1
|
Bouziana S, Bouzianas D. The Current Landscape of Secondary Malignancies after CAR T-Cell Therapies: How Could Malignancies Be Prevented? Int J Mol Sci 2024; 25:9518. [PMID: 39273462 PMCID: PMC11395546 DOI: 10.3390/ijms25179518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have revolutionised the field of haematological malignancies by achieving impressive remission rates in patients with highly refractory haematological malignancies, improving overall survival. To date, six commercial anti-CD19 and anti-BCMA CAR T-cell products have been approved by the Food and Drug Administration (FDA) for the treatment of relapsed/refractory B-cell haematological malignancies and multiple myeloma. The indications for CAR T-cell therapies are gradually expanding, with these therapies being investigated in a variety of diseases, including non-malignant ones. Despite the great success, there are several challenges surrounding CAR T-cell therapies, such as non-durable responses and high-grade toxicities. In addition, a new safety concern was added by the FDA on 28 November 2023 following reports of T-cell malignancies in patients previously treated with either anti-CD19 or anti-BCMA autologous CAR T-cell therapies both in clinical trials and in the real-world setting. Since then, several reports have been published presenting the incidence and analysing the risks of other secondary malignancies after CAR T-cell therapies. In this opinion article, the current landscape of secondary malignancies after CAR T-cell therapies is presented, along with a proposed strategy for future research aiming at potentially diminishing or abrogating the risk of developing secondary malignancies after CAR T-cell therapies.
Collapse
Affiliation(s)
- Stella Bouziana
- Department of Hematology, King’s College Hospital, London SE59RS, UK
| | - Dimitrios Bouzianas
- BReMeL, Biopharmaceutical and Regenerative Medicine Laboratories, 55534 Thessaloniki, Greece;
| |
Collapse
|
2
|
Wu X, Ban C, Deng W, Bao X, Tang N, Wu Y, Deng Z, Xiong J, Zhao Q. Unveiling the PDK4-centered rituximab-resistant mechanism in DLBCL: the potential of the "Smart" exosome nanoparticle therapy. Mol Cancer 2024; 23:144. [PMID: 39004737 PMCID: PMC11247735 DOI: 10.1186/s12943-024-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) represents a prevalent malignant tumor, with approximately 40% of patients encountering treatment challenges or relapse attributed to rituximab resistance, primarily due to diminished or absent CD20 expression. Our prior research identified PDK4 as a key driver of rituximab resistance through its negative regulation of CD20 expression. Further investigation into PDK4's resistance mechanism and the development of advanced exosome nanoparticle complexes may unveil novel resistance targets and pave the way for innovative, effective treatment modalities for DLBCL. METHODS We utilized a DLBCL-resistant cell line with high PDK4 expression (SU-DHL-2/R). We infected it with short hairpin RNA (shRNA) lentivirus for RNA sequencing, aiming to identify significantly downregulated mRNA in resistant cells. Techniques including immunofluorescence, immunohistochemistry, and Western blotting were employed to determine PDK4's localization and expression in resistant cells and its regulatory role in phosphorylation of Histone deacetylase 8 (HDAC8). Furthermore, we engineered advanced exosome nanoparticle complexes, aCD20@ExoCTX/siPDK4, through cellular, genetic, and chemical engineering methods. These nanoparticles underwent characterization via Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM), and their cellular uptake was assessed through flow cytometry. We evaluated the nanoparticles' effects on apoptosis in DLBCL-resistant cells and immune cells using CCK-8 assays and flow cytometry. Additionally, their capacity to counteract resistance and exert anti-tumor effects was tested in a resistant DLBCL mouse model. RESULTS We found that PDK4 initiates HDAC8 activation by phosphorylating the Ser-39 site, suppressing CD20 protein expression through deacetylation. The aCD20@ExoCTX/siPDK4 nanoparticles served as effective intracellular delivery mechanisms for gene therapy and monoclonal antibodies, simultaneously inducing apoptosis in resistant DLBCL cells and triggering immunogenic cell death in tumor cells. This dual action effectively reversed the immunosuppressive tumor microenvironment, showcasing a synergistic therapeutic effect in a subcutaneous mouse tumor resistance model. CONCLUSIONS This study demonstrates that PDK4 contributes to rituximab resistance in DLBCL by modulating CD20 expression via HDAC8 phosphorylation. The designed exosome nanoparticles effectively overcome this resistance by targeting the PDK4/HDAC8/CD20 pathway, representing a promising approach for drug delivery and treating patients with Rituximab-resistant DLBCL.
Collapse
MESH Headings
- Humans
- Exosomes/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/therapy
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Animals
- Mice
- Nanoparticles/chemistry
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Apoptosis/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Ban
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewei Bao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ning Tang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery, First Affiliated Hospital of University of South China, Hengyang, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School, University of South China, Hengyang, Hengyang, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
3
|
Bouziana S. Editorial: Novel insights into CAR T-cell associated neurotoxicity. Front Neurol 2023; 14:1322843. [PMID: 38020630 PMCID: PMC10660261 DOI: 10.3389/fneur.2023.1322843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Stella Bouziana
- Department of Haematology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Rodríguez Gil de Montes AL, Spencer LM. Chimeric Antigen Receptor T Cells: Immunotherapy for the Treatment of Leukemia, Lymphoma, and Myeloma. Mol Cancer Ther 2023; 22:1261-1269. [PMID: 37596239 DOI: 10.1158/1535-7163.mct-23-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In immunotherapy with T cells genetically modified to express chimeric antigen receptors (CAR), autologous lymphocytes are extracted from the patient, genetically modified to obtain CAR-T cells, and reintroduced into the patient to attack cancer cells. The success of this therapy has been achieved in the area of CD19-positive leukemias and lymphomas, being approved for the treatment of non-Hodgkin's lymphomas, acute lymphoblastic leukemia, and multiple myeloma. CARs are proteins that combine antibody specificity with T-cell cytotoxicity. The most common toxicities associated with therapy were not predicted by preclinical testing and include cytokine release syndrome, neurotoxicity, and cytopenias. These toxicities are usually reversible. One of the main challenges facing the field is the high economic cost that therapy entails, so the search for ways to reduce this cost must be a priority. In addition, other challenges to overcome include the situation that not all patients are supplied with the product and the existence of long waiting times for the start of therapy. The aim of this review is to present the development of the structure of CAR-T cells, the therapies approved to date, the toxicity associated with them, and the advantages and limitations that they present as immunotherapy.
Collapse
Affiliation(s)
| | - Lilian Maritza Spencer
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas, Venezuela
| |
Collapse
|
5
|
Nagler A, Perriello VM, Falini L, Falini B. How I treat refractory/relapsed diffuse large B-cell lymphomas with CD19-directed chimeric antigen receptor T cells. Br J Haematol 2023; 201:396-410. [PMID: 36916189 DOI: 10.1111/bjh.18724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 represent a promising salvage immunotherapy for relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL), offering ~40% of long-term responses. In everyday clinical practice, haematologists involved in CAR T cell treatment of patients with R/R DLBCL have to deal with diagnostically complex cases and difficult therapeutic choices. The availability of novel immunotherapeutic agents for R/R DLBCL and recent advances in understanding CAR T-cell failure mechanisms demand a rational approach to identify the best choice for bridging therapy and managing post-CAR T-cell therapy relapses. Moreover, positron emission tomography/computerised tomography may result in false-positive interpretation, highlighting the importance of post-treatment biopsy. In this review, we discuss all above issues, presenting four instructive cases, with the aim to provide criteria and new perspectives for CAR T-cell treatment of DLBCL.
Collapse
Affiliation(s)
- Arnon Nagler
- Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Lorenza Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
6
|
LaBelle CA, Zhang RJ, Hunsucker SA, Armistead PM, Allbritton NL. Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation. Cytometry A 2023; 103:208-220. [PMID: 35899783 PMCID: PMC9883594 DOI: 10.1002/cyto.a.24678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/30/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets. Thus, a platform capable of measuring time-dependent CAR-T cell mediated killing and then isolating single cells for downstream assays would be invaluable in characterizing CAR-T cells. An automated microraft array platform was designed to track CD19 CAR-T cell killing of CD19+ target cells and CAR-T cell motility over time followed by CAR-T cell collection based on killing behavior. The platform demonstrated automated CAR-T cell counting with up to 98% specificity and 96% sensitivity, and single cells were isolated with 89% efficiency. On average, 2.3% of single CAR-T cells were shown to participate in serial-killing of target cells, killing a maximum of three target cells in a 6 h period. The cytotoxicity and motility of >7000 individual CAR-T cells was tracked across four microraft arrays. The automated microraft array platform measured temporal cell-mediated cytotoxicity, CAR-T cell motility, CAR-T cell death, and CAR-T cell to target cell distances, followed by the capability to sort any desired CAR-T cell. The pipeline has the potential to further our understanding of T cell-based cancer immunotherapies and improve cell-therapy products for better patient outcomes.
Collapse
Affiliation(s)
- Cody A. LaBelle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Raymond J. Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
7
|
Liu DD, Hong WC, Qiu KY, Li XY, Liu Y, Zhu LW, Lai WX, Chen H, Yang HQ, Xu LH, Fang JP. Umbilical cord blood: A promising source for allogeneic CAR-T cells. Front Oncol 2022; 12:944248. [PMID: 35965561 PMCID: PMC9373021 DOI: 10.3389/fonc.2022.944248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an effective treatment for relapsed and refractory acute lymphoblastic leukemia (R/R ALL). However, autologous CAR-T cells derived from patients with B-ALL often show poor amplification ability, exhaustion, and anergy. To overcome these limitations, allogeneic CAR-T cells may be used as effective substitutes; however, which source would be the best substitute is unclear. In this study, we compared the immunophenotype and antitumor efficacy of anti-CD19 CAR-T cells derived from healthy donor cord blood (CB), healthy donor peripheral blood (PB), and PB of B-ALL patients [PB (patient)] in vitro and NOD-Prkdcem26cd52Il2rgem26Cd22/Nju (NCG)-immunodeficient mice, respectively. The results revealed that CAR-T cells derived from healthy donor CB and PB showed a higher proportion of naive T cells and longer tumor suppression in tumor-bearing mice than those of PB (patient). PB (patient) CAR-T cells had a higher proportion of regulatory T cells (Treg cells) and released high levels of interluekin-10 (IL-10), which also suggest a poor prognosis. Thus, CAR-T cells derived from healthy donors have better antitumor efficacy than CAR-T cells derived from PB (patient), and CB may be a good source of allogeneic CAR-T cells.
Collapse
Affiliation(s)
- Dian-Dian Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Wei-Cong Hong
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Kun-Yin Qiu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Xin-Yu Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Yong Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Li-Wen Zhu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Wei-Xin Lai
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Han- Chen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Hua-Qing Yang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lu-Hong Xu, ; Jian-Pei Fang,
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lu-Hong Xu, ; Jian-Pei Fang,
| |
Collapse
|
8
|
Fujiwara Y, Kato T, Hasegawa F, Sunahara M, Tsurumaki Y. The Past, Present, and Future of Clinically Applied Chimeric Antigen Receptor-T-Cell Therapy. Pharmaceuticals (Basel) 2022; 15:207. [PMID: 35215319 PMCID: PMC8876595 DOI: 10.3390/ph15020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy represents the fourth pillar of cancer therapy after surgery, chemotherapy, and radiation. Chimeric antigen receptor (CAR)-T-cell therapy is an artificial immune cell therapy applied in clinical practice and is currently indicated for hematological malignancies, with cluster of differentiation 19 (CD19) as its target molecule. In this review, we discuss the past, present, and future of CAR-T-cell therapy. First, we summarize the various clinical trials that were conducted before the clinical application of CD19-targeted CAR-T-cell therapies began. Second, we discuss the accumulated real-world evidence and the barriers associated with applying clinical trials to clinical practices from the perspective of the quality and technical aspects. After providing an overview of all the moving parts involved in the production of CAR-T-cell products, we discuss the characteristics of immune cells (given that T cells are the raw materials for CAR-T-cell therapy) and elucidate the relationship between lifestyle, including diet and exercise, and immune cells. Finally, we briefly highlight future trends in the development of immune cell therapy. These advancements may help position CAR-T-cell therapy as a standard of care.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Cell & Gene Therapy, Oncology, Novartis Pharma K.K., 1-23-1, Toranomon, Minato-ku, Tokyo 105-6333, Japan;
| | - Toshiki Kato
- Oncology Medical Affairs Dept, Novartis Pharma K.K., 1-23-1, Toranomon, Minato-ku, Tokyo 105-6333, Japan; (T.K.); (F.H.); (M.S.)
| | - Futoshi Hasegawa
- Oncology Medical Affairs Dept, Novartis Pharma K.K., 1-23-1, Toranomon, Minato-ku, Tokyo 105-6333, Japan; (T.K.); (F.H.); (M.S.)
| | - Muha Sunahara
- Oncology Medical Affairs Dept, Novartis Pharma K.K., 1-23-1, Toranomon, Minato-ku, Tokyo 105-6333, Japan; (T.K.); (F.H.); (M.S.)
| | - Yoshie Tsurumaki
- Cell & Gene Therapy, Oncology, Novartis Pharma K.K., 1-23-1, Toranomon, Minato-ku, Tokyo 105-6333, Japan;
| |
Collapse
|
9
|
Xie D, Jin X, Sun R, Zhang M, Wang J, Xiong X, Zhang X, Zhao M. Relapse Mechanism and Treatment Strategy After Chimeric Antigen Receptor T-Cell Therapy in Treating B-Cell Hematological Malignancies. Technol Cancer Res Treat 2022; 21:15330338221118413. [PMID: 35989682 PMCID: PMC9403467 DOI: 10.1177/15330338221118413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the past few decades, immunotherapy has revolutionized the modern medical oncology field. Chimeric antigen receptor (CAR)-T cell therapy has a promising curative effect in the treatment of hematological malignancies. Anti-CD19 CAR-T cells are the most mature CAR-T cells recently studied and in recent years it has achieved a complete remission rate of approximately 90% in the treatment of B-cell acute lymphoblastic leukemia (B-ALL). Although CAR-T cell therapy has greatly alleviated the disease in patients with leukemia or lymphoma, some of them still relapse after treatment. Therefore, in this article, we discuss the factors that may contribute to disease relapse following CAR-T cell therapy and summarize potential strategies to overcome these obstacles, thus providing the possibility of improving standard treatment regimens.
Collapse
Affiliation(s)
- Danni Xie
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Department of Hematology, 66571Tianjin First Central Hospital, Tianjin, China
| | - Rui Sun
- 481107Nankai University School of Medicine, Tianjin, China
| | - Meng Zhang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Jiaxi Wang
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xia Xiong
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiaomei Zhang
- 481107Nankai University School of Medicine, Tianjin, China
| | - Mingfeng Zhao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Hematology, 66571Tianjin First Central Hospital, Tianjin, China.,481107Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
10
|
Cheng J, Chen G, Lv H, XU L, LIU H, Chen T, Qu L, Wang J, Cheng L, Hu S, Wang Y. CD4-Targeted T Cells Rapidly Induce Remissions in Mice with T Cell Lymphoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6614784. [PMID: 33855074 PMCID: PMC8019637 DOI: 10.1155/2021/6614784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the immune cell therapy for T cell lymphoma, we developed CD4-specific chimeric antigen receptor- (CAR-) engineered T cells (CD4CART), and the cytotoxic effects of CD4CART cells were determined in vitro and in vivo. METHODS CD4CART cells were obtained by transduction of lentiviral vector encoding a single-chain antibody fragment (scFv) specific for CD4 antigen, costimulatory factor CD28 fragment, and intracellular signal transduction domain of CD3 fragments. Control T cells were obtained by transduction of reporter lentiviral vector. The cytotoxicity, tumor growth, and survival rate of mice with T cell lymphoma were analyzed after adoptive T cell transfer in vivo. RESULTS CD4CART cells had potent cytotoxic activity against CD4+ T1301 tumor T cells in a concentration-dependent manner. In addition, adoptive CD4CART cell transfer significantly suppressed tumor growth and improved animal survival with T cell lymphoma, compared to the mice who received control T cells and PBS. CONCLUSION CD4CART cells have potent cytotoxic effects on T cell lymphoma. The study provided an experimental basis for CD4CART-mediated therapy of T cell lymphoma.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Guanghua Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Hui Lv
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Liangjing XU
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Huiwen LIU
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu Province, China
| | - Tianping Chen
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Lijun Qu
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Jian Wang
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Lemei Cheng
- Department of Hematology, Anhui Provincial Children's Hospital, Anhui Province, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Muhuri M, Gao G. Oncolytic Virus Alphavirus M1: A New and Promising Weapon to Fight Cancer. Hum Gene Ther 2021; 32:136-137. [PMID: 33621140 DOI: 10.1089/hum.2021.29150.mmu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research; University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|