1
|
Yin H, Jiang D, Li Y, Chen W, Zhang J, Yang X, Hu J, Wei H. KDELR1 regulates chondrosarcoma drug resistance and malignant behavior through Intergrin-Hippo-YAP1 axis. Cell Death Dis 2024; 15:928. [PMID: 39715773 DOI: 10.1038/s41419-024-07264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma (CS) is the second most common primary bone malignancy, known for its unique transcriptional landscape that renders most CS subtypes resistant to chemotherapy, including neoadjuvant chemotherapy commonly used in osteosarcoma (OS) treatment. Understanding the transcriptional landscape of CS and the mechanisms by which key genes contribute to chemotherapy resistance could be a crucial step in overcoming this challenge. To address this, we developed a single-cell transcriptional map of CS, comparing it with OS and normal cancellous bone. Our analysis revealed a specific increase in KDEL receptor 1 (KDELR1) expression in CS, which was closely associated with CS prognosis, tumor aggressiveness, and drug resistance. KDELR1 plays a key role in regulating membrane protein processing and secretion, as well as contributing to tumor extracellular matrix (ECM) formation and drug resistance. Further investigation using mass spectrometry proteomics and transcriptomics uncovered KDELR1's involvement in modulating the Hippo-YAP pathway activity in CS cells. The KDELR1-Integrin-PLCγ-YAP1 axis emerges as a critical process mediating drug resistance and malignant behavior in CS, offering novel insights and potential therapeutic targets for CS treatment.
Collapse
Affiliation(s)
- Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Dongjie Jiang
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yongai Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Wenjun Chen
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jie Zhang
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
2
|
Romano E, Perut F, Avnet S, Di Pompo G, Silvestri S, Roffo F, Baldini N, Netti PA, Torino E. Mesenchymal Stem Cells-Derived Small Extracellular Vesicles and Their Validation as a Promising Treatment for Chondrosarcoma in a 3D Model in Vitro. Biotechnol Bioeng 2024. [PMID: 39690717 DOI: 10.1002/bit.28909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Chondrosarcomas (CHS) constitute approximately 20% of all primary malignant bone tumors, characterized by a slow growth rate with initial manifestation of few signs and symptoms. These malignant cartilaginous neoplasms, particularly those with dedifferentiated histological subtypes, pose significant therapeutic challenges, as they exhibit high resistance to both radiation and chemotherapy. Ranging from relatively benign, low-grade tumors (grade I) to aggressive high-grade tumors with the potential for lung metastases and a grim prognosis, there is a critical need for innovative diagnostic and therapeutic approaches, particularly for patients with more aggressive forms. Herein, small extracellular vesicles (sEVs) derived from mesenchymal stem cells are presented as an efficient nanodelivery tool to enhance drug penetration in an in vitro 3D model of CHS. Employing high-pressure homogenization (HPH), we achieved unprecedented encapsulation efficiency of doxorubicin (DXR) in sEVs derived from mesenchymal stem cells (MSC-EVs). Subsequently, a comparative analysis between free DXR and MSC-EVs encapsulated with DXR (DXR-MSC-EVs) was conducted to assess their penetration and uptake efficacy in the 3D model. The results unveiled a higher incidence of necrotic cells and a more pronounced toxic effect with DXR-MSC-EVs compared to DXR alone. This underscores the remarkable ability of MSC-EVs to deliver drugs in complex environments, highlighting their potential application in the treatment of aggressive CHS.
Collapse
Affiliation(s)
- Eugenia Romano
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Simona Silvestri
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Naples, Italy
| | - Felicia Roffo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Naples, Italy
| | - Enza Torino
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Naples, Italy
| |
Collapse
|
3
|
Hadar AK, Budi MNS, Nuriandi MA, Fachri D. A total en bloc spondylectomy and reconstruction of vertebra thoracal IV-VI in primary large chondrosarcoma: A rare surgical case report. Int J Surg Case Rep 2024; 124:110391. [PMID: 39357488 PMCID: PMC11471749 DOI: 10.1016/j.ijscr.2024.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Chondrosarcomas are rare malignant cartilaginous neoplasms, account for the second most common primary bone tumor. Several surgical approaches for achieving en bloc resection have been mentioned in previous studies. This study aimed to present a rare case of chondrosarcoma involving T4-T6 vertebrae that underwent total spondylectomy. PRESENTATION OF CASE A 36-year-old male was presented with signs and symptoms of thoracal foraminal stenosis due to mass effect of primary chondrosarcoma arising from the 5th thoracal vertebrae. The plain radiograph and MRI showed the characteristic features of chondrosarcoma. Biopsy result was a grade I chondrosarcoma. The patient underwent total spondylectomy of T4-T6 vertebrae, along with posterior stabilization, tubular cage insertion, thoracotomy, and bilateral chest tube insertion. CLINICAL DISCUSSION Most complaints of spinal chondrosarcomas are localized back pain, swelling, and neurological deficits. The radiological features vary significantly, starts with lysis, to a moth-eaten destruction and interrupted periosteal reaction. Biopsy may classify the disease into conventional and variant types. The former one can further classified as primary and secondary tumor, both are graded as relation to prognosis and metastases. The primary treatment is surgical excision, while radiotherapy and chemotherapy are resistant in many cases. Recurrence commonly appears within 3-5 years postoperatively. THE CONCLUSION As the primary modality for chondrosarcoma, surgery should aim at preserving or even improving functionality, relieving pain, and controlling local tumor recurrence, promising a prolonged survival. Besides the tumor grade, a successful operation, in terms of complete tumor excision with disease-free margins is a major independent prognostic predictor of the disease, affecting critically both local tumor control and patient survival. Spondylectomy enables wide or marginal resection of malignant lesions of the spine in most cases with acceptable morbidity. However, it induces a significant surgical challenge. The proximity of neurovascular and visceral structures combined with complex spinal anatomy makes the goal of wide margins difficult.
Collapse
Affiliation(s)
- A K Hadar
- Department of Orthopaedics and Traumatology, Faculty of medicine Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - M N S Budi
- Department of Orthopaedics and Traumatology, Faculty of medicine Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - M A Nuriandi
- Department of Orthopaedics and Traumatology, Faculty of medicine Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - D Fachri
- Department of Orthopaedics and Traumatology, Faculty of medicine Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia.
| |
Collapse
|
4
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
5
|
Duan H, Li J, Ma J, Chen T, Zhang H, Shang G. Global research development of chondrosarcoma from 2003 to 2022: a bibliometric analysis. Front Pharmacol 2024; 15:1431958. [PMID: 39156101 PMCID: PMC11327078 DOI: 10.3389/fphar.2024.1431958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Chondrosarcomas are common primary malignant bone tumors; however, comprehensive bibliometric analysis in this field has not yet been conducted. Therefore, this study aimed to explore the research hotspots and trends in the field of chondrosarcoma through bibliometric analysis to help researchers understand the current status and direction of research in the field. Methods Articles and reviews related to chondrosarcoma published between 2003 and 2022 were retrieved from the Web of Science. Countries, institutions, authors, journals, references, and keywords in this field were visualized and analyzed using CtieSpace and VOSviewer software. Results Between 2003 and 2022, 4,149 relevant articles were found. The number of articles published on chondrosarcoma has increased significantly annually, mainly from 569 institutions in China and the United States, and 81 in other countries. In total, 904 authors participated in the publication of studies related to chondrosarcomas. Over the past 20 years, articles on chondrosarcoma have been published in 958 academic journals, with Skeletal Radiology having the highest number of publications. Furthermore, keywords such as "gene expression," "radiotherapy," "experience," and "apoptosis" have been popular in recent years. Conclusion Over the past 20 years, the global trend in chondrosarcoma research has primarily been clinical research, with basic research as a supplement. In the future, communication and exchange between countries and institutions should be strengthened. Further, the future main research hotspots in the field of chondrosarcoma include mutated genes and signaling pathways, precision surgical treatment, proton therapy, radiation therapy, chemotherapy, immunotherapy, and other aspects.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Yang X, Yang S, Bao Y, Wang Q, Peng Z, Lu S. Novel machine-learning prediction tools for overall survival of patients with chondrosarcoma: Based on recursive partitioning analysis. Cancer Med 2024; 13:e70058. [PMID: 39123313 PMCID: PMC11315679 DOI: 10.1002/cam4.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Chondrosarcoma (CHS), a bone malignancy, poses a significant challenge due to its heterogeneous nature and resistance to conventional treatments. There is a clear need for advanced prognostic instruments that can integrate multiple prognostic factors to deliver personalized survival predictions for individual patients. This study aimed to develop a novel prediction tool based on recursive partitioning analysis (RPA) to improve the estimation of overall survival for patients with CHS. METHODS Data from the Surveillance, Epidemiology, and End Results (SEER) database were analyzed, including demographic, clinical, and treatment details of patients diagnosed between 2000 and 2018. Using C5.0 algorithm, decision trees were created to predict survival probabilities at 12, 24, 60, and 120 months. The performance of the models was assessed through confusion scatter plot, accuracy rate, receiver operator characteristic (ROC) curve, and area under ROC curve (AUC). RESULTS The study identified tumor histology, surgery, age, visceral (brain/liver/lung) metastasis, chemotherapy, tumor grade, and sex as critical predictors. Decision trees revealed distinct patterns for survival prediction at each time point. The models showed high accuracy (82.40%-89.09% in training group, and 82.16%-88.74% in test group) and discriminatory power (AUC: 0.806-0.894 in training group, and 0.808-0.882 in test group) in both training and testing datasets. An interactive web-based shiny APP (URL: https://yangxg1209.shinyapps.io/chondrosarcoma_survival_prediction/) was developed, simplifying the survival prediction process for clinicians. CONCLUSIONS This study successfully employed RPA to develop a user-friendly tool for personalized survival predictions in CHS. The decision tree models demonstrated robust predictive capabilities, with the interactive application facilitating clinical decision-making. Future prospective studies are recommended to validate these findings and further refine the predictive model.
Collapse
Affiliation(s)
- Xiong‐Gang Yang
- Department of Orthopedics, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- The Key Laboratory of Digital Orthopedics of Yunnan ProvinceKunmingYunnanChina
| | - Shan‐Shan Yang
- Department of ProsthodonticsAffiliated Stomatological Hospital of Zunyi Medical University, Zunyi Medical UniversityZunyiChina
| | - Yi Bao
- Department of Orthopedics, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- The Key Laboratory of Digital Orthopedics of Yunnan ProvinceKunmingYunnanChina
| | - Qi‐Yang Wang
- Department of Orthopedics, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- The Key Laboratory of Digital Orthopedics of Yunnan ProvinceKunmingYunnanChina
| | - Zhi Peng
- Department of Orthopedics, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- The Key Laboratory of Digital Orthopedics of Yunnan ProvinceKunmingYunnanChina
| | - Sheng Lu
- Department of Orthopedics, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
- The Key Laboratory of Digital Orthopedics of Yunnan ProvinceKunmingYunnanChina
| |
Collapse
|
7
|
Zhu J, Wei R, Hu G, Wang H, Wang W, Wang H, Huang J, Wang Y, Li Y, Meng H. Development of Injectable Thermosensitive Nanocomposite Hydrogel for Ratiometric Drug Delivery to Treat Drug Resistant Chondrosarcoma In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310340. [PMID: 38456789 DOI: 10.1002/smll.202310340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Chondrosarcoma(CS), a prevalent primary malignant bone tumor, frequently exhibits chemotherapy resistance attributed to upregulated anti-apoptosis pathways such as the Bcl-2 family. In this manuscript, a new strategy is presented to augment chemosensitivity and mitigate systemic toxicity by harnessing a nano-enabled drug delivery hydrogel platform. The platform utilizes "PLGA-PEG-PLGA", an amphiphilic triblock copolymer combining hydrophilic polyethylene glycol (PEG) and hydrophobic polylactide glycolide (PLGA) blocks, renowned for its properties conducive to crafting a biodegradable, temperature-sensitive hydrogel. This platform is tailored to encapsulate a ratiometrically designed dual-loaded liposomes containing a first-line chemo option for CS, Doxorubicin (Dox), plus a calculated amount of small molecule inhibitor for anti-apoptotic Bcl-2 pathway, ABT-737. In vitro and in vivo evaluations demonstrate successful Bcl-2 suppression, resulting in the restoration of Dox sensitivity, evident through impeded tumor growth and amplified necrosis rates at the tumor site. This delivery system showcases remarkable thermal responsiveness, injectability, and biodegradability, all finely aligned with the clinical demands of CS treatment. Collectively, this study introduces a transformative avenue for tackling drug resistance in CS chemotherapy, offering significant clinical potential.
Collapse
Affiliation(s)
- Jiahui Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenbin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Academy of Medical Sciences, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, 450052, China
| | - Haiqiang Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jidan Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- USTC Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Yu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yujing Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Papalia GF, Ariyaratne S, Vaiyapuri S, Botchu R, Kurisunkal V. Unusual soft tissue metastases in a patient with chondrosarcoma: a case report. Int Cancer Conf J 2024; 13:313-318. [PMID: 38962050 PMCID: PMC11217250 DOI: 10.1007/s13691-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 07/05/2024] Open
Abstract
Chondrosarcoma (CS) is the second most frequent primary malignant bone tumour, characterized by production of non-osteoid cartilage matrix. Up to more than 30% of patients with CS present distant metastases, and the lungs represent the preferred site. Hence, CS soft tissue metastases and superficial cutaneous lesions are extremely rare. We report the case of a female who developed unusual multiple soft tissue CS metastases. This patient underwent left hindquarter amputation for recurrent grade 3 chondrosarcoma of the femoral neck with extension to the pelvis approximately 4 years after internal fixation with an intramedullary nail for pathological fracture of left proximal femur and subsequent total proximal femoral endoprosthetic replacement for grade 1-2 chondrosarcoma. In the following years, she underwent metastasectomy for several grade 2 pulmonary metastatic chondrosarcomas. More than 14 years after the amputation, she presented with multiple unusual superficial cutaneous lesions, and a whole-body magnetic resonance imaging demonstrated multiple soft tissue foci of metastatic disease. The histology of multiple soft tissue lesions excised confirmed metastatic chondrosarcoma. Then, she underwent marginal excision of further multifocal soft tissue metastatic high-grade chondrosarcoma. Unlike the poor survival from the onset of these metastases in the other cases reported in the literature, our patient is still alive 2 years after the first multiple soft tissue excision of metastatic chondrosarcoma, and approximately 20 years after the diagnosis of chondrosarcoma. Soft tissue CS metastases are a rare entity with few cases described in literature. This study aims to make the reader aware of this lesser-known CS manifestation.
Collapse
Affiliation(s)
- Giuseppe Francesco Papalia
- Department of Orthopedic Oncology, Royal Orthopedic Hospital, Birmingham, UK
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Sisith Ariyaratne
- Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham, UK
| | | | - Rajesh Botchu
- Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham, UK
| | - Vineet Kurisunkal
- Department of Orthopedic Oncology, Royal Orthopedic Hospital, Birmingham, UK
| |
Collapse
|
9
|
Chongchai A, Bentayebi K, Chu G, Yan W, Waramit S, Phitak T, Kongtawelert P, Pothacharoen P, Suwan K, Hajitou A. Targeted treatment of chondrosarcoma with a bacteriophage-based particle delivering a secreted tumor necrosis factor-related apoptosis-inducing ligand. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200805. [PMID: 38745750 PMCID: PMC11090904 DOI: 10.1016/j.omton.2024.200805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Chondrosarcoma (CS) is a malignant cartilage-forming bone tumor that is inherently resistant to chemotherapy and radiotherapy, leaving surgery as the only treatment option. We have designed a tumor-targeted bacteriophage (phage)-derived particle (PDP), for targeted systemic delivery of cytokine-encoding transgenes to solid tumors. Phage has no intrinsic tropism for mammalian cells; therefore, it was engineered to display a double cyclic RGD4C ligand on the capsid to target tumors. To induce cancer cell death, we constructed a transgene cassette expressing a secreted form of the cytokine tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). We detected high expression of αvβ3 and αvβ5 integrin receptors of the RGD4C ligand, and of the TRAIL receptor-2 in human CS cells (SW1353), but not in primary normal chondrocytes. The RGD4C.PDP-Luc particle carrying a luciferase reporter gene, Luc, effectively and selectively mediated gene delivery to SW1353 cells, but not primary chondrocytes. Transduction of SW1353 cells with RGD4C.PDP-sTRAIL encoding a human sTRAIL, resulted in the expression of TRAIL and subsequent cell death without harming the normal chondrocytes. Intravenous administration of RGD4C.PDP-sTRAIL to mice with established human CS resulted in a decrease in tumor size and tumor viability. Altogether, RGD4C.PDP-sTRAIL can be used to target systemic treatment of CS with the sTRAIL.
Collapse
Affiliation(s)
- Aitthiphon Chongchai
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kaoutar Bentayebi
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
- Medical Biotechnology Laboratory, Rabat Medical and Pharmacy School, Mohammed V University, Rabat 10100, Morocco
| | - Grace Chu
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Wenqing Yan
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Sajee Waramit
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Thanyaluck Phitak
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Keittisak Suwan
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Amin Hajitou
- Cancer Phage Therapy Laboratory, Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| |
Collapse
|
10
|
Miller J, Fitzpatrick B, Begley B, Frank S, Mazzei C, Giacalone J, Wittig J. Presentation, treatment, and outcomes of chondrosarcoma in young adult patients less than age 50: A case series of ten patients. J Cancer Res Ther 2024; 20:1061-1065. [PMID: 39023620 DOI: 10.4103/jcrt.jcrt_2392_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2023] [Indexed: 07/20/2024]
Abstract
ABSTRACT Chondrosarcoma is an aggressive bone tumor typically affecting older adults in the 6th and 7th decade. These tumors often present as painful masses in the pelvis, ribs, and long bones and have certain characteristic features on the imaging leading to the diagnosis. The occurrence of these tumors in the young adult population is a rare condition that is not well described. Often, they may be confused with benign counterparts, enchondroma or osteochondroma, which does not require any treatment and are very common. The aim of this case series was to analyze the patient presentation and radiographic image findings as well as surgical treatment and outcomes of ten young adults with chondrosarcoma over a three-year period. Overall, imaging of these tumors in young adults did not necessarily demonstrate all typical features of chondrosarcomas such as endosteal scalloping, calcifications, lobular growth, and high uptake on whole-body bone scans. One patient in the case series passed away from complications from dedifferentiated chondrosarcoma, and nine patients have recovered with no local recurrence.
Collapse
Affiliation(s)
- Justin Miller
- Department of Orthopedic Surgery, Morristown Medical Center, Morristown, NJ, United States
| | - Brendan Fitzpatrick
- Jacobs School of Medicine and Biomedical Sciences - University at Buffalo, Buffalo, NY, United States
| | - Brian Begley
- Medical student, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Samantha Frank
- Department of Orthopedic Surgery, Morristown Medical Center, Morristown, NJ, United States
| | - Christopher Mazzei
- Department of Orthopedic Surgery, Morristown Medical Center, Morristown, NJ, United States
| | - Joseph Giacalone
- Department of Orthopedic Surgery, Morristown Medical Center, Morristown, NJ, United States
| | - James Wittig
- Department of Orthopedic Surgery, Morristown Medical Center, Morristown, NJ, United States
| |
Collapse
|
11
|
Ioakeim-Ioannidou M, Rose M, Chen YL, MacDonald SM. The Use of Proton and Carbon Ion Radiation Therapy for Sarcomas. Semin Radiat Oncol 2024; 34:207-217. [PMID: 38508785 DOI: 10.1016/j.semradonc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The unique physical and biological characteristics of proton and carbon ions allow for improved sparing of normal tissues, decreased integral dose to the body, and increased biological effect through high linear energy transfer. These properties are particularly useful for sarcomas given their histology, wide array of locations, and age of diagnosis. This review summarizes the literature and describes the clinical situations in which these heavy particles have advantages for treating sarcomas.
Collapse
Affiliation(s)
| | - Melanie Rose
- Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Yen-Lin Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
12
|
Yin J, Ren P. New advances in the treatment of chondrosarcoma under the PD-1/PD-L1 pathway. J Cancer Res Ther 2024; 20:522-530. [PMID: 38687921 DOI: 10.4103/jcrt.jcrt_2269_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/02/2024] [Indexed: 05/02/2024]
Abstract
ABSTRACT Bone sarcomas encompass a group of spontaneous mesenchymal malignancies, among which osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma are the most common subtypes. Chondrosarcoma, a relatively prevalent malignant bone tumor that originates from chondrocytes, is characterized by endogenous cartilage ossification within the tumor tissue. Despite the use of aggressive treatment approaches involving extensive surgical resection, chemotherapy, and radiotherapy for patients with osteosarcoma, chondrosarcoma, and chordoma, limited improvements in patient outcomes have been observed. Furthermore, resistance to chemotherapy and radiation therapy has been observed in chondrosarcoma and chordoma cases. Consequently, novel therapeutic approaches for bone sarcomas, including chondrosarcoma, need to be uncovered. Recently, the emergence of immunotherapy and immune checkpoint inhibitors has garnered attention given their clinical success in various diverse types of cancer, thereby prompting investigations into their potential for managing chondrosarcoma. Considering that circumvention of immune surveillance is considered a key factor in the malignant progression of tumors and that immune checkpoints play an important role in modulating antitumor immune effects, blockers or inhibitors targeting these immune checkpoints have become effective therapeutic tools for patients with tumors. One such checkpoint receptor implicated in this process is programmed cell death protein-1 (PD-1). The association between PD-1 and programmed cell death ligand-1 (PD-L1) and cancer progression in humans has been extensively studied, highlighting their remarkable potential as biomarkers for cancer treatment. This review comprehensively examines available studies on current chondrosarcoma treatments and advancements in anti-PD-1/PD-L1 blockade therapy for chondrosarcoma.
Collapse
Affiliation(s)
- Jiawei Yin
- Trauma Department of Orthopedics, The Second Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
13
|
Trovarelli G, Sbaraglia M, Angelini A, Bellan E, Pala E, Belluzzi E, Pozzuoli A, Borga C, Dei Tos AP, Ruggieri P. Are IDH1 R132 Mutations Associated With Poor Prognosis in Patients With Chondrosarcoma of the Bone? Clin Orthop Relat Res 2024; 482:00003086-990000000-01457. [PMID: 38170705 PMCID: PMC11124741 DOI: 10.1097/corr.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Because chondrosarcomas vary widely in their behavior, and because anticipating their behavior based on histology alone can be challenging, genetic markers represent an appealing area of inquiry that may help us refine our prognostic approaches. Isocitrate dehydrogenase (IDH) mutations are involved in the pathogenesis of a variety of neoplasms, and recently, IDH1/2 mutations have been found in the tissue of benign cartilage tumors as well as in conventional chondrosarcomas and highly aggressive dedifferentiated chondrosarcomas. However, their association with patient survival is still controversial. QUESTIONS/PURPOSES (1) What proportion of patients with chondrosarcomas carry IDH mutations, and which IDH mutations can be found? (2) Are any specific IDH mutations associated with poorer overall survival, metastasis-free survival, or local recurrence-free survival? METHODS Between April 2017 and December 2022, we treated 74 patients for atypical cartilaginous tumors or chondrosarcomas in a musculoskeletal tumor referral center. Patients were considered potentially eligible for the present study if the histologic diagnosis was confirmed by two expert soft tissue and bone pathologists following the current WHO classification, complete preoperative imaging and follow-up data were available, surgical excision was performed by sarcoma orthopaedic surgeons directed by a team leader, and the minimum follow-up was 2 years after surgical treatment unless the patient died. Data including sex, age, diagnosis, grade, type of operation, local recurrence, metastasis, and oncologic follow-up were recorded. Forty-one patients (55%) were eligible for the study. For each patient, DNA was extracted and quantified from paraffin-embedded sections of tumor tissue, and the mutational status of IDH1 (codons 105 and 132) and IDH2 (codons 140 and 172) genes was assessed. Of those, 56% (23 of 41) of patients had adequate DNA for analysis of IDH mutations: 10 male and 13 female patients, with a median age of 59 years (range 15 to 98 years). There were 22 conventional chondrosarcomas (8 atypical cartilaginous tumors, 11 Grade 2, and 3 Grade 3) and 1 dedifferentiated chondrosarcoma. Stage was IA in 3 patients, IB in 5, IIA in 1, IIB in 13, and III in 1, according to the Musculoskeletal Tumor Society classification. At a median follow-up of 3.5 years (range 4 months to 5.6 years), 14 patients were disease-free, 2 were alive with disease, and 7 died (3 within 2 years from surgery). Eight patients had metastases, and 7 developed local recurrence. We determined the proportion of patients who carried IDH mutations, and compared patients with and without those mutations in terms of overall survival, metastasis-free survival, and local recurrence-free survival using Kaplan-Meier curves. RESULTS Six patients showed wild-type IDH genes, and 17 had IDH mutations (12 had IDH1 R132, 3 had IDH1 G105, and 2 had IDH2 R172). Overall survival at 2 years using the Kaplan-Meier estimator was lower in patients with an IDH mutation than in those with the wild-type gene (75% [95% confidence interval 50% to 99%] versus 100% [95% CI 100% to 100%]; p = 0.002). Two-year metastasis-free survival was also lower in patients with an IDH mutation than in those with the wild-type gene (33% [95% CI 7% to 60%] versus 100% [95% CI 100% to 100%]; p = 0.001), as was 2-year local recurrence-free survival (70% [95% CI 42% to 98%] versus 100% [95% CI 100% to 100%]; p = 0.02). CONCLUSION We found that IDH1 R132 mutations were negatively associated with the prognosis of patients with bone chondrosarcomas. Nevertheless, more extensive studies (such as multicenter international studies) are needed and advisable to confirm our observations in this preliminary small series. Moreover, evaluating mutational status in fresh samples instead of in paraffin-embedded sections could help to increase the number of patients with adequate DNA for analysis. If our findings will be confirmed, the evaluation of IDH mutational status in biopsy samples or resection specimens could be considered when stratifying patients, highlighting those who may benefit from more aggressive treatment (such as adjuvant chemotherapy) or closer follow-up. LEVEL OF EVIDENCE Level III, prognostic study.
Collapse
Affiliation(s)
- Giulia Trovarelli
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Andrea Angelini
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Elena Bellan
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Elisa Pala
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Elisa Belluzzi
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Assunta Pozzuoli
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| | - Chiara Borga
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology of University of Padova, Padua, Italy
| |
Collapse
|
14
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Simon S, Resch H, Lomoschitz F, Frank BJH, Kocijan R. Chondrosarcoma of the spine-a case report. Wien Med Wochenschr 2023; 173:334-338. [PMID: 35119543 DOI: 10.1007/s10354-021-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022]
Abstract
CASE A 73-year-old male patient presented with a 3-month history of back pain. In bone scintigraphy and the FDG PET-CT scan (fluorodeoxyglucose positron-emission computed tomography), highly suspect uptake levels were found in TH12-L1. Accordingly, an osteodestructive process was found on MRI (magnetic resonance imaging). Following a successfully performed biopsy of TH12, histologic analysis of the bone material revealed a chondrosarcoma (G1; T4N2M0). Complete resection of the tumor was successfully performed, since chondrosarcoma are resistant to radiation and chemotherapy. CONCLUSION As chondrosarcoma is a rare bone neoplasm, it must be considered in the differential diagnosis of lower back pain to initiate adequate treatment.
Collapse
Affiliation(s)
- Sebastian Simon
- II Medical Department, St. Vincent Hospital Vienna, Vienna, Austria
- Michael-Ogon Laboratory for Orthopaedic Research, Orthopaedic Hospital Vienna-Speising, Vienna, Austria
| | - Heinrich Resch
- II Medical Department, St. Vincent Hospital Vienna, Vienna, Austria
- Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, Vienna, Austria
| | - Friedrich Lomoschitz
- Department of Diagnostic and Interventional Radiology, Hospital Hietzing, Vienna, Austria
| | - Bernhard J H Frank
- Michael-Ogon Laboratory for Orthopaedic Research, Orthopaedic Hospital Vienna-Speising, Vienna, Austria
| | - Roland Kocijan
- Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Vienna-Meidling, Vienna, Austria.
- I Medical Department, Hanusch Hospital Vienna, Heinrich Collin-Str. 30, 1140, Vienna, Austria.
| |
Collapse
|
16
|
Veys C, Boulouard F, Benmoussa A, Jammes M, Brotin E, Rédini F, Poulain L, Gruchy N, Denoyelle C, Legendre F, Galera P. MiR-4270 acts as a tumor suppressor by directly targeting Bcl-xL in human osteosarcoma cells. Front Oncol 2023; 13:1220459. [PMID: 37719019 PMCID: PMC10501397 DOI: 10.3389/fonc.2023.1220459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
Chondrosarcomas and osteosarcomas are malignant bone tumors with a poor prognosis when unresectable or metastasized. Moreover, radiotherapy and chemotherapy could be ineffective. MiRNAs represent an alternative therapeutic approach. Based on high-throughput functional screening, we identified four miRNAs with a potential antiproliferative effect on SW1353 chondrosarcoma cells. Individual functional validations were then performed in SW1353 cells, as well as in three osteosarcoma cell lines. The antiproliferative and cytotoxic effects of miRNAs were evaluated in comparison with a positive control, miR-342-5p. The cytotoxic effect of four selected miRNAs was not confirmed on SW1353 cells, but we unambiguously revealed that miR-4270 had a potent cytotoxic effect on HOS and MG-63 osteosarcoma cell lines, but not on SaOS-2 cell line. Furthermore, like miR-342-5p, miR-4270 induced apoptosis in these two cell lines. In addition, we provided the first report of Bcl-xL as a direct target of miR-4270. MiR-4270 also decreased the expression of the anti-apoptotic protein Mcl-1, and increased the expression of the pro-apoptotic protein Bak. Our findings demonstrated that miR-4270 has tumor suppressive activity in osteosarcoma cells, particularly through Bcl-xL downregulation.
Collapse
Affiliation(s)
- Clément Veys
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
| | - Flavie Boulouard
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, Caen, France
| | - Abderrahim Benmoussa
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Research Center of the UHC Sainte-Justine and Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Manon Jammes
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
| | - Emilie Brotin
- Normandie Univ., UNICAEN, Federative Structure Normandie Oncology, US Platon, ImpedanCELL Platform, Caen, France
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | - Françoise Rédini
- UMR 1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, INSERM, Nantes University, Nantes, France
| | - Laurent Poulain
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | - Nicolas Gruchy
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, Caen, France
| | - Christophe Denoyelle
- Normandie Univ., UNICAEN, Federative Structure Normandie Oncology, US Platon, ImpedanCELL Platform, Caen, France
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | | | | |
Collapse
|
17
|
Oliveira RC, Gama J, Casanova J. B-cell lymphoma 2 family members and sarcomas: a promising target in a heterogeneous disease. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:583-599. [PMID: 37720343 PMCID: PMC10501895 DOI: 10.37349/etat.2023.00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/14/2023] [Indexed: 09/19/2023] Open
Abstract
Targeting the B-cell lymphoma 2 (Bcl-2) family proteins has been the backbone for hematological malignancies with overall survival improvements. The Bcl-2 family is a major player in apoptosis regulation and, has captured the researcher's interest in the treatment of solid tumors. Sarcomas are a heterogeneous group of diseases, comprising several entities, with high morbidity and mortality and with few specific therapies available. The treatment for sarcomas is based on platinum regimens, with variable results and poor outcomes, especially in advanced lesions. The high number of different sarcoma entities makes treatment standardization as well as the performance of clinical trials difficult. The use of Bcl-2 family members modifiers has revealed promising results in in vitro and in vivo models and may be a valid option, especially when used in combination with chemotherapy. In this article, a revision of these results and possibilities for the use of Bcl-2 family members inhibitors in sarcomas was performed.
Collapse
Affiliation(s)
- Rui Caetano Oliveira
- Centro de Anatomia Patológica Germano de Sousa, 3000 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
| | - José Casanova
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
- Orthopedic Oncology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
18
|
Zając W, Dróżdż J, Kisielewska W, Karwowska W, Dudzisz-Śledź M, Zając AE, Borkowska A, Szumera-Ciećkiewicz A, Szostakowski B, Rutkowski P, Czarnecka AM. Dedifferentiated Chondrosarcoma from Molecular Pathology to Current Treatment and Clinical Trials. Cancers (Basel) 2023; 15:3924. [PMID: 37568740 PMCID: PMC10417069 DOI: 10.3390/cancers15153924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a rare subtype of chondrosarcoma, a primary cartilaginous malignant neoplasm. It accounts for up to 1-2% of all chondrosarcomas and is generally associated with one of the poorest prognoses among all chondrosarcomas with the highest risk of metastasis. The 5-year survival rates range from 7% to 24%. DDCS may develop at any age, but the average presentation age is over 50. The most common locations are the femur, pelvis humerus, scapula, rib, and tibia. The standard treatment for localised disease is surgical resection. Most patients are diagnosed in unresectable and advanced stages, and chemotherapy for localised and metastatic dedifferentiated DDCS follows protocols used for osteosarcoma.
Collapse
Affiliation(s)
- Weronika Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Julia Dróżdż
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Weronika Kisielewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Weronika Karwowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
| | - Agnieszka E. Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Bartłomiej Szostakowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland (M.D.-Ś.); (A.E.Z.); (A.B.); (B.S.); (P.R.)
| |
Collapse
|
19
|
Sun Y, Fang Q, Liu W, Liu Y, Zhang C. GANT-61 induces cell cycle resting and autophagy by down-regulating RNAP III signal pathway and tRNA-Gly-CCC synthesis to combate chondrosarcoma. Cell Death Dis 2023; 14:461. [PMID: 37488121 PMCID: PMC10366213 DOI: 10.1038/s41419-023-05926-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Chondrosarcoma is ineffective for conventional radiotherapy and chemotherapy with a poor prognosis. Hedgehog (Hh) signal pathway plays a crucial role in tumor growth and progression, which is constitutive activated in chondrosarcoma. GLI transcription factors as targets for new drugs or interference technology for the treatment of chondrosarcoma are of great significance. In this study, we indicated that the Hedgehog-GLI1 signal pathway is activated in chondrosarcoma, which further enhances the RNAP III signal pathway to mediate endogenous tRNA fragments synthesis. Downstream oncology functions of endogenous tRNA fragments, such as "cell cycle" and "death receptor binding", are involved in malignant chondrosarcoma. The GANT-61, as an inhibitor of GLI1, could inhibit chondrosarcoma tumor growth effectively by inhibiting the RNAP III signal pathway and tRNA-Gly-CCC synthesis in vivo. Induced G2/M cell cycle resting, apoptosis, and autophagy were the main mechanisms for the inhibitory effect of GANT-61 on chondrosarcoma, which correspond with the above-described downstream oncology functions of endogenous tRNA fragments. We also identified the molecular mechanism by which GANT-61-induced autophagy is involved in ULK1 expression and MAPK signaling pathway. Thus, GANT-61 will be an ideal and promising strategy for combating chondrosarcoma.
Collapse
Affiliation(s)
- Yifeng Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, 250014, PR China
- Department of Surgery, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | - Qiongxuan Fang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, 250014, PR China
| | - Yi Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, 250014, PR China
| | - Chunming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
20
|
Walter SG, Knöll P, Eysel P, Quaas A, Gaisendrees C, Nißler R, Hieggelke L. Molecular In-Depth Characterization of Chondrosarcoma for Current and Future Targeted Therapies. Cancers (Basel) 2023; 15:cancers15092556. [PMID: 37174021 PMCID: PMC10177611 DOI: 10.3390/cancers15092556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Chondrosarcoma (CHS) are heterogenous, but as a whole, represent the second most common primary malignant bone tumor entity. Although knowledge on tumor biology has grown exponentially during the past few decades, surgical resection remains the gold standard for the treatment of these tumors, while radiation and differentiated chemotherapy do not result in sufficient cancer control. An in-depth molecular characterization of CHS reveals significant differences compared to tumors of epithelial origin. Genetically, CHS are heterogenous, but there is no characteristic mutation defining CHS, and yet, IDH1 and IDH2 mutations are frequent. Hypovascularization, extracellular matrix composition of collagen, proteoglycans, and hyaluronan create a mechanical barrier for tumor suppressive immune cells. Comparatively low proliferation rates, MDR-1 expression and an acidic tumor microenvironment further limit therapeutic options in CHS. Future advances in CHS therapy depend on the further characterization of CHS, especially the tumor immune microenvironment, for improved and better targeted therapies.
Collapse
Affiliation(s)
- Sebastian Gottfried Walter
- Department for Orthopedic Surgery and Traumatology, University Hospital Cologne, Joseph-Stelzmann-Str. 24, 50931 Cologne, Germany
| | - Peter Knöll
- Department for Orthopedic Surgery and Traumatology, University Hospital Cologne, Joseph-Stelzmann-Str. 24, 50931 Cologne, Germany
| | - Peer Eysel
- Department for Orthopedic Surgery and Traumatology, University Hospital Cologne, Joseph-Stelzmann-Str. 24, 50931 Cologne, Germany
| | - Alexander Quaas
- Department for Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Christopher Gaisendrees
- Department for Cardiothoracic Surgery, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Robert Nißler
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Lena Hieggelke
- Department for Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
21
|
Gilbert A, Tudor M, Montanari J, Commenchail K, Savu DI, Lesueur P, Chevalier F. Chondrosarcoma Resistance to Radiation Therapy: Origins and Potential Therapeutic Solutions. Cancers (Basel) 2023; 15:cancers15071962. [PMID: 37046623 PMCID: PMC10093143 DOI: 10.3390/cancers15071962] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.
Collapse
|
22
|
Kim JH, Lee SK. Classification of Chondrosarcoma: From Characteristic to Challenging Imaging Findings. Cancers (Basel) 2023; 15:cancers15061703. [PMID: 36980590 PMCID: PMC10046282 DOI: 10.3390/cancers15061703] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Chondrosarcomas can be classified into various forms according to the presence or absence of a precursor lesion, location, and histological subtype. The new 2020 World Health Organization (WHO) Classification of Tumors of Soft Tissue and Bone classifies chondrogenic bone tumors as benign, intermediate (locally aggressive), or malignant, and separates atypical cartilaginous tumors (ACTs) and chondrosarcoma grade 1 (CS1) as intermediate and malignant tumors. respectively. Furthermore, the classification categorizes chondrosarcomas (including ACT) into eight subtypes: central conventional (grade 1 vs. 2–3), secondary peripheral (grade 1 vs. 2–3), periosteal, dedifferentiated, mesenchymal, and clear cell chondrosarcoma. Most chondrosarcomas are the low-grade, primary central conventional type. The rarer subtypes include clear cell, mesenchymal, and dedifferentiated chondrosarcomas. Comprehensive analysis of the characteristic imaging findings can help differentiate various forms of chondrosarcomas. However, distinguishing low-grade chondrosarcomas from enchondromas or high-grade chondrosarcomas is radiologically and histopathologically challenging, even for experienced radiologists and pathologists.
Collapse
Affiliation(s)
- Jun-Ho Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Seul Ki Lee
- Department of Radiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence:
| |
Collapse
|
23
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
24
|
Association Between Insurance Status and Chondrosarcoma Stage at Diagnosis in the United States: Implications for Detection and Outcomes. J Am Acad Orthop Surg 2023; 31:e189-e197. [PMID: 36730695 DOI: 10.5435/jaaos-d-22-00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/20/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Chondrosarcoma is a common primary bone tumor, and survival is highly influenced by stage at diagnosis. Early detection is paramount to improve outcomes. The aim of this study is to analyze the association between insurance status and stage of chondrosarcoma at the time of diagnosis. METHODS A comparative cross-sectional study was conducted using the Surveillance, Epidemiology and End Results database. Patients with a diagnosis of chondrosarcoma between 2007 and 2016 were included. Exposure variable was insurance status and the outcome chondrosarcoma staging at the time of diagnosis. Control variables included tumor grade, age, sex, race, ethnicity, marital status, place of residence, and primary site. Both unadjusted and adjusted (multiple logistic regression) odds ratios (ORs) and 95% confidence intervals (CIs) were computed to estimate the association between insurance status and stage. RESULTS An effective sample of 2,187 patients was included for analysis. In total, 1824 (83%) patients had health insurance (nonspecified), 277 (13%) had Medicaid, and the remaining 86 (4%) had no insurance. Regarding stage at diagnosis, 1,213 (55%) had localized disease, whereas 974 (45%) had a later stage at presentation. Before adjustment, the odds of being diagnosed at an advanced (regional/distant) stage were 55% higher in patients without insurance (unadjusted OR 1.55; 95% CI 1.003 to 2.39). After adjusting for potential confounders, the odds increased (adjusted OR 1.94; 95% CI 1.12 to 3.32). Variables with a significant association with a later stage at diagnosis included older age ( P < 0.001), male sex ( P < 0.001), pelvic location ( P < 0.001), and high grade ( P < 0.001). CONCLUSION Being uninsured in the United States increased the odds of a late-stage diagnosis of chondrosarcoma by 94% when compared with insured patients. Lack of medical insurance presumably leads to diminished access to necessary diagnostic testing, which results in a more advanced stage at diagnosis and ultimately a worse prognosis. Efforts are required to remediate healthcare access disparities. LEVEL OF EVIDENCE Level III.
Collapse
|
25
|
Chen C, Zhou H, Zhang X, Liu Z, Ma X. Association of FBXW11 levels with tumor development and prognosis in chondrosarcoma. Cancer Biomark 2022; 35:429-437. [PMID: 36404534 DOI: 10.3233/cbm-210426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The E3 ubiquitin ligase FBXW11 exerts an oncogenic or tumor suppressive function in a cellular context-dependent manner. However, the clinical significance and biological role of FBXW11 in chondrosarcoma have not been clearly characterized. This study focuses on the expression profile, prognostic value and biological function of FBXW11 in chondrosarcoma. METHODS FBXW11 expression was analyzed by qRT-PCR and Western blot in six cases of chondrosarcoma specimens and the matched adjacent non-tumor tissues. The expression profile and prognostic value of FBXW11 were investigated in sixty-three cases of chondrosarcoma patients. Cell viability, colony formation, migration, invasion and apoptosis assays were further detected in SW1353 chondrosarcoma cells with restored FBXW11 expression. RESULTS Downregulation of FBXW11 was remarkably detected in human chondrosarcoma specimens compared with the corresponding non-tumor tissues and benign cartilage tumors. Downregulated FBXW11 expression significantly correlated with high-grade chondrosarcoma and poor prognosis. Furthermore, FBXW11 was identified as an independent prognostic factor for the overall survival of chondrosarcoma patients. Restored expression of FBXW11 significantly suppressed chondrosarcoma cell growth and induced apoptosis. CONCLUSIONS These findings establish that FBXW11 was markedly downregulated and recognized as an independent prognostic factor for patients with chondrosarcoma, and restored FBXW11 expression can suppress chondrosarcoma growth and induce apoptosis, highlighting a novel biological marker and potential therapeutic target against chondrosarcoma.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, China
| | - Hua Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, China
| | - Xiaolin Zhang
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, China
| | - Zhongjun Liu
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
26
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
27
|
Roessner A, Franke S, Schreier J, Ullmann S, Karras F, Jechorek D. Genetics and epigenetics in conventional chondrosarcoma with focus on non-coding RNAs. Pathol Res Pract 2022; 239:154172. [DOI: 10.1016/j.prp.2022.154172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
28
|
Spanò DP, Bonelli S, Calligaris M, Carreca AP, Carcione C, Zito G, Nicosia A, Rizzo S, Scilabra SD. High-Resolution Secretome Analysis of Chemical Hypoxia Treated Cells Identifies Putative Biomarkers of Chondrosarcoma. Proteomes 2022; 10:proteomes10030025. [PMID: 35893766 PMCID: PMC9326515 DOI: 10.3390/proteomes10030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chondrosarcoma is the second most common bone tumor, accounting for 20% of all cases. Little is known about the pathology and molecular mechanisms involved in the development and in the metastatic process of chondrosarcoma. As a consequence, there are no approved therapies for this tumor and surgical resection is the only treatment currently available. Moreover, there are no available biomarkers for this type of tumor, and chondrosarcoma classification relies on operator-dependent histopathological assessment. Reliable biomarkers of chondrosarcoma are urgently needed, as well as greater understanding of the molecular mechanisms of its development for translational purposes. Hypoxia is a central feature of chondrosarcoma progression. The hypoxic tumor microenvironment of chondrosarcoma triggers a number of cellular events, culminating in increased invasiveness and migratory capability. Herein, we analyzed the effects of chemically-induced hypoxia on the secretome of SW 1353, a human chondrosarcoma cell line, using high-resolution quantitative proteomics. We found that hypoxia induced unconventional protein secretion and the release of proteins associated to exosomes. Among these proteins, which may be used to monitor chondrosarcoma development, we validated the increased secretion in response to hypoxia of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme well-known for its different functional roles in a wide range of tumors. In conclusion, by analyzing the changes induced by hypoxia in the secretome of chondrosarcoma cells, we identified molecular mechanisms that can play a role in chondrosarcoma progression and pinpointed proteins, including GAPDH, that may be developed as potential biomarkers for the diagnosis and therapeutic management of chondrosarcoma.
Collapse
Affiliation(s)
- Donatella Pia Spanò
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Anna Paola Carreca
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
| | - Claudia Carcione
- Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy;
| | - Giovanni Zito
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Sergio Rizzo
- Medical Oncology Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- Correspondence:
| |
Collapse
|
29
|
Li Y, Yang S, Liu Y, Yang S. Mice with Trp53 and Rb1 deficiency in chondrocytes spontaneously develop chondrosarcoma via overactivation of YAP signaling. Cell Death Dis 2022; 13:570. [PMID: 35760773 PMCID: PMC9237030 DOI: 10.1038/s41419-022-04916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/21/2023]
Abstract
Chondrosarcoma (CHS) is a rare type of soft sarcoma with increased production of cartilage matrix arising from soft bone tissues. Currently, surgical resection is the primary clinical treatment for chondrosarcoma due to the poor response to radiotherapy and chemotherapy. However, the therapeutic effect is not satisfactory due to the higher local recurrence rate. Thus, management and elucidation of the pathological mechanism of chondrosarcoma remain an ongoing challenge, and the development of effective chondrosarcoma mouse models and treatment options are urgently needed. Here, we generated a new transgenic chondrosarcoma model by double conditional deletions of Trp53 and Rb1 in chondrocyte lineage which spontaneously caused spinal chondrosarcoma and lung metastasis. Bioinformatic analysis of the human soft sarcoma database showed that Trp53 and Rb1 genes had higher mutations, reaching up to approximately 33.5% and 8.7%, respectively. Additionally, Trp53 and Rb1 signatures were decreased in the human and mouse chondrosarcoma tissues. Mechanistically, we found that YAP expression and activity were significantly increased in mouse Col2-Cre;Trp53f/f/Rb1f/f chondrosarcoma tissues compared to the adjacent normal cartilage. Knockdown of YAP in primary chondrosarcoma cells significantly inhibited chondrosarcoma proliferation, invasion, and tumorsphere formation. Chondrocyte lineage ablation of YAP delayed chondrosarcoma progression and lung metastasis in Col2-Cre;Trp53f/f/Rb1f/f mice. Moreover, we found that metformin served as a YAP inhibitor, which bound to the activity area of YAP protein, and inhibited chondrosarcoma cell proliferation, migration, invasion, and progression in vitro and significantly suppressed chondrosarcoma formation in vivo. Collectively, this study identifies the inhibition of YAP may be an effective therapeutic strategy for the treatment of chondrosarcoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Hu X, Fujiwara T, Houdek MT, Chen L, Huang W, Sun Z, Sun Y, Yan W. Impact of racial disparities and insurance status in patients with bone sarcomas in the USA : a population-based cohort study. Bone Joint Res 2022; 11:278-291. [PMID: 35549518 PMCID: PMC9130676 DOI: 10.1302/2046-3758.115.bjr-2021-0258.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims Socioeconomic and racial disparities have been recognized as impacting the care of patients with cancer, however there are a lack of data examining the impact of these disparities on patients with bone sarcoma. The purpose of this study was to examine socioeconomic and racial disparities that impact the oncological outcomes of patients with bone sarcoma. Methods We reviewed 4,739 patients diagnosed with primary bone sarcomas from the Surveillance, Epidemiology and End Results (SEER) registry between 2007 and 2015. We examined the impact of race and insurance status associated with the presence of metastatic disease at diagnosis, treatment outcome, and overall survival (OS). Results Patients with Medicaid (odds ratio (OR) 1.41; 95% confidence interval (CI) 1.15 to 1.72) and uninsured patients (OR 1.90; 95% CI 1.26 to 2.86) had higher risks of metastatic disease at diagnosis compared to patients with health insurance. Compared to White patients, Black (OR 0.63, 95% CI 0.47 to 0.85) and Asian/Pacific Islander (OR 0.65, 95% CI 0.46 to 0.91) were less likely to undergo surgery. In addition, Black patients were less likely to receive chemotherapy (OR 0.67, 95% CI 0.49 to 0.91) compared to White patients. In patients with chondrosarcoma, those with Medicaid had worse OS compared to patients with insurance (hazard ratio (HR) 1.65, 95% CI 1.06 to 2.56). Conclusion In patients with a bone sarcoma, the cancer stage at diagnosis varied based on insurance status, and racial disparities were identified in treatment. Further studies are needed to identify modifiable factors which can mitigate socioeconomic and racial disparities found in patients with bone sarcomas. Cite this article: Bone Joint Res 2022;11(5):278–291.
Collapse
Affiliation(s)
- Xianglin Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Matthew T Houdek
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lingxiao Chen
- Faculty of Medicine and Health, University of Sydney, The Kolling Institute, Sydney, Australia
| | - Wending Huang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
LeBrun DG. CORR Insights®: Is Chemotherapy Associated with Improved Overall Survival in Patients with Dedifferentiated Chondrosarcoma? A SEER Database Analysis. Clin Orthop Relat Res 2022; 480:759-761. [PMID: 34870951 PMCID: PMC8923591 DOI: 10.1097/corr.0000000000002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023]
|
32
|
Paul M, Sugath BS, P S, Np P, Nair SG, Rajasekharan R. Synchronous Primary Multifocal Skeletal Chondrosarcoma of Extremity: A Report of 2 Cases. JBJS Case Connect 2022; 12:01709767-202203000-00049. [PMID: 35171851 DOI: 10.2106/jbjs.cc.21.00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
CASE Multifocal synchronous primary skeletal chondrosarcomas of an extremity are rarely reported. In this study, we report 2 such cases. The first case is a 32-year-old woman who presented with extensive right femoral and tibial diaphysis lesions. The second case is a 36-year-old woman with lesions in the left proximal humerus, the coracoid process of scapula and sternum. Both patients underwent limb salvage surgery and were disease-free at the 38- and 20-month follow-up. CONCLUSION Athough rare, the possibility of multifocal chondrosarcoma should be kept in mind during the workup of a patient with chondrosarcoma.
Collapse
Affiliation(s)
- Manu Paul
- Department of Surgical oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Bhaskar Subin Sugath
- Department of Surgical oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Shivanesan P
- Department of Cardio Vascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Prakash Np
- Department of Medical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Sreejith G Nair
- Department of Medical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Rani Rajasekharan
- Department of Pathology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
33
|
IDH1 Mutation Induces HIF-1α and Confers Angiogenic Properties in Chondrosarcoma JJ012 Cells. DISEASE MARKERS 2022; 2022:7729968. [PMID: 35198082 PMCID: PMC8860547 DOI: 10.1155/2022/7729968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022]
Abstract
Chondrosarcoma is a group of primary bone cancers that arise from transformed cells of chondrocytic lineage. Tumor recurrence and metastasis are devastating for patients with chondrosarcoma since there are no effective treatment options. IDH mutations occur in over 50% of tumors from patients with conventional or dedifferentiated chondrosarcomas and represent an attractive target for therapy. However, their role in the pathogenesis of chondrosarcoma remains largely unknown. In this study, we sought to determine the association of IDH mutation and HIF-1α in chondrosarcoma. We used the chondrosarcoma JJ012 cell line and its derived CRISPR/Cas9 mutant IDH1 (IDH1mut) knockout (KO) cells. RNA-Seq data analysis revealed downregulation of several HIF-1α target genes upon loss of IDH1mut. This was associated with reduced HIF-1α levels in the IDH1mut KO cells and tumors. Loss of IDH1mut also attenuated the expression of angiogenic markers in tumor tissues and abrogated the angiogenic capacity of JJ012 cells. Moreover, we observed that exogenous expression of HIF-1α significantly promoted anchorage-independent colony-formation by IDH1mut KO cells. These results suggest IDH1 mutation confers angiogenic and tumorigenic properties of JJ012 cells by inducing HIF-1α. Thus, the HIF pathway represents a promising candidate for combinatorial regimens to target IDH1 mutated chondrosarcomas.
Collapse
|
34
|
Radiosensitizing Effect of Celastrol by Inhibiting G2/M Phase Arrest Induced by the c-myc Gene of Human SW1353 Chondrosarcoma Cells: Network and Experimental Analyses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1948657. [PMID: 35141331 PMCID: PMC8820907 DOI: 10.1155/2022/1948657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022]
Abstract
Objective Studies have unveiled that the components of Tripterygium wilfordii Hook F (TWHF) such as celastrol could attenuate apoptosis and proliferation of various tumor cells. This study is focused on the radiosensitization effect and apoptotic pathways of celastrol via the inhibition of the c-myc gene and the influence of which combined with radiotherapy on the proliferation, apoptosis, invasion, and metastasis of chondrosarcoma cells. Methods A variety of bioinformatic tools were applied to explore the expression level and prognosis of the c-myc gene in different tumor cells and chondrosarcoma cells. We used pharmacology network to analyze the components, pathways, targets, molecular functions of TWHF and explore the relevant effective components over the MYC gene. Clone formation assay, CCK-8 assay, flow cytometry, and transwell migration assay were applied to detect the effects of celastrol on the expression of c-myc gene, cell apoptosis, and cell cycle. Radiation therapy was used to observe the radiosensitization effect of celastrol on chondrosarcoma. Results This study shows that the c-myc gene is overexpressed in various tumor cells and bone tumor cells to varying degrees. Celastrol can significantly inhibit the expression of the c-myc gene, induce G2/M phase arrest through regulation of G2/M phase-related proteins, and promote SW1353 cell apoptosis through the mitochondrial signaling pathway. In addition, we also found that the use of triptorubin to inhibit c-myc gene expression in combination with radiotherapy can increase the osteosarcoma cells' apoptosis rate through the mitochondrial signaling pathway significantly. Conclusions Our study validated the radiosensitization effect of celastrol through knocking down the expression of the c-myc gene to induce G2/M phase arrest and provides a new idea for the treatment of refractory or recurrent chondrosarcoma that is not sensitive to radiotherapy.
Collapse
|
35
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. Int J Mol Sci 2022; 23:ijms23031096. [PMID: 35163019 PMCID: PMC8834928 DOI: 10.3390/ijms23031096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Due to resistance to standard anticancer agents, it is difficult to control the disease progression in patients with metastatic or unresectable chondrosarcoma. Novel therapeutic approaches, such as molecule-targeting drugs and immunotherapy, are required to improve clinical outcomes in patients with advanced chondrosarcoma. Recent studies have suggested several promising biomarkers and therapeutic targets for chondrosarcoma, including IDH1/2 and COL2A1. Several molecule-targeting agents and immunotherapies have shown favorable antitumor activity in clinical studies in patients with advanced chondrosarcomas. This review summarizes recent basic studies on biomarkers and molecular targets and recent clinical studies on the treatment of chondrosarcomas.
Collapse
|
36
|
Shah FH, Kim SJ. Identification of medicinal compounds as potential inhibitors for mutated isocitrate dehydrogenases against chondrosarcoma. Saudi J Biol Sci 2022; 29:161-167. [PMID: 35002404 PMCID: PMC8716869 DOI: 10.1016/j.sjbs.2021.08.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/12/2022] Open
Abstract
Virtual screening of 5000 novel medicinal compounds procured two compounds (5-galloylquinic acid and artocarpetin) capable of establishing interaction with both mutated IDH1 and IDH2 proteins implicated in chondrosarcoma. Cell lining prediction studies revealed that both 5-galloylquinic acid and artocarpetin sensitizes chondrosarcoma cell lines and has good cytotoxic influence on CHSA8926 and CHSA0011 cells. These compounds possess high acute toxicity values to incite adverse reaction and organ damage in rodents. ITGAV, CAPRIN-1, CCL5 COG5 and TNFRSF10B gene are successfully downregulated that are involved in the metastasis inflammation and chondrogenesis by these compounds. TP53 expression enhancer, free radical scavenger, MAP kinase stimulant, MM9 expression inhibitor and chemo preventive agent were some biological properties predicted by Prediction of Activity Spectra for substances (PASS) database. Artocarpetin had good ADME and druglikness properties as compared to 5-galloylquinic acid, as this compound had low bioavailability score and one lipinski violation for druglikness.
Chondrosarcoma is the third most common cartilaginous bone tumour that is insusceptible to radio- and chemotherapy and it is inclined to metastasis. These resistant qualities are facilitated by mutant variants of isocitrate dehydrogenases (IDH) 1–2 enzyme. These mutant enzymes promote oncogenesis of chondrocytes by changing their epigenetic wardrobe leading to tumour formation. Presently, there are lack of drugs available to be exploited as a remedy for this disease. On the other hand, majority of chemotherapeutic drugs induce cytotoxicity in the cancer cells at the cost of harming surrounding healthy cells, jeopardizing human life. The current study is focused on screening various medicinal compounds against IDH1 and IDH2 combined with insilico gene expression, cancer cells cytotoxicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) studies to elucidate the molecular mechanism against chondrosarcoma and also to uncover pharmacokinetic profile of these compounds. Screening of 5000+ compounds filtered two efficacious compounds (Artocarpetin and 5-Galloylquinic acid) capable of establishing hydrogen bond connections with both IDH variants. Other studies showed that these compounds downregulate ITGAV, CARPIN1, CCL5 and COG5 and TNFRSF10B gene that reduces chondrogenesis and inflammation, Artocarpetin and 5-galloylquinic acid are TP53 expression enhancer and inhibit MM9 expression that promote immunomodulation and apoptosis in these cancers. These compounds are both active against CHSA8926 and CHSA011 cell line of chondrosarcoma. However, the ADME profile of 5-galloylquinic acid is slightly unsatisfactory based on druglikness and bioavailability score criteria as compared to artocarpetin. Both of these compounds are class-5 chemicals and require high doses to elicit adverse response. Our results suggest that artocarpetin and 5-galloylquinic acid are efficacious drug candidates and could be further exploited to validate these findings in vitro.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
37
|
Camacho M, Carvalho M, Munhoz R, Etchebehere M, Etchebehere E. FDG PET/CT in bone sarcomas. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Quan X, Zhao C, Gao Z, Zhang Y, Zhao R, Wang J, Zhang Q. DDX10 and BYSL as the potential targets of chondrosarcoma and glioma. Medicine (Baltimore) 2021; 100:e27669. [PMID: 34797290 PMCID: PMC8601295 DOI: 10.1097/md.0000000000027669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/10/2021] [Indexed: 01/05/2023] Open
Abstract
To provide reliable molecular markers and effective therapeutic targets for chondrosarcoma and glioma.Gene Set Enrichment (GSE) 29745 and GSE48420 were downloaded from the Gene Expression Omnibus (GEO) database. Differently expressed genes (DEGs) were identified by the GEO2R. We annotated the function of common DEGs through Digital Audio/Video Interactive Decoder (DAVID) and Metascape. Protein-protein interaction network construction was performed through STRING. Hub genes were identified by the two different algorithms (MCC, EPC). DDX10 and BYSL were key factors in embryo implantation and development, and plays a role in a variety of cancers. The role of the DDX10 and BYSL on the glioma derived from the chondrosarcoma would be explored by the clinical samples.A total of 1442 DEGs were identified. The variations in DEGs were mainly enriched in vasculature development, cell motion, blood vessel development, cell migration, regulation of cell proliferation, regulation of cell proliferation, wound healing, biological adhesion, growth factor binding, identical pathways in cancer, and p53 signaling pathway. Dead-box helicase 10 (DDX10), Bystin-like (BYSL), and WD repeat domain 12 (WDR12) were identified as the hub genes, and the three hub genes were up-regulated in the chondrosarcoma. Chondrosarcoma patients with high expression levels of DDX10 (Logrank P = .0052; HR (high) = 1.8; n (high) = 131, 50%), and BYSL (P = 6.5e-05; HR (high) = 2.3; n (high) = 131, 50%) had poorer overall survival times than those with low expression levels.DDX10 and BYSL genes may provide reliable molecular markers and effective therapeutic targets for chondrosarcoma and glioma.
Collapse
|
39
|
Heuermann M, Bekker S, Czeczok T, Gregory S, Sharma A. Tracheal chondrosarcoma: A case report, systematic review, and pooled analysis. Cancer Rep (Hoboken) 2021; 5:e1537. [PMID: 34476908 PMCID: PMC9327659 DOI: 10.1002/cnr2.1537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tracheal chondrosarcoma is a rare malignancy, and formal treatment guidelines have not been established due to the lack of high quality studies. Best evidence at this time is limited to case reports. Aim Explore the role of surgical intervention, radiation therapy, and chemotherapy, and the long‐term outcomes for these interventions for tracheal chondrosarcoma. Methods and Results A literature search was performed using PubMed (1959–2020) and ResearchGate (1959–2020) using medical subject heading terms “tracheal chondrosarcoma” OR “trachea chondrosarcoma.” Additional reports were identified within reviewed articles and included for review. Articles pertaining to chondrosarcomas of the lung, bronchus, larynx, or other head and neck subsites were excluded. Cases of chondromas were excluded. Thirty‐five patients with tracheal chondrosarcoma were identified in the literature since 1959. Advanced age was significantly associated with recurrent or persistent disease (p = .003). The majority (77%) of cases were treated with open surgical resection, with an open approach and negative surgical margins being significantly associated with being disease‐free after treatment (p = .001 and p < .001, respectively). Adjuvant radiotherapy was reserved for those unfit for surgery or for recurrent disease. Tumor size, extra‐tracheal extension, tumor calcification, location, and initial diagnosis were not associated with tumor recurrence. Conclusion Non‐metastatic tracheal chondrosarcoma can be treated by adequate surgical resection, with little to no role for adjuvant radiotherapy or chemotherapy. Open surgery and negative margins were associated with oncologic control, while advanced age was associated with recurrent or persistent disease.
Collapse
Affiliation(s)
- Mitchell Heuermann
- Department of Otolaryngology-Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Simon Bekker
- Department of Radiology, Southern Illinois University, Springfield, Illinois, USA
| | | | - Stacie Gregory
- Department of Otolaryngology-Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Arun Sharma
- Department of Otolaryngology-Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
40
|
Chen C, Zhou H, Liu Z, Ma X. Dysregulation of Zinc Finger Protein 395 Contributes to the Pathogenesis of Chondrosarcoma. Onco Targets Ther 2021; 14:3545-3553. [PMID: 34113121 PMCID: PMC8183675 DOI: 10.2147/ott.s310164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The transcription factor zinc finger protein 395 (ZNF395) is involved in several cellular responses and tumorigenesis. However, the potential role and clinical significance of ZNF395 in chondrosarcoma are not well investigated. This study determines the expression profile, prognostic value and biological function of ZNF395 in human chondrosarcoma. Methods The mRNA and protein expressions of ZNF395 in fresh chondrosarcomas and the matched adjacent non-tumor tissues were assessed using real-time PCR and immunoblotting, respectively. The protein expression of ZNF395 in chondrosarcoma specimens was evaluated by immunohistochemistry, and the relationships among its protein level, clinicopathological parameters and prognosis were further detected. Cell viability, colony formation, migration, invasion and apoptosis assay were evaluated in chondrosarcoma cells with depletion of ZNF395. Results The mRNA and protein expressions of ZNF395 in chondrosarcoma tissues were significantly higher than those in the matched adjacent non-tumor tissues and benign cartilage tumors. Clinical analysis displayed that ZNF395 was expressed at higher levels in chondrosarcoma patients with higher histological grade and advanced MSTS stage. Furthermore, we demonstrated that high expression of ZNF395 correlated with a worse overall survival of chondrosarcoma patients. Multivariate Cox regression analysis indicated that ZNF395 was an independent prognostic marker in chondrosarcoma patients. Functional studies revealed that depletion of ZNF395 markedly inhibited cell viability, colony formation, migration and invasion, and promoted apoptosis in chondrosarcoma. Conclusion These findings suggest that dysregulation of ZNF395 contributes to chondrosarcoma development, and ZNF395 may act as a potent oncogene and serve as a independently prognostic factor, highlight the potential of ZNF395 as a novel biomarker and therapeutic target for chondrosarcoma.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| | - Hua Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| |
Collapse
|
41
|
Veys C, Benmoussa A, Contentin R, Duchemin A, Brotin E, Lafont JE, Saintigny Y, Poulain L, Denoyelle C, Demoor M, Legendre F, Galéra P. Tumor Suppressive Role of miR-342-5p in Human Chondrosarcoma Cells and 3D Organoids. Int J Mol Sci 2021; 22:ijms22115590. [PMID: 34070455 PMCID: PMC8197525 DOI: 10.3390/ijms22115590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.
Collapse
Affiliation(s)
- Clément Veys
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Abderrahim Benmoussa
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
- Research Center of the UHC Sainte-Justine and Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C54, Canada
| | - Romain Contentin
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Amandine Duchemin
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Emilie Brotin
- Normandie Univ, UNICAEN, ImpedanCELL Platform, Federative Structure 4206 ICORE, 14000 Caen, France; (E.B.); (C.D.)
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Jérôme E. Lafont
- CNRS UMR 5305, Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon 1, Univ Lyon, 69367 Lyon, France;
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France;
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, UMR6252 CIMAP, 14000 Caen, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Christophe Denoyelle
- Normandie Univ, UNICAEN, ImpedanCELL Platform, Federative Structure 4206 ICORE, 14000 Caen, France; (E.B.); (C.D.)
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Magali Demoor
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Florence Legendre
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Philippe Galéra
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
- Correspondence:
| |
Collapse
|
42
|
Prognostic Factors and a Nomogram Predicting Overall Survival in Patients with Limb Chondrosarcomas: A Population-Based Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4510423. [PMID: 34055971 PMCID: PMC8147544 DOI: 10.1155/2021/4510423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/03/2021] [Indexed: 02/02/2023]
Abstract
Introduction We aimed to develop and validate a nomogram for predicting the overall survival of patients with limb chondrosarcomas. Methods The Surveillance, Epidemiology, and End Results (SEER) program database was used to identify patients diagnosed with chondrosarcomas, from which data was extracted from 18 registries in the United States between 1973 and 2016. A total of 813 patients were selected from the database. Univariate and multivariate analyses were performed using Cox proportional hazards regression models on the training group to identify independent prognostic factors and construct a nomogram to predict the 3- and 5-year survival probability of patients with limb chondrosarcomas. The predictive values were compared using concordance indexes (C-indexes) and calibration plots. Results All 813 patients were randomly divided into a training group (n = 572) and a validation group (n = 241). After univariate and multivariate Cox regression, a nomogram was constructed based on a new model containing the predictive variables of age, site, grade, tumor size, histology, stage, and use of surgery, radiotherapy, or chemotherapy. The prediction model provided excellent C-indexes (0.86 and 0.77 in the training and validation groups, respectively). The good discrimination and calibration of the nomograms were demonstrated for both the training and validation groups. Conclusions The nomograms precisely and individually predict the overall survival of patients with limb chondrosarcomas and could assist personalized prognostic evaluation and individualized clinical decision-making.
Collapse
|
43
|
Zając AE, Kopeć S, Szostakowski B, Spałek MJ, Fiedorowicz M, Bylina E, Filipowicz P, Szumera-Ciećkiewicz A, Tysarowski A, Czarnecka AM, Rutkowski P. Chondrosarcoma-from Molecular Pathology to Novel Therapies. Cancers (Basel) 2021; 13:2390. [PMID: 34069269 PMCID: PMC8155983 DOI: 10.3390/cancers13102390] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
Chondrosarcoma (CHS) is the second most common primary malignant bone sarcoma. Overall survival and prognosis of this tumor are various and often extreme, depending on histological grade and tumor subtype. CHS treatment is difficult, and surgery remains still the gold standard due to the resistance of this tumor to other therapeutic options. Considering the role of differentiation of CHS subtypes and the need to develop new treatment strategies, in this review, we introduced a multidisciplinary characterization of CHS from its pathology to therapies. We described the morphology of each subtype with the role of immunohistochemical markers in diagnostics of CHS. We also summarized the most frequently mutated genes and genome regions with altered pathways involved in the pathology of this tumor. Subsequently, we discussed imaging methods and the role of currently used therapies, including surgery and the limitations of chemo and radiotherapy. Finally, in this review, we presented novel targeted therapies, including those at ongoing clinical trials, which can be a potential future target in designing new therapeutics for patients with CHS.
Collapse
Affiliation(s)
- Agnieszka E. Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
| | - Sylwia Kopeć
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
| | - Bartłomiej Szostakowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
| | - Mateusz J. Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paulina Filipowicz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Andrzej Tysarowski
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (S.K.); (B.S.); (M.J.S.); (E.B.); (P.F.); (P.R.)
| |
Collapse
|
44
|
Guo J, Zhang R, Yang Z, Duan Z, Yin D, Zhou Y. Biological Roles and Therapeutic Applications of IDH2 Mutations in Human Cancer. Front Oncol 2021; 11:644857. [PMID: 33981605 PMCID: PMC8107474 DOI: 10.3389/fonc.2021.644857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is a key metabolic enzyme catalyzing the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in IDH lead to loss of normal enzymatic activity and gain of neomorphic activity that irreversibly converts α-KG to 2-hydroxyglutarate (2-HG), which can competitively inhibit a-KG-dependent enzymes, subsequently induces cell metabolic reprograming, inhibits cell differentiation, and initiates cell tumorigenesis. Encouragingly, this phenomenon can be reversed by specific small molecule inhibitors of IDH mutation. At present, small molecular inhibitors of IDH1 and IDH2 mutant have been developed, and promising progress has been made in preclinical and clinical development, showing encouraging results in patients with IDH2 mutant cancers. This review will focus on the biological roles of IDH2 mutation in tumorigenesis, and provide a proof-of-principle for the development and application of IDH2 mutant inhibitors for human cancer treatment.
Collapse
Affiliation(s)
- Jinxiu Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyue Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Autissier R, Mazuel L, Maubert E, Bonny JM, Auzeloux P, Schmitt S, Traoré A, Peyrode C, Miot-Noirault E, Pagés G. Simultaneous proteoglycans and hypoxia mapping of chondrosarcoma environment by frequency selective CEST MRI. Magn Reson Med 2021; 86:1008-1018. [PMID: 33772858 DOI: 10.1002/mrm.28781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate the relevance of CEST frequency selectivity in simultaneous in vivo imaging of both of chondrosarcoma's phenotypic features, that are, its high proteoglycan concentration and its hypoxic core. METHODS Swarm rat chondrosarcomas were implanted subcutaneously in NMRI nude mice. When tumors were measurable (12-16 days postoperative), mice were submitted to GAG, guanidyl, and APT CEST imaging. Proteoglycans and hypoxia were assessed in parallel by nuclear imaging exploiting 99m Tc-NTP 15-5 and 18 F-FMISO, respectively. Data were completed by ex vivo analysis of proteoglycans (histology and biochemical assay) and hypoxia (immunofluorescence). RESULTS Quantitative analysis of GAG CEST evidenced a significantly higher signal for tumor tissues than for muscles. These results were in agreement with nuclear imaging and ex vivo data. For imaging tumoral pH in vivo, the CEST ratio of APT/guanidyl was studied. This highlighted an important heterogeneity inside the tumor. The hypoxic status was confirmed by 18 F-FMISO PET imaging and ex vivo immunofluorescence. CONCLUSION CEST MRI simultaneously imaged both chondrosarcoma properties during a single experimental run and without the injection of any contrast agent. Both MR and nuclear imaging as well as ex vivo data were in agreement and showed that this chondrosarcoma animal model was rich in proteoglycans. However, even if tumors were lightly hypoxic at the stage studied, acidic areas were highlighted and mapped inside the tumor.
Collapse
Affiliation(s)
- Roxane Autissier
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Leslie Mazuel
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Elise Maubert
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Sébastien Schmitt
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Amidou Traoré
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Caroline Peyrode
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Guilhem Pagés
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| |
Collapse
|
46
|
Chondrosarcoma of the Temporomandibular Joint: Systematic Review and Survival Analysis of Cases Reported to Date. Head Neck Pathol 2021; 15:923-934. [PMID: 33751416 PMCID: PMC8384949 DOI: 10.1007/s12105-021-01313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this systematic review was to summarize the available data on TMJ chondrosarcomas and to perform a survival analysis of cases reported to date. This review was conducted in accordance with the PRISMA. Two authors performed an electronic search of case reports of TMJ chondrosarcoma published until August 02, 2020. Forty-seven studies reporting 53 cases were included. Chondrosarcomas of the TMJ were more prevalent in women, with a male:female ratio of 1:1.4. Survival curves were significantly associated with histological diagnosis (p = 0.004), reconstructive surgery (p = 0.024), recurrence (p < 0.001), and distant metastasis (p = 0.001). Only distant metastasis was independently associated with survival (p = 0.017). TMJ chondrosarcomas presented with low recurrence and higher survival rates than other chondrosarcomas. Synovial subtype, absence of reconstructive surgery, and presence of local recurrence or distant metastasis were associated with poorer prognosis.
Collapse
|
47
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
48
|
Zhu J, Zhang M, Guo J, Wu X, Wang S, Zhou Y, Liu H. Metabolite profiling of chondrosarcoma cells: A robust GC-MS method for the analysis of endogenous metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1169:122606. [PMID: 33684880 DOI: 10.1016/j.jchromb.2021.122606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
Chondrosarcoma is the 2nd most frequent bone sarcoma. In this study, the metabolic profiling of human chondrosarcoma SW-1353 cell line was investigated for the first time. To obtain more precise information about the metabolites from chondrosarcoma cells, pretreatment methods including washing steps/solvents, harvesting conditions, and extraction protocols for chondrosarcoma SW-1353 cells were evaluated in the context of metabolite profiling by GC-MS technique. In addition, a total of 32 representative metabolites (related to amino acid metabolism, TCA cycle, glycolysis, and fatty acid metabolism) were quantitatively determined. We found that a fast water rinse step before metabolic quenching, may reduce the contaminants and improve sensitivity. Trypsin/ethylene diamine tetraacetic acid treatment led to a large amount of metabolite leakage, which was not suitable for metabolomics research. Methanol was selected as a more suitable extraction solvent among four extraction approaches applied to SW-1353 cells. The final protocol can provide a simple, robust, and reproducible method to obtain precise information about the metabolites from chondrosarcoma cells, which is helpful to further understand the chondrosarcoma cell physiology and the mechanism of drug resistance in this disease, from the perspective of metabolomics.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengmeng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jinxiu Guo
- Department of Pharmacy, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xueke Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shaomin Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yubing Zhou
- Department of Pharmacy, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
49
|
Alhubaishy B, Gakis G, Knoll T. Primary chondrosarcoma of the penis in a young patient: A case report and review of the literature. IJU Case Rep 2021; 4:29-31. [PMID: 33426492 PMCID: PMC7784739 DOI: 10.1002/iju5.12230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Primary chondrosarcoma of the penis is rare. We present a case of primary chondrosarcoma of the penis in a young patient. CASE PRESENTATION A 35-year-old man presented with a painless mass at the base of his penis for the past 6 months. Incisional biopsy of the lesion revealed a chondrosarcoma. Pelvic magnetic resonance imaging and computed tomography of the thorax, abdomen, and pelvis ruled out a primary lesion in the bones and soft tissues. The patient rejected total penectomy and decided to start chemoradiotherapy followed by local tumor resection. CONCLUSION Primary chondrosarcoma of the penis is rare. Interdisciplinary management plays an important role in planning the therapy for rare tumors. A combined chemoradiation therapy can be followed by penis-preserving surgery to improve the quality of life in young patients with proximal penile tumors.
Collapse
Affiliation(s)
- Bandar Alhubaishy
- Urology DepartmentKlinikum Sindelfinge‐BoeblingenSindelfingenGermany
- Urology DepartmentKing Abdulaziz University HospitalJeddahSaudi Arabia
| | - Georgios Gakis
- Urology DepartmentWurzburg University HospitalWuerzburgGermany
| | - Thomas Knoll
- Urology DepartmentKlinikum Sindelfinge‐BoeblingenSindelfingenGermany
| |
Collapse
|
50
|
How Does the Skeletal Oncology Research Group Algorithm's Prediction of 5-year Survival in Patients with Chondrosarcoma Perform on International Validation? Clin Orthop Relat Res 2020; 478:2300-2308. [PMID: 32433107 PMCID: PMC7491905 DOI: 10.1097/corr.0000000000001305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The Skeletal Oncology Research Group (SORG) machine learning algorithm for predicting survival in patients with chondrosarcoma was developed using data from the Surveillance, Epidemiology, and End Results (SEER) registry. This algorithm was externally validated on a dataset of patients from the United States in an earlier study, where it demonstrated generally good performance but overestimated 5-year survival. In addition, this algorithm has not yet been validated in patients outside the United States; doing so would be important because external validation is necessary as algorithm performance may be misleading when applied in different populations. QUESTIONS/PURPOSES Does the SORG algorithm retain validity in patients who underwent surgery for primary chondrosarcoma outside the United States, specifically in Italy? METHODS A total of 737 patients were treated for chondrosarcoma between January 2000 and October 2014 at the Italian tertiary care center which was used for international validation. We excluded patients whose first surgical procedure was performed elsewhere (n = 25), patients who underwent nonsurgical treatment (n = 27), patients with a chondrosarcoma of the soft tissue or skull (n = 60), and patients with peripheral, periosteal, or mesenchymal chondrosarcoma (n = 161). Thus, 464 patients were ultimately included in this external validation study, as the earlier performed SEER study was used as the training set. Therefore, this study-unlike most of this type-does not have a training and validation set. Although the earlier study overestimated 5-year survival, we did not modify the algorithm in this report, as this is the first international validation and the prior performance in the single-institution validation study from the United States may have been driven by a small sample or non-generalizable patterns related to its single-center setting. Variables needed for the SORG algorithm were manually collected from electronic medical records. These included sex, age, histologic subtype, tumor grade, tumor size, tumor extension, and tumor location. By inputting these variables into the algorithm, we calculated the predicted probabilities of survival for each patient. The performance of the SORG algorithm was assessed in this study through discrimination (the ability of a model to distinguish between a binary outcome), calibration (the agreement of observed and predicted outcomes), overall performance (the accuracy of predictions), and decision curve analysis (establishment on the ability of a model to make a decision better than without using the model). For discrimination, the c-statistic (commonly known as the area under the receiver operating characteristic curve for binary classification) was calculated; this ranged from 0.5 (no better than chance) to 1.0 (excellent discrimination). The agreement between predicted and observed outcomes was visualized with a calibration plot, and the calibration slope and intercept were calculated. Perfect calibration results in a slope of 1 and an intercept of 0. For overall performance, the Brier score and the null-model Brier score were calculated. The Brier score ranges from 0 (perfect prediction) to 1 (poorest prediction). Appropriate interpretation of the Brier score requires comparison with the null-model Brier score. The null-model Brier score is the score for an algorithm that predicts a probability equal to the population prevalence of the outcome for every patient. A decision curve analysis was performed to compare the potential net benefit of the algorithm versus other means of decision support, such as treating all or none of the patients. There were several differences between this study and the earlier SEER study, and such differences are important because they help us to determine the performance of the algorithm in a group different from the initial study population. In this study from Italy, 5-year survival was different from the earlier SEER study (71% [319 of 450 patients] versus 76% [1131 of 1487 patients]; p = 0.03). There were more patients with dedifferentiated chondrosarcoma than in the earlier SEER study (25% [118 of 464 patients] versus 8.5% [131 of 1544 patients]; p < 0.001). In addition, in this study patients were older, tumor size was larger, and there were higher proportions of high-grade tumors than the earlier SEER study (age: 56 years [interquartile range {IQR} 42 to 67] versus 52 years [IQR 40 to 64]; p = 0.007; tumor size: 80 mm [IQR 50 to 120] versus 70 mm [IQR 42 to 105]; p < 0.001; tumor grade: 22% [104 of 464 had Grade 1], 42% [196 of 464 had Grade 2], and 35% [164 of 464 had Grade 3] versus 41% [592 of 1456 had Grade 1], 40% [588 of 1456 had Grade 2], and 19% [276 of 1456 had Grade 3]; p ≤ 0.001). RESULTS Validation of the SORG algorithm in a primarily Italian population achieved a c-statistic of 0.86 (95% confidence interval 0.82 to 0.89), suggesting good-to-excellent discrimination. The calibration plot showed good agreement between the predicted probability and observed survival in the probability thresholds of 0.8 to 1.0. With predicted survival probabilities lower than 0.8, however, the SORG algorithm underestimated the observed proportion of patients with 5-year survival, reflected in the overall calibration intercept of 0.82 (95% CI 0.67 to 0.98) and calibration slope of 0.68 (95% CI 0.42 to 0.95). The Brier score for 5-year survival was 0.15, compared with a null-model Brier of 0.21. The algorithm showed a favorable decision curve analysis in the validation cohort. CONCLUSIONS The SORG algorithm to predict 5-year survival for patients with chondrosarcoma held good discriminative ability and overall performance on international external validation; however, it underestimated 5-year survival for patients with predicted probabilities from 0 to 0.8 because the calibration plot was not perfectly aligned for the observed outcomes, which resulted in a maximum underestimation of 20%. The differences may reflect the baseline differences noted between the two study populations. The overall performance of the algorithm supports the utility of the algorithm and validation presented here. The freely available digital application for the algorithm is available here: https://sorg-apps.shinyapps.io/extremitymetssurvival/. LEVEL OF EVIDENCE Level III, prognostic study.
Collapse
|