1
|
Munyakanage D, Niyituma E, Mutabazi A, Misago X, Musanabaganwa C, Remera E, Rutayisire E, Ingabire MM, Majambere S, Mbituyumuremyi A, Ngugi MP, Kokwaro E, Hakizimana E, Muvunyi CM. The impact of Bacillus thuringiensis var. israelensis (Vectobac ® WDG) larvicide sprayed with drones on the bio-control of malaria vectors in rice fields of sub-urban Kigali, Rwanda. Malar J 2024; 23:281. [PMID: 39289705 PMCID: PMC11407014 DOI: 10.1186/s12936-024-05104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The core vector control tools used to reduce malaria prevalence are currently long-lasting insecticidal nets (LLINs), and indoor residual spraying (IRS). These interventions are hindered by insecticide resistance and behavioural adaptation by malaria vectors. Thus, for effective interruption of malaria transmission, there is a need to develop novel vector control interventions and technologies to address the above challenges. Larviciding using drones was experimented as an innovative tool that could complement existing indoor interventions to control malaria. METHODS A non-randomized larviciding trial was carried out in irrigated rice fields in sub-urban Kigali, Rwanda. Potential mosquito larval habitats in study sites were mapped and subsequently sprayed using multirotor drones. Application of Bacillus thuringiensis var. israelensis (Bti) (Vectobac® WDG) was followed by entomological surveys that were performed every two weeks over a ten-month period. Sampling of mosquito larvae was done with dippers while adult mosquitoes were collected using CDC miniature light traps (CDC-LT) and pyrethrum spraying collection (PSC) methods. Malaria cases were routinely monitored through community health workers in villages surrounding the study sites. RESULTS The abundance of all-species mosquito larvae, Anopheles larvae and all-species pupae declined by 68.1%, 74.6% and 99.6%, respectively. Larval density was reduced by 93.3% for total larvae, 95.3% for the Anopheles larvae and 61.9% for pupae. The total adult mosquitoes and Anopheles gambiae sensu lato collected using CDC-Light trap declined by 60.6% and 80% respectively. Malaria incidence also declined significantly between intervention and control sites (U = 20, z = - 2.268, p = 0.023). CONCLUSIONS The larviciding using drone technology implemented in Rwanda demonstrated a substantial reduction in abundance and density of mosquito larvae and, concomitant decline in adult mosquito populations and malaria incidences in villages contingent to the treatment sites. The scaling up of larval source management (LSM) has to be integrated in malaria programmes in targeted areas of malaria transmission in order to enhance the gains in malaria control.
Collapse
Affiliation(s)
- Dunia Munyakanage
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
- Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Elias Niyituma
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | - Alphonse Mutabazi
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | - Xavier Misago
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | - Clarisse Musanabaganwa
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | - Eric Remera
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | | | | | | | - Aimable Mbituyumuremyi
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| | | | - Elizabeth Kokwaro
- Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Emmanuel Hakizimana
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda.
| | - Claude Mambo Muvunyi
- Malaria and Other Parasitic Diseases Division of Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda
| |
Collapse
|
2
|
Rique HL, Menezes HSG, Melo-Santos MAV, Silva-Filha MHNL. Evaluation of a long-lasting microbial larvicide against Culex quinquefasciatus and Aedes aegypti under laboratory and a semi-field trial. Parasit Vectors 2024; 17:391. [PMID: 39272177 PMCID: PMC11401406 DOI: 10.1186/s13071-024-06465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. METHODS The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. RESULTS The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. CONCLUSIONS Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance.
Collapse
Affiliation(s)
- Hyago Luiz Rique
- Departament of Entomology, Instituto Aggeu Magalhães-Fiocruz, Av. Moraes Rego S/N, Recife, PE, 50740-465, Brazil
| | | | | | | |
Collapse
|
3
|
Ochomo E, Rund SSC, Mthawanji RS, Antonio-Nkondjio C, Machani M, Samake S, Wolie RZ, Nsango S, Lown LA, Matoke-Muhia D, Kamau L, Lukyamuzi E, Njeri J, Chabi J, Akrofi OO, Ntege C, Mero V, Mwalimu C, Kiware S, Bilgo E, Traoré MM, Afrane Y, Hakizimana E, Muleba M, Orefuwa E, Chaki P, Juma EO. Mosquito control by abatement programmes in the United States: perspectives and lessons for countries in sub-Saharan Africa. Malar J 2024; 23:8. [PMID: 38178145 PMCID: PMC10768238 DOI: 10.1186/s12936-023-04829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.
Collapse
Affiliation(s)
- Eric Ochomo
- Entomology Department, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
- Vector Control Products Unit, Researchworld Limited, Kisumu, Kenya.
| | | | - Rosheen S Mthawanji
- Vector Biology Group, Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination Pour la lutte contre les Endémies en Afrique centrale (OCEAC), Yaounde, Cameroon
| | - Maxwell Machani
- Entomology Department, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Rosine Z Wolie
- Vector Control Product Evaluation Centre - Institut Pierre Richet (VCPEC-IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Unité de Formation et de Recherche des Sciences de la Nature, Université Nangui Abrogoua, Abdijan, Côte d'Ivoire
| | - Sandrine Nsango
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Centre Pasteur in Cameroon, Yaounde, Cameroon
| | | | - Damaris Matoke-Muhia
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edward Lukyamuzi
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - Jane Njeri
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | | | | | - Charles Ntege
- National Malaria Control Division Ministry of Health, Kampala, Uganda
| | - Victor Mero
- Ifakara Health Institute (IHI), Dar es Salaam, Tanzania
| | | | - Samson Kiware
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
- Ifakara Health Institute (IHI), Dar es Salaam, Tanzania
| | - Etienne Bilgo
- Institut de Recherche en Sciences de la Sante (IRSS) Direction regionale de l'Ouest, Bobo Dioulasso, Burkina Faso
| | - Mohamed Moumine Traoré
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Yaw Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Hakizimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Ministry of Health, Kigali, Rwanda
- Pan-African Mosquito Control Organization (PAMCO), Rwanda Chapter, Kigali, Rwanda
| | | | - Emma Orefuwa
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - Prosper Chaki
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| | - Elijah Omondi Juma
- Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Nairobi, Kenya
| |
Collapse
|