1
|
Aissa T, Aissaoui-Zid D, Moslah W, Khamessi O, Ksiksi R, Oltermann M, Ruck M, Zid MF, Srairi-Abid N. Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development. J Inorg Biochem 2024; 260:112672. [PMID: 39079338 DOI: 10.1016/j.jinorgbio.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV-Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4- and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.
Collapse
Affiliation(s)
- Taissir Aissa
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Dorra Aissaoui-Zid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| | - Wassim Moslah
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Oussema Khamessi
- University of Tunis El Manar, Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, Tunis, Tunisia.; Higher Institute of Biotechnology of Sidi Thabet ISBST, University of Manouba, 2020 Ariana,Tunisia
| | - Regaya Ksiksi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia; The Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG) of Soukra, Carthage University, 49 Avenue "August 13" Choutrana, II-2036 Soukra, Tunisia
| | - Maike Oltermann
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Ruck
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| |
Collapse
|
2
|
Shen S, Wang S, Zhou D, Wu X, Gao M, Wu J, Yang Y, Pan X, Wang N. A clinician's perspective on boron neutron capture therapy: promising advances, ongoing trials, and future outlook. Int J Radiat Biol 2024; 100:1126-1142. [PMID: 38986056 DOI: 10.1080/09553002.2024.2373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE This comprehensive review aims to provide a unique clinical perspective on the latest advances and ongoing boron neutron capture therapy (BNCT) trials for various cancers. METHODS We critically analyzed clinical data from BNCT trials for head and neck cancer, glioblastoma, melanoma, meningioma, breast cancer, and liver tumors. We investigated differences in tumor responses and normal tissue toxicities among trials and discussed potential contributing factors. We also identified the limitations of early BNCT trials and proposed strategies to optimize future trial design. RESULTS BNCT has shown promising results in treating head and neck cancer, with high response rates and improved survival in patients with recurrent disease. In glioblastoma, BNCT combined with surgery and chemotherapy has demonstrated survival benefits compared to standard treatments. BNCT has also been successfully used for recurrent high-grade meningiomas and shows potential for melanomas, extramammary Paget's disease, and liver tumors. However, differences in tumor responses and toxicities were observed among trials, potentially attributable to variations in treatment protocols, patient characteristics, and evaluation methods. CONCLUSIONS BNCT is a promising targeted radiotherapy for various cancers. Further optimization and well-designed randomized controlled trials are needed to establish its efficacy and safety. Future studies should focus on standardizing treatment protocols and addressing limitations to guide clinical decision-making and research priorities.
Collapse
Affiliation(s)
- Shumin Shen
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanghu Wang
- Department of Radiotherapy, Anhui Chest Hospital, Hefei, China
| | - Dachen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiuwei Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Mingzhu Gao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jinjin Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yucai Yang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxi Pan
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Nianfei Wang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Borzillo V, Muto P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers (Basel) 2021; 13:cancers13225859. [PMID: 34831017 PMCID: PMC8616425 DOI: 10.3390/cancers13225859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The non-surgical treatment of cutaneous and/or subcutaneous melanoma lesions involves a multitude of local treatments, including radiotherapy. This is often used when other local methods fail, and there are currently no clear guidelines or evidence-based recommendations to support its use in this setting. This review, collecting the retrospective and prospective experiences on radiotherapy alone or in combination with other methods, aims to provide a scenario of the possible advantages and disadvantages related to its use in the treatment of skin/subcutaneous melanoma lesions. Abstract Malignant melanoma frequently develops cutaneous and/or subcutaneous metastases during the course of the disease. These may present as non-nodal locoregional metastases (microsatellite, satellite, or in-transit) included in stage III or as distant metastases in stage IV. Their presentation is heterogeneous and associated with significant morbidity resulting from both disease-related functional damage and treatment side effects. The standard treatment is surgical excision, whereas local therapies or systemic therapies have a role when surgery is not indicated. Radiotherapy can be used in the local management of ITM, subcutaneous relapses, or distant metastases to provide symptom relief and prolong regional disease control. To increase the local response without increasing toxicity, the addition of hyperthermia and intralesional therapies to radiotherapy appear to be very promising. Boron neutron capture therapy, based on nuclear neutron capture and boron isotope fission reaction, could be an alternative to standard treatments, but its use in clinical practice is still limited. The potential benefit of combining radiotherapy with targeted therapies and immunotherapy has yet to be explored in this lesion setting. This review explores the role of radiotherapy in the treatment of cutaneous and subcutaneous lesions, its impact on outcomes, and its association with other treatment modalities.
Collapse
|
4
|
Development and in vivo evaluation of fused benzazole analogs of anti-melanoma agent HA15. Future Med Chem 2021; 13:1157-1173. [PMID: 34096325 DOI: 10.4155/fmc-2021-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: In line with our recent discovery of an efficient anticancer thiazolebenzenesulfonamide framework HA15 (1) based on a remarkable endoplasmic reticulum stress inducement mode of action, we report herein a series of innovative constrained HA15 analogs, featuring four types of bicylic derivatives. Results: The structure-activity relationship analysis, using a cell line assay, led us to identify a novel version of HA15: a new benzothiazole derivative (10b) exhibiting important anti-melanoma effect against sensitive and resistant melanoma cells. Meanwhile, compound 10b induced a significant tumor growth inhibition in vivo with no apparent signs of toxicity. Conclusion: These results consistently open new directions to improve and develop more powerful anticancer therapeutics harboring this type of fused framework.
Collapse
|
5
|
Song LB, Zhang QJ, Hou XY, Xiu YY, Chen L, Song NH, Lu Y. A twelve-gene signature for survival prediction in malignant melanoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:312. [PMID: 32355756 PMCID: PMC7186619 DOI: 10.21037/atm.2020.02.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Melanoma is defined as a highly mutational heterogeneous disease containing numerous alternations of the molecule. However, due to the phenotypically and genetically heterogeneity of malignant melanoma, conventional clinical characteristics remain restricted or limited in the ability to accurately predict individual outcomes and survival. This study aimed to establish an accurate gene expression signature to predict melanoma prognosis. Methods In this study, we established an RNA sequencing-based 12-gene signature data of melanoma patients obtained from 2 independent databases: the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We evaluated the quality of each gene to predict survival conditions in each database by employing univariate and multivariate regression models. A prognostic risk score based on a prognostic signature was determined. This prognostic gene signature further classified patients into low-risk and high-risk groups. Results Based on a prognostic signature, a prognostic risk score was determined. This prognostic gene signature further divided the patients into low-risk and high-risk groups. In the chemotherapy and radiotherapy groups of the TCGA cohort and V-raf murine sarcoma viral oncogene homolog B1 (BRAF) expression group in the GEO cohort, patients in the low-risk group had a longer survival duration compared to patients in the high-risk group. Nevertheless, the immunotherapy group in the TCGA database and neuroblastoma RAS viral oncogene homolog (NRAS) expression group in the GEO database had no significant differences in statistics. Moreover, this gene signature was associated with patient prognosis regardless of whether the Breslow depth was greater than or less than 3.75 mm. Stratified gene set enrichment analysis (GSEA) revealed that certain immune-related pathways, such as the T-cell signaling pathway, chemokine signaling pathway, and primary immunodeficiency, were significantly enriched in the low-risk group of both TCGA and GEO cohorts. This information implied the immune-related properties of the 12-gene signature. Conclusions Our study emphasizes the significance of the gene expression signature in that it may be an indispensable prognostic predictor in melanoma and has great potential for application in personalized treatment.
Collapse
Affiliation(s)
- Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Yuan Hou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan-Yan Xiu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
6
|
Appelbaum EN, Gross ND, Diab A, Bishop AJ, Nader ME, Gidley PW. Melanoma of the External Auditory Canal: A Review of Seven Cases at a Tertiary Care Referral Center. Laryngoscope 2020; 131:165-172. [PMID: 32065414 DOI: 10.1002/lary.28548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVES/HYPOTHESIS Examine the presentation and management characteristics of seven patients with melanoma of the external auditory canal (EAC). STUDY DESIGN Retrospective case series and review of the relevant literature. METHODS Records of seven patients from 2003 to 2017 with melanoma of the EAC were reviewed for characteristics of presentation, subsequent management, and outcomes. A thorough review of relevant literature is presented. RESULTS The median age is 52 years, with four females. The average Breslow depth was 3.6 mm, with five patients having a Clark level IV or greater on presentation. Six patients underwent lateral temporal bone resection, and one patient underwent wide local excision of the cartilaginous canal. Sentinel lymph node biopsy (SLNB) was performed in three patients. Three patients experienced distant recurrence an average of 20 months following primary therapy. Median follow-up was 21 months. At last follow-up, four were free of disease, one had active disease, and two were deceased from melanoma. CONCLUSIONS This is the largest series and the first to report the use of SLNB for patients with EAC melanoma in the peer-reviewed literature. Patients with external auditory canal melanoma present with higher Breslow thickness and stage relative to all external ear melanomas. Management should include wide local excision, which entails lateral temporal bone resection when the bony ear canal is involved. SLNB has a critical role in identifying patients with early metastatic disease. Postoperative radiation therapy should be considered for patients with high-risk features to reduce the risk of locoregional relapse. Chemotherapy, and especially immunotherapy, has an emerging role for this disease. LEVEL OF EVIDENCE 4 Laryngoscope, 131:165-172, 2021.
Collapse
Affiliation(s)
- Eric N Appelbaum
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neil D Gross
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi Diab
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew J Bishop
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, U.S.A
| | - Marc-Elie Nader
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul W Gidley
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 2020; 177:516-538. [PMID: 30414378 PMCID: PMC7012953 DOI: 10.1111/bph.14535] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In the present review, we will discuss the recent advances in the understanding of the role of histamine and histamine receptors in cancer biology. The controversial role of the histaminergic system in different neoplasias including gastric, colorectal, oesophageal, oral, pancreatic, liver, lung, skin, blood and breast cancers will be reviewed. The expression of histamine receptor subtypes, with special emphasis on the histamine H4 receptor, in different cell lines and human tumours, the signal transduction pathways and the associated biological responses as well as the in vivo treatment of experimental tumours with pharmacological ligands will be described. The presented evidence demonstrates that histamine regulates cancer-associated biological processes during cancer development in multiple cell types, including neoplastic cells and cells in the tumour micro-environment. The outcome will depend on tumour cell type, the level of expression of histamine receptors, signal transduction associated with these receptors, tumour micro-environment and histamine metabolism, reinforcing the complexity of cancer disease. Findings show the pivotal role of H4 receptors in the development and progression of many types of cancers, and considering its immunomodulatory properties, the H4 receptor appears to be the most promising molecular therapeutic target for cancer treatment within the histamine receptor family. Furthermore, the H4 receptor is differentially expressed in tumours compared with normal tissues, and in most cancer types in which data are available, H4 receptor expression is associated with clinicopathological characteristics, suggesting that H4 receptors might represent a novel cancer biomarker. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Noelia A Massari
- Department of Immunology, School of Natural and Health SciencesNational University of Patagonia San Juan BoscoComodoro RivadaviaArgentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Laboratory of Radioisotopes, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
8
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
9
|
Ow TJ, Grethlein SJ, Schmalbach CE. Do you know your guidelines? Diagnosis and management of cutaneous head and neck melanoma. Head Neck 2018; 40:875-885. [PMID: 29485688 DOI: 10.1002/hed.25074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023] Open
Abstract
The following article is the next installment of the series "Do You Know Your Guidelines?" presented by the Education Committee of the American Head and Neck Society. Guidelines for the prevention, diagnosis, workup, and management of cutaneous melanoma are reviewed in an evidence-based fashion.
Collapse
Affiliation(s)
- Thomas J Ow
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Sara Jo Grethlein
- Department of Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cecelia E Schmalbach
- Department of Otolaryngology - Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
10
|
Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci Rep 2018; 8:2728. [PMID: 29426920 PMCID: PMC5807383 DOI: 10.1038/s41598-018-21152-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
Combined treatment with 5-aminolevulinic acid (5-ALA) and X-rays improves tumor suppression in vivo. This is because the accumulated protoporphyrin IX from 5-ALA enhances the generation of ROS by the X-ray irradiation. In the present study, a high-energy medical linear accelerator was used instead of a non-medical low energy X-ray irradiator, which had been previously used. Tumor-bearing mice implanted with B16-BL6 melanoma cells were treated with fractionated doses of irradiation (in total, 20 or 30 Gy), using two types of X-ray irradiator after 5-ALA administration. Suppression of tumor growth was enhanced with X-ray irradiation in combination with 5-ALA treatment compared with X-ray treatment alone, using both medical and non-medical X-ray irradiators. 5-ALA has been used clinically for photodynamic therapy. Thus, “radiodynamic therapy”, using radiation from medical linacs as a physical driving force, rather than the light used in photodynamic therapy, may have potential clinical applications.
Collapse
|
11
|
Fernandes AR, Santos AC, Sanchez-Lopez E, Kovačević AB, Espina M, Calpena AC, Veiga FJ, Garcia ML, Souto EB. Neoplastic Multifocal Skin Lesions: Biology, Etiology, and Targeted Therapies for Nonmelanoma Skin Cancers. Skin Pharmacol Physiol 2017; 31:59-73. [PMID: 29262420 DOI: 10.1159/000479529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
Abstract
Neoplastic skin lesions are multifocal, diffuse skin infiltrations of particular relevance in the differential diagnosis of ulcerative, nodular, or crusting skin lesions. Nonmelanoma skin cancers (NMSCs), namely, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and also actinic keratosis (AK), are the most common malignant tumors in humans. BCCs do not proliferate rapidly and most of the times do not metastasize, while SCCs are more infiltrative, metastatic, and destructive. AKs are precursor lesions of cutaneous SCCs. The classical therapy of NMSCs makes use of photodynamic therapy associated with chemotherapeutics. With improved understanding of the pathological mechanisms of tumor initiation, progression, and differentiation, a case is made towards the use of targeted chemotherapy with the intent to reduce the cytotoxicity of classical treatments. The present review aims to describe the current state of the art on the knowledge of NMSC, including its risks factors, oncogenes, and skin carcinogenesis, discussing the classical therapy against new therapeutic options.
Collapse
Affiliation(s)
- Ana R Fernandes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ota K, Adar T, Dover L, Khachemoune A. Review: the reemergence of brachytherapy as treatment for non-melanoma skin cancer. J DERMATOL TREAT 2017; 29:170-175. [PMID: 28604229 DOI: 10.1080/09546634.2017.1341617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electronic brachytherapy (EBT) has seen a significant rise in use over the past few years in treating non-melanoma skin cancer (NMSC). However, the current literature in EBT remains scarce. Existing data on high-dose rate brachytherapy (HDR-BT) with surface applicators is often used to justify its efficacy and safety. In this review we study the two treatment modalities on their efficacy in treating NMSC and we explore the reasons behind the recent uprise in EBT. A literature review using PubMed was performed for articles published until January 2017 studying efficacy of HDR-BT and EBT for treating NMSC. HDR-BT demonstrated effective local control ranging from 96.2% to 100% up to 66 months of follow-up with acceptable cosmesis. For EBT, local control rates ranged from 90% to 100% with generally favorable tolerance and cosmesis outcome after roughly one year. While longer term data on EBT is needed, its short term efficacy shows promise as a possible alternative to surgery or other radiation therapy in a select group of patients.
Collapse
Affiliation(s)
- Koji Ota
- a SUNY Downstate Medical Center , Brooklyn , NY , USA
| | - Tony Adar
- b Department of Dermatology , SUNY Downstate Medical Center , Brooklyn , NY , USA
| | - Laura Dover
- c Department of Radiation Oncology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Amor Khachemoune
- d Dermatology Service , Veterans Affairs Hospital & SUNY Downstate , Brooklyn , NY , USA
| |
Collapse
|
13
|
Massari NA, Nicoud MB, Sambuco L, Cricco GP, Lamas DJM, Ducloux MVH, Blanco H, Rivera ES, Medina VA. Histamine therapeutic efficacy in metastatic melanoma: Role of histamine H4 receptor agonists and opportunity for combination with radiation. Oncotarget 2017; 8:26471-26491. [PMID: 28460440 PMCID: PMC5432273 DOI: 10.18632/oncotarget.15594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/16/2023] Open
Abstract
The aims of the work were to improve our knowledge of the role of H4R in melanoma proliferation and assess in vivo the therapeutic efficacy of histamine, clozapine and JNJ28610244, an H4R agonist, in a preclinical metastatic model of melanoma. Additionally, we aimed to investigate the combinatorial effect of histamine and gamma radiation on the radiobiological response of melanoma cells.Results indicate that 1205Lu metastatic melanoma cells express H4R and that histamine inhibits proliferation, in part through the stimulation of the H4R, and induces cell senescence and melanogenesis. Daily treatment with H4R agonists (1 mg/kg, sc) exhibited a significant in vivo antitumor effect and importantly, compounds reduced metastatic potential, particularly in the group treated with JNJ28610244, the H4R agonist with higher specificity. H4R is expressed in benign and malignant lesions of melanocytic lineage, highlighting the potential clinical use of histamine and H4R agonists. In addition, histamine increased radiosensitivity of melanoma cells in vitro and in vivo. We conclude that stimulation of H4R by specific ligands may represent a novel therapeutic strategy in those tumors that express this receptor. Furthermore, through increasing radiation-induced response, histamine could improve cancer radiotherapy for the treatment of melanoma.
Collapse
Affiliation(s)
- Noelia A. Massari
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Immunology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Melisa B. Nicoud
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | | - Graciela P. Cricco
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Diego J. Martinel Lamas
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María V. Herrero Ducloux
- Pathology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Horacio Blanco
- Hospital Municipal de Oncología “Marie Curie”, Buenos Aires, Argentina
| | - Elena S. Rivera
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanina A. Medina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|