1
|
Funes AK, Avena V, Boarelli PV, Monclus MA, Zoppino DF, Saez-Lancellotti TE, Fornes MW. Cholesterol dynamics in rabbit liver: High-fat diet, olive oil, and synergistic dietary effects. Biochem Biophys Res Commun 2024; 733:150675. [PMID: 39284268 DOI: 10.1016/j.bbrc.2024.150675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND & AIMS Lipid metabolism disorders contribute to a range of human diseases, including liver-related pathologies. Rabbits, highly sensitive to dietary cholesterol, provide a model for understanding the development of liver disorders. Sterol regulatory element-binding protein isoform 2 (SREBP2) crucially regulates intracellular cholesterol pathways. Extra-virgin olive oil (EVOO) has shown reducing cholesterol levels and restoring liver parameters affected by HFD. The aim was to investigate the molecular impact of an HFD and supplemented with EVOO on rabbit liver cholesterol metabolism. APPROACH & RESULTS Male rabbits were assigned to dietary cohorts, including control, acute/chronic HFD, sequential HFD with EVOO, and EVOO. Parameters such as serum lipid profiles, hepatic enzymes, body weight, and molecular analyses. After 6 months of HFD, plasma and hepatic cholesterol increased with decreased SREBP2 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) expression. Prolonged HFD increased cholesterol levels, upregulating SREBP2 mRNA and HMGCR protein. Combining this with EVOO lowered cholesterol, increased SREBP2 mRNA, and upregulated low-density lipoprotein receptor (LDLR) expression. HFD-induced metabolic dysfunction-associated fatty liver disease was mitigated by EVOO. In conclusion, the SREBP2 system responds to dietary changes. CONCLUSIONS In rabbits, the SREBP2 system responds to dietary changes. Acute HFD hinders cholesterol synthesis, while prolonged HFD disrupts regulation, causing SREBP2 upregulation. EVOO intake prompts LDLR upregulation, potentially enhancing cholesterol clearance and restoring hepatic alterations.
Collapse
Affiliation(s)
- Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Virginia Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Paola V Boarelli
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - María A Monclus
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Dario Fernández Zoppino
- Laboratorio de Fisiología Celular y Molecular. Facultad de Ciencias de la Salud. Universidad de Burgos, Burgos, Spain
| | - Tania E Saez-Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina; Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA). Universidad de Málaga, Málaga, Spain.
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| |
Collapse
|
2
|
Zhou Z, Vidales J, González-Reyes JA, Shibata B, Baar K, Rutkowsky JM, Ramsey JJ. A 1-Month Ketogenic Diet Increased Mitochondrial Mass in Red Gastrocnemius Muscle, but Not in the Brain or Liver of Middle-Aged Mice. Nutrients 2021; 13:nu13082533. [PMID: 34444693 PMCID: PMC8401881 DOI: 10.3390/nu13082533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Alterations in markers of mitochondrial content with ketogenic diets (KD) have been reported in tissues of rodents, but morphological quantification of mitochondrial mass using transmission electron microscopy (TEM), the gold standard for mitochondrial quantification, is needed to further validate these findings and look at specific regions of interest within a tissue. In this study, red gastrocnemius muscle, the prefrontal cortex, the hippocampus, and the liver left lobe were used to investigate the impact of a 1-month KD on mitochondrial content in healthy middle-aged mice. The results showed that in red gastrocnemius muscle, the fractional area of both subsarcolemmal (SSM) and intermyofibrillar (IMM) mitochondria was increased, and this was driven by an increase in the number of mitochondria. Mitochondrial fractional area or number was not altered in the liver, prefrontal cortex, or hippocampus following 1 month of a KD. These results demonstrate tissue-specific changes in mitochondrial mass with a short-term KD and highlight the need to study different muscle groups or tissue regions with TEM to thoroughly determine the effects of a KD on mitochondrial mass.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
| | - Jocelyn Vidales
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
| | - José A. González-Reyes
- Department of Cell Biology, Physiology and Immunology, Campus de Excelencia Internacional Agroalimentario, CeiA3, University of Córdoba, 14071 Córdoba, Spain;
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA;
| | - Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
- Correspondence: (J.M.R.); (J.J.R.)
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (Z.Z.); (J.V.)
- Correspondence: (J.M.R.); (J.J.R.)
| |
Collapse
|
3
|
Selfridge JE, Wilkins HM, E L, Carl SM, Koppel S, Funk E, Fields T, Lu J, Tang EP, Slawson C, Wang W, Zhu H, Swerdlow RH. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr 2014; 47:1-11. [PMID: 25104046 DOI: 10.1007/s10863-014-9570-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
Abstract
Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain's aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated.
Collapse
Affiliation(s)
- J Eva Selfridge
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Uyanoglu M, Yamac M, Canbek M, Senturk H, Kartkaya K, Oglakci A, Turgak O, Kanbak G. Curative Effect of Crude Exopolysaccharides of Some Macrofungi on Alcohol-induced Liver Damage. Ultrastruct Pathol 2013; 37:218-26. [DOI: 10.3109/01913123.2013.786297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Khraiwesh H, López-Domínguez JA, López-Lluch G, Navas P, de Cabo R, Ramsey JJ, Villalba JM, González-Reyes JA. Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. J Gerontol A Biol Sci Med Sci 2013; 68:1023-34. [PMID: 23403066 DOI: 10.1093/gerona/glt006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We analyzed ultrastructural changes and markers of fission/fusion in hepatocyte mitochondria from mice submitted to 40% calorie restriction (CR) for 6 months versus ad-libitum-fed controls. To study the effects of dietary fat under CR, animals were separated into three CR groups with soybean oil (also in controls), fish oil, and lard. CR induced differential changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. The number of cristae per mitochondrion was significantly higher in all CR groups compared with controls. Proteins related to mitochondrial fission (Fis1 and Drp1) increased with CR, but no changes were detected in proteins involved in mitochondrial fusion (Mfn1, Mfn2, and OPA1). Although many of these changes could be attributed to CR regardless of dietary fat, changing membrane lipid composition by different fat sources did modulate the effects of CR on hepatocyte mitochondria.
Collapse
Affiliation(s)
- Husam Khraiwesh
- Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Cordoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Venkatachalam AB, Lall SP, Denovan-Wright EM, Wright JM. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). BMC Evol Biol 2012; 12:112. [PMID: 22776158 PMCID: PMC3483278 DOI: 10.1186/1471-2148-12-112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/31/2012] [Indexed: 01/03/2023] Open
Abstract
Background Force, Lynch and Conery proposed the duplication-degeneration-complementation (DDC) model in which partitioning of ancestral functions (subfunctionalization) and acquisition of novel functions (neofunctionalization) were the two primary mechanisms for the retention of duplicated genes. The DDC model was tested by analyzing the transcriptional induction of the duplicated fatty acid-binding protein (fabp) genes by clofibrate in zebrafish. Clofibrate is a specific ligand of the peroxisome proliferator-activated receptor (PPAR); it activates PPAR which then binds to a peroxisome proliferator response element (PPRE) to induce the transcriptional initiation of genes primarily involved in lipid homeostasis. Zebrafish was chosen as our model organism as it has many duplicated genes owing to a whole genome duplication (WGD) event that occurred ~230-400 million years ago in the teleost fish lineage. We assayed the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA) transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed different concentrations of clofibrate. Result Electron microscopy showed an increase in the number of peroxisomes and mitochondria in liver and heart, respectively, in zebrafish fed clofibrate. Clofibrate also increased the steady-state level of acox1 mRNA and hnRNA transcripts in different tissues, a gene with a functional PPRE. These results demonstrate that zebrafish is responsive to clofibrate, unlike some other fishes. The levels of fabp mRNA and hnRNA transcripts for the four sets of duplicated fabp genes was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR). The level of hnRNA coded by a gene is an indirect estimate of the rate of transcriptional initiation of that gene. Clofibrate increased the steady-state level of fabp mRNAs and hnRNAs for both the duplicated copies of fabp1a/fabp1b.1, and fabp7a/fabp7b, but in different tissues. Clofibrate also increased the steady-state level of fabp10a and fabp11a mRNAs and hnRNAs in liver, but not for fabp10b and fabp11b. Conclusion Some duplicated fabp genes have, most likely, retained PPREs, but induction by clofibrate is over-ridden by an, as yet, unknown tissue-specific mechanism(s). Regardless of the tissue-specific mechanism(s), transcriptional control of duplicated zebrafish fabp genes by clofibrate has markedly diverged since the WGD event.
Collapse
|
7
|
Masino SA, Kawamura M, Wasser CD, Wasser CA, Pomeroy LT, Ruskin DN. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol 2010; 7:257-68. [PMID: 20190967 PMCID: PMC2769009 DOI: 10.2174/157015909789152164] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 12/12/2022] Open
Abstract
For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed.
Collapse
Affiliation(s)
- S A Masino
- Psychology Department, Trinity College, 300 Summit St., Hartford, CT, USA.
| | | | | | | | | | | |
Collapse
|