1
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Pagalilauan A, Pavloudi C, Ospina SM, Smith A, Saw JH. Interaction with refuse piles is associated with co-occurrence of core gut microbiota in workers of the ant Aphaenogaster picea. Access Microbiol 2025; 7:000832.v4. [PMID: 39885953 PMCID: PMC11781628 DOI: 10.1099/acmi.0.000832.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers. Here, we present the core microbiota of Aphaenogaster picea ant workers with different task behaviours. The genus Aphaenogaster is abundant worldwide, yet the associated microbiota of this group is unstudied. Bacterial communities from Aphaenogaster picea gut samples in this study consist of 19 phyla, dominated by Proteobacteria, Cyanobacteria and Firmicutes. Analysis of 16S rRNA gene sequences reveals distinct similarity clustering of Aphaenogaster picea gut bacterial communities in workers that have more interactions with the refuse piles. Though gut bacterial communities of nurse and foraging ants are similar in overall composition and structure, the worker groups differ in relative abundances of dominant taxa. Gut bacterial communities from ants that have more interactions with refuse piles are dominated by amplicon sequence variants associated with Entomoplasmataceae. Interaction with faecal matter via refuse piles seems to have the greatest impact on microbial taxa distribution, and this effect appears to be independent of worker type. This is the first report surveying the gut microbiome community composition of Aphaenogaster ants.
Collapse
Affiliation(s)
- Alison Pagalilauan
- Department of Biological Sciences, The George Washington University, Washington DC 20052, USA
| | - Christina Pavloudi
- Department of Biological Sciences, The George Washington University, Washington DC 20052, USA
- European Marine Biological Resource Centre-European Research Infrastructure Consortium (EMBRC-ERIC), Paris, France
| | - Santiago Meneses Ospina
- Department of Biological Sciences, The George Washington University, Washington DC 20052, USA
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Adam Smith
- Department of Biological Sciences, The George Washington University, Washington DC 20052, USA
| | - Jimmy H. Saw
- Department of Biological Sciences, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
3
|
Haque MT, Khan MK, Herberstein ME. Current evidence of climate-driven colour change in insects and its impact on sexual signals. Ecol Evol 2024; 14:e11623. [PMID: 38957695 PMCID: PMC11219098 DOI: 10.1002/ece3.11623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The colours of insects function in intraspecific communication such as sexual signalling, interspecific communication such as protection from predators, and in physiological processes, such as thermoregulation. The expression of melanin-based colours is temperature-dependent and thus likely to be impacted by a changing climate. However, it is unclear how climate change drives changes in body and wing colour may impact insect physiology and their interactions with conspecifics (e.g. mates) or heterospecific (e.g. predators or prey). The aim of this review is to synthesise the current knowledge of the consequences of climate-driven colour change on insects. Here, we discuss the environmental factors that affect insect colours, and then we outline the adaptive mechanisms in terms of phenotypic plasticity and microevolutionary response. Throughout we discuss the impact of climate-related colour change on insect physiology, and interactions with con-and-heterospecifics.
Collapse
Affiliation(s)
- Md Tangigul Haque
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Md Kawsar Khan
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Department of Biology, Chemistry and PharmacyFree University BerlinBerlinGermany
| | | |
Collapse
|
4
|
Łukasik P, Kolasa MR. With a little help from my friends: the roles of microbial symbionts in insect populations and communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230122. [PMID: 38705185 PMCID: PMC11070262 DOI: 10.1098/rstb.2023.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 05/07/2024] Open
Abstract
To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
5
|
Kiefer JST, Bauer E, Okude G, Fukatsu T, Kaltenpoth M, Engl T. Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles. THE ISME JOURNAL 2023:10.1038/s41396-023-01415-y. [PMID: 37085551 DOI: 10.1038/s41396-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Eugen Bauer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Genta Okude
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
6
|
Jackson R, Monnin D, Patapiou PA, Golding G, Helanterä H, Oettler J, Heinze J, Wurm Y, Economou CK, Chapuisat M, Henry LM. Convergent evolution of a labile nutritional symbiosis in ants. THE ISME JOURNAL 2022; 16:2114-2122. [PMID: 35701539 PMCID: PMC9381600 DOI: 10.1038/s41396-022-01256-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
Abstract
Ants are among the most successful organisms on Earth. It has been suggested that forming symbioses with nutrient-supplementing microbes may have contributed to their success, by allowing ants to invade otherwise inaccessible niches. However, it is unclear whether ants have evolved symbioses repeatedly to overcome the same nutrient limitations. Here, we address this question by comparing the independently evolved symbioses in Camponotus, Plagiolepis, Formica and Cardiocondyla ants. Our analysis reveals the only metabolic function consistently retained in all of the symbiont genomes is the capacity to synthesise tyrosine. We also show that in certain multi-queen lineages that have co-diversified with their symbiont for millions of years, only a fraction of queens carry the symbiont, suggesting ants differ in their colony-level reliance on symbiont-derived resources. Our results imply that symbioses can arise to solve common problems, but hosts may differ in their dependence on symbionts, highlighting the evolutionary forces influencing the persistence of long-term endosymbiotic mutualisms.
Collapse
Affiliation(s)
- Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - David Monnin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patapios A Patapiou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Gemma Golding
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Heikki Helanterä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, 90014, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Jan Oettler
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93040, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93040, Germany
| | - Yannick Wurm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
- Alan Turing Institute, London, NW1 2DB, UK
| | - Chloe K Economou
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
7
|
Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists. Sci Rep 2021; 11:19559. [PMID: 34599211 PMCID: PMC8486828 DOI: 10.1038/s41598-021-98098-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 11/08/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) have important communicative functions for ants, which use CHC profiles to recognize mutualistic aphid partners. Aphid endosymbionts can influence the quality of their hosts as ant mutualists, via effects on honeydew composition, and might also affect CHC profiles, suggesting that ants could potentially use CHC cues to discriminate among aphid lines harbouring different endosymbionts. We explored how several strains of Hamiltonella defensa and Regiella insecticola influence the CHC profiles of host aphids (Aphis fabae) and the ability of aphid-tending ants (Lasius niger) to distinguish the profiles of aphids hosting different endosymbionts. We found significant compositional differences between the CHCs of aphids with different infections. Some endosymbionts changed the proportions of odd-chain linear alkanes, while others changed primarily methyl-branched compounds, which may be particularly important for communication. Behavioural assays, in which we trained ants to associate CHC profiles of endosymbiont infected or uninfected aphids with food rewards, revealed that ants readily learned to distinguish differences in aphid CHC profiles associated with variation in endosymbiont strains. While previous work has documented endosymbiont effects on aphid interactions with antagonists, the current findings support the hypothesis that endosymbionts also alter traits that influence communicative interactions with ant mutualists.
Collapse
|
8
|
Kiefer JST, Batsukh S, Bauer E, Hirota B, Weiss B, Wierz JC, Fukatsu T, Kaltenpoth M, Engl T. Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis. Commun Biol 2021; 4:554. [PMID: 33976379 PMCID: PMC8113238 DOI: 10.1038/s42003-021-02057-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Suvdanselengee Batsukh
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Bin Hirota
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Benjamin Weiss
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C Wierz
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
9
|
Badejo O, Skaldina O, Gilev A, Sorvari J. Benefits of insect colours: a review from social insect studies. Oecologia 2020; 194:27-40. [PMID: 32876763 PMCID: PMC7561587 DOI: 10.1007/s00442-020-04738-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 11/28/2022]
Abstract
Insect colours assist in body protection, signalling, and physiological adaptations. Colours also convey multiple channels of information. These channels are valuable for species identification, distinguishing individual quality, and revealing ecological or evolutionary aspects of animals' life. During recent years, the emerging interest in colour research has been raised in social hymenopterans such as ants, wasps, and bees. These insects provide important ecosystem services and many of those are model research organisms. Here we review benefits that various colour types give to social insects, summarize practical applications, and highlight further directions. Ants might use colours principally for camouflage, however the evolutionary function of colour in ants needs more attention; in case of melanin colouration there is evidence for its interrelation with thermoregulation and pathogen resistance. Colours in wasps and bees have confirmed linkages to thermoregulation, which is increasingly important in face of global climate change. Besides wasps use colours for various types of signalling. Colour variations of well chemically defended social insects are the mimetic model for unprotected organisms. Despite recent progress in molecular identification of species, colour variations are still widely in use for species identification. Therefore, further studies on variability is encouraged. Being closely interconnected with physiological and biochemical processes, insect colouration is a great source for finding new ecological indicators and biomarkers. Due to novel digital imaging techniques, software, and artificial intelligence there are emerging possibilities for new advances in this topic. Further colour research in social insects should consider specific features of sociality.
Collapse
Affiliation(s)
- Oluwatobi Badejo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| | - Oksana Skaldina
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Aleksei Gilev
- Institute of Plant and Animal Ecology (IPAE), Ural Centre of the Russian Academy of Sciences, 8 Marta Street, 202, 620144, Yekaterinburg, Russia.,Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Ural Federal University, Mira Street, 19, 620002, Ekaterinburg, Russia
| | - Jouni Sorvari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.,Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
10
|
Lemoine MM, Engl T, Kaltenpoth M. Microbial symbionts expanding or constraining abiotic niche space in insects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:14-20. [PMID: 32086000 DOI: 10.1016/j.cois.2020.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
In addition to their well-studied contributions to their host's nutrition, digestion, and defense, microbial symbionts of insects are increasingly found to affect their host's response toward abiotic stressors. In particular, symbiotic microbes can reduce or enhance tolerance to temperature extremes, improve desiccation resistance by aiding cuticle biosynthesis and sclerotization, and detoxify heavy metals. As such, individual symbionts or microbial communities can expand or constrain the abiotic niche space of their host and determine its adaptability to fluctuating environments. In light of the increasing impact of humans on climate and environment, a better understanding of host-microbe interactions is necessary to predict how different insect species will respond to changes in abiotic conditions.
Collapse
Affiliation(s)
- Marion M Lemoine
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
11
|
Teseo S, van Zweden JS, Pontieri L, Kooij PW, Sørensen SJ, Wenseleers T, Poulsen M, Boomsma JJ, Sapountzis P. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Lenoir A, Devers S. Alkaloid secretion inhibited by antibiotics in Aphaenogaster ants. C R Biol 2018; 341:358-361. [PMID: 30032781 DOI: 10.1016/j.crvi.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
Although alkaloids are frequent in the poison glands of ants of the genus Aphaenogaster, this is not the case for A. iberica. Hypothesizing that in the genus Aphaenogaster, alkaloids are produced by symbiotic bacteria, except for A. iberica, we treated an experimental lot of both A. iberica and a 'classical' Aphaenogaster species, A. senilis, with an antibiotic. Compared to workers from a control lot, this treatment reduced considerably alkaloid production in A. senilis, whereas A. iberica did not react to the treatment. Furthermore, the treatment induced an increase in cuticular hydrocarbon quantities in A. senilis, but not in A. iberica. An analysis of the ant microbiota will be the next step to confirm our hypothesis.
Collapse
Affiliation(s)
- Alain Lenoir
- IRBI, Institut de recherche sur la biologie de l'insecte, Université de Tours, Faculté des sciences, parc de Grandmont, 37200 Tours, France.
| | - Séverine Devers
- IRBI, Institut de recherche sur la biologie de l'insecte, Université de Tours, Faculté des sciences, parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
13
|
Sinotte VM, Freedman SN, Ugelvig LV, Seid MA. Camponotusfloridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia. INSECTS 2018; 9:E58. [PMID: 29857577 PMCID: PMC6023366 DOI: 10.3390/insects9020058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022]
Abstract
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia, but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont's effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont's crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum, suggesting that the symbiont reduces the ants' ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants' increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants' social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability.
Collapse
Affiliation(s)
- Veronica M Sinotte
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Samantha N Freedman
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Department of Pathology, University of Iowa, 1080 Medical Laboratories, 500 Newton Road, Iowa City, IA 52242-8205, USA.
| | - Line V Ugelvig
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Marc A Seid
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
| |
Collapse
|
14
|
Abstract
Symbiotic microorganisms can influence the fitness of their insect hosts by modulating pheromone production and perception.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
15
|
Engl T, Eberl N, Gorse C, Krüger T, Schmidt THP, Plarre R, Adler C, Kaltenpoth M. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol 2017; 27:2095-2108. [PMID: 29117633 DOI: 10.1111/mec.14418] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities.
Collapse
Affiliation(s)
- Tobias Engl
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Nadia Eberl
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Carla Gorse
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Theresa Krüger
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Thorsten H P Schmidt
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Rudy Plarre
- Federal Institute for Material Research and Testing, Berlin, Germany
| | - Cornel Adler
- Federal Research Centre for Cultivated Plants, Julius-Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Martin Kaltenpoth
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|