SMARTc unit, Inserm S_911 CRO2, Aix Marseille Univ and La Timone University Hospital of Marseille, Marseille, France
| | - Claire Fournel
- Medical Oncology Unit, La Timone University Hospital of Marseille, Marseille, France
| | - Charlotte Dupuis
- Medical Oncology Unit, La Timone University Hospital of Marseille, Marseille, France
| | - Nicolas Fakhry
- Department of Head & Neck Surgery, La Conception University Hospital of Marseille, Marseille, France
| | - Bertrand Pourroy
- Onco-Pharma, La Timone University Hospital of Marseille, Marseille, France
| | - Aurélie Ghettas
- Service de Pharmacologie et d'Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, 91191, Gif sur Yvette, France
| | - Alain Pruvost
- Service de Pharmacologie et d'Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, 91191, Gif sur Yvette, France
| | - Christophe Junot
- Service de Pharmacologie et d'Immunoanalyse (SPI), CEA, INRA, Université Paris-Saclay, 91191, Gif sur Yvette, France
| | - Florence Duffaud
- Medical Oncology Unit, La Timone University Hospital of Marseille, Marseille, France
| | - Bruno Lacarelle
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France.,Clinical Pharmacokinetics Laboratory, SMARTc unit, Inserm S_911 CRO2, Aix Marseille Univ and La Timone University Hospital of Marseille, Marseille, France
| | - Sebastien Salas
- Medical Oncology Unit, La Timone University Hospital of Marseille, Marseille, France
| |
Collapse
|
15
|
Chae YK, Ranganath K, Hammerman PS, Vaklavas C, Mohindra N, Kalyan A, Matsangou M, Costa R, Carneiro B, Villaflor VM, Cristofanilli M, Giles FJ. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 2017; 8:16052-16074. [PMID: 28030802 PMCID: PMC5362545 DOI: 10.18632/oncotarget.14109] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) is a tyrosine kinase signaling pathway that has a fundamental role in many biologic processes including embryonic development, tissue regeneration, and angiogenesis. Increasing evidence indicates that this pathway plays a critical role in oncogenesis via gene amplification, activating mutations, or translocation in tumors of various histologies. With multiplex sequencing technology, the detection of FGFR aberrations has become more common and is tied to cancer cell proliferation, resistance to anticancer therapies, and neoangiogenesis. Inhibition of FGFR signaling appears promising in preclinical studies, suggesting a pathway of clinical interest in the development of targeted therapy. Phase I trials have demonstrated a manageable toxicity profile. Currently, there are multiple FGFR inhibitors under study with many non-selective (multi-kinase) inhibitors demonstrating limited clinical responses. As we progress from the first generation of non-selective drugs to the second generation of selective FGFR inhibitors, it is clear that FGFR aberrations do not behave uniformly across cancer types; thus, a deeper understanding of biomarker strategies is undoubtedly warranted. This review aims to consolidate data from recent clinical trials with a focus on selective FGFR inhibitors. As Phase II clinical trials emerge, concentration on patient selection as it pertains to predicting response to therapy, feasible methods for overcoming toxicity, and the likelihood of combination therapies should be utilized. We will also discuss qualities that may be desirable in future generations of FGFR inhibitors, with the hope that overcoming these current barriers will expedite the availability of this novel class of medications.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keerthi Ranganath
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Christos Vaklavas
- Division of Hematology Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nisha Mohindra
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Matsangou
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ricardo Costa
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
| | - Benedito Carneiro
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria M. Villaflor
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Massimo Cristofanilli
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J. Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
16
|
Precht C, Blessmann M, Kluwe L, Scheld T, Schön G, Henningsen A, Pflug C, Smeets R, Heiland M, Gröbe A. Lack of evidence for prognostic value of epidermal growth factor receptor intron-1 CA repeats for oral carcinomas. Eur J Oral Sci 2017; 125:95-101. [DOI: 10.1111/eos.12333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Clarissa Precht
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Marco Blessmann
- Department of Plastic; Reconstructive and Aesthetic Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Lan Kluwe
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Theresa Scheld
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Gerhard Schön
- Department of Medical Biometry and Epidemiology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Christina Pflug
- Department of Voice; Speech and Hearing Disorders; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Alexander Gröbe
- Department of Oral and Maxillofacial Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
17
|
Mena E, Thippsandra S, Yanamadala A, Redy S, Pattanayak P, Subramaniam RM. Molecular Imaging and Precision Medicine in Head and Neck Cancer. PET Clin 2016; 12:7-25. [PMID: 27863568 DOI: 10.1016/j.cpet.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concept of using tumor genomic profiling information has revolutionized personalized cancer treatment. Head and neck (HN) cancer management is being influenced by recent discoveries of activating mutations in epidermal growth factor receptor and related targeted therapies with tyrosine kinase inhibitors, targeted therapies for Kristen Rat Sarcoma, and MET proto-oncogenes. Molecular imaging using PET plays an important role in assessing the biologic behavior of HN cancer with the goal of delivering individualized cancer treatment. This review summarizes recent genomic discoveries in HN cancer and their implications for functional PET imaging in assessing response to targeted therapies, and drug resistance mechanisms.
Collapse
Affiliation(s)
- Esther Mena
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Shwetha Thippsandra
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Anusha Yanamadala
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Siddaling Redy
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Puskar Pattanayak
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Rathan M Subramaniam
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, USA; Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8896, USA; Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9096, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8896, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8896, USA.
| |
Collapse
|
18
|
Kennedy SP, Hastings JF, Han JZR, Croucher DR. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family. Front Cell Dev Biol 2016; 4:88. [PMID: 27597943 PMCID: PMC4992703 DOI: 10.3389/fcell.2016.00088] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022] Open
Abstract
Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies.
Collapse
Affiliation(s)
- Sean P Kennedy
- Systems Biology Ireland, University College DublinDublin, Ireland; Kinghorn Cancer Centre, Garvan Institute of Medical ResearchSydney, NSW, Australia
| | - Jordan F Hastings
- Kinghorn Cancer Centre, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Jeremy Z R Han
- Kinghorn Cancer Centre, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - David R Croucher
- Kinghorn Cancer Centre, Garvan Institute of Medical ResearchSydney, NSW, Australia; School of Medicine, University College DublinDublin, Ireland; St Vincent's Hospital Clinical School, University of New South WalesSydney, NSW, Australia
| |
Collapse
|