1
|
Ross M, Sade K, Obolensky A, Averbukh E, Desrosiers M, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Characterization of anti-AAV2 neutralizing antibody levels in sheep prior to and following intravitreal AAV2.7m8 injection. Gene Ther 2024; 31:580-586. [PMID: 39472677 DOI: 10.1038/s41434-024-00495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Gene augmentation therapy is a promising treatment for incurable, blinding inherited retinal diseases, and intravitreal delivery is being studied as a safe alternative to subretinal injections. Adeno-Associated Viruses (AAV) are commonly-used vectors for ocular gene augmentation therapy. Naturally occurring pre-operative exposure and infection with AAV could result in presence of neutralizing antibodies (NAB's) in patients' serum, and may affect the safety and efficacy of treatment. Our aim was to characterize the humoral response against AAV pre- and post-intravitreal delivery of AAV2.7m8 vectors in a naturally-occurring sheep model of CNGA3 achromatopsia. Serial serum neutralization assays were performed to screen sheep for pre-exiting anti-AAV2 NAB's, and to assess the effect of intravitreal AAV2.7m8 injection on post-operative NAB titers and intraocular inflammation in sheep. The effect of viral dose and transgene type were also assessed. Serological screening revealed pre-operative seropositivity in 21.4% of animals, with age being a risk factor for the presence of anti-AAV2 NAB's. NAB titers increased following intravitreal AAV administration in the majority of sheep. There was no significant difference in the degree of post-operative serum neutralization between pre-operatively seronegative sheep and those with pre-existing antibodies. However, only sheep with pre-existing antibodies presented with signs of post-operative inflammation. We conclude that pre-existing anti-AAV2 NAB's do not affect the level of post-operative NAB titers; however, they increase the risk of post-operative ocular inflammation. Our results could have implications for the management of AAV-mediated ocular gene therapies, a technology being increasingly studied and used in patients.
Collapse
Affiliation(s)
- Maya Ross
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Kareen Sade
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Alexander Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Hay Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Elisha Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Vanluchene H, Gillon O, Peynshaert K, De Smedt SC, Sanders N, Raemdonck K, Remaut K. Less is more: Self-amplifying mRNA becomes self-killing upon dose escalation in immune-competent retinal cells. Eur J Pharm Biopharm 2024; 196:114204. [PMID: 38302048 DOI: 10.1016/j.ejpb.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In the last few years, mRNA therapeutics experienced a new wave of interest as therapy for retinal diseases. Nevertheless, despite the widespread use of mRNA vaccines in the COVID-19 pandemic, mRNA delivery to the eye is still in its infancy. Recently, our research group has demonstrated that after subretinal and intravitreal delivery of modified mRNA, the number of transfected retinal cells and protein expression per cell remains limited. In this study, we aimed to tackle this limitation by using self-amplifying mRNA (saRNA), which in theory will increase the duration and level of protein expression when only a few mRNA molecules reach their target cells. A one-on-one comparison between modified mRNA and saRNA in two immune-competent human retinal cell types, including Müller cells and retinal pigment epithelial cells, and in immune-deficient BHK-21 cells revealed that saRNA delivery induced an innate immune response blocking its own translation above a certain dose threshold. Removal of double-stranded (ds)RNA byproducts by cellulose-based purification and addition of the innate immune inhibitor B18R remarkably improved translation from saRNA through a reduction in innate immune response. Taken together, when saRNA is applied for retinal disease, the dose should be controlled and measures should be taken to limit immunogenicity.
Collapse
Affiliation(s)
- Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Oriane Gillon
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
4
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
5
|
Lin F, Xie M, Sheng X, Guo L, Jia J, Wang Y. Research trends in the field of retinitis pigmentosa from 2002 to 2021: a 20 years bibliometric analysis. Int Ophthalmol 2022; 43:1825-1833. [DOI: 10.1007/s10792-022-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
6
|
Ross M, Obolensky A, Averbukh E, Desrosiers M, Ezra-Elia R, Honig H, Yamin E, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther 2022; 29:624-635. [PMID: 34853444 DOI: 10.1038/s41434-021-00306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Sheep carrying a mutated CNGA3 gene exhibit diminished cone function and provide a naturally occurring large animal model of achromatopsia. Subretinal injection of a vector carrying the CNGA3 transgene resulted in long-term recovery of cone function and photopic vision in these sheep. Research is underway to develop efficacious vectors that would enable safer transgene delivery, while avoiding potential drawbacks of subretinal injections. The current study evaluated two modified vectors, adeno-associated virus 2-7m8 (AAV2-7m8) and AAV9-7m8. Intravitreal injection of AAV2-7m8 carrying enhanced green fluorescent protein under a cone-specific promoter resulted in moderate photoreceptor transduction in wild-type sheep, whereas peripheral subretinal delivery of AAV9-7m8 resulted in the radial spread of the vector beyond the point of deposition. Intravitreal injection of AAV2-7m8 carrying human CNGA3 in mutant sheep resulted in mild photoreceptor transduction, but did not lead to the clinical rescue of photopic vision, while day-blind sheep treated with a subretinal injection exhibited functional recovery of photopic vision. Transgene messenger RNA levels in retinas of intravitreally treated eyes amounted to 4-23% of the endogenous CNGA3 levels, indicating that expression levels >23% are needed to achieve clinical rescue. Overall, our results indicate intravitreal injections of AAV2.7m8 transduce ovine photoreceptors, but not with sufficient efficacy to achieve clinical rescue in CNGA3 mutant sheep.
Collapse
Affiliation(s)
- M Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - A Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Desrosiers
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - H Honig
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - H Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Dalkara
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
7
|
Chien JY, Huang SP. Gene therapy in hereditary retinal dystrophy. Tzu Chi Med J 2022; 34:367-372. [PMID: 36578644 PMCID: PMC9791861 DOI: 10.4103/tcmj.tcmj_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs), such as retinitis pigmentosa, Leber's congenital amaurosis (LCA), Usher syndrome, and retinoschisis, are a group of genetic retinal disorders exhibiting both genetic and phenotypic heterogeneity. Symptoms include progressive retinal degeneration and constricted visual field. Some patients will be legal or completely blind. Advanced sequencing technologies improve the genetic diagnosis of HRD and lead to a new era of research into gene-targeted therapies. Following the first Food and Drug Administration approval of gene augmentation therapy for LCA caused by RPE65 mutations, multiple clinical trials are currently underway applying different techniques. In this review, we provide an overview of gene therapy for HRD and emphasize four distinct approaches to gene-targeted therapy that have the potential to slow or even reverse retinal degeneration: (1) viral vector-based and nonviral gene delivery, (2) RNA-based antisense oligonucleotide, (3) genome editing by the Clustered Regularly Interspaced Short Palindromic Repeat/cas9 system, and (4) optogenetics gene therapy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Department of Ophthalmology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,Address for correspondence: Dr. Shun-Ping Huang, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
8
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
9
|
Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 2021; 16:1751-1759. [PMID: 33510064 PMCID: PMC8328774 DOI: 10.4103/1673-5374.306063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal degenerations are a leading and untreatbale cause of blindness, and as such they are targets for gene therapy. Numerous gene therapy treatments have progressed from laboratory research to clinical trails, and a pioneering gene therapy received the first ever FDA approval for treating patients. However, currently retinal gene therapy mostly involves subretinal injection of the therapeutic agent, which treats a limited area, entails retinal detachment and other potential complications, and requires general anesthesia with consequent risks, costs and prolonged recovery. Therefore there is great impetus to develop safer, less invasive and cheapter methods of gene delivery. A promising method is intravitreal injection, that does not cause retinal detachment, can lead to pan-retinal transduction and can be performed under local anesthesia in out-patient clinics. Intravitreally-injected vectors face several obstacles. First, the vector is diluted by the vitreous and has to overcome a long diffusion distance to the target cells. Second, the vector is exposed to the host's immune response, risking neutralization by pre-existing antibodies and triggering a stronger immune response to the injection. Third, the vector has to cross the inner limiting membrane which is both a physical and a biological barrier as it contains binding sites that could cause the vector's sequestration. Finally, in the target cell the vector is prone to proteasome degradation before delivering the transgene to the nucleus. Strategies to overcome these obstacles include modifications of the viral capsid, through rational design or directed evolution, which allow resistance to the immune system, enhancement of penetration through the inner limiting membrane or reduced degradation by intracellular proteasomes. Furthermore, physical and chemical manipulations of the inner limiting membrane and vitreous aim to improve vector penetration. Finally, compact non-viral vectors that can overcome the immunological, physical and anatomical and barriers have been developed. This paper reviews ongoing efforts to develop novel, safe and efficacious methods for intravitreal delivery of therapeutic genes for inherited retinal degenerations. To date, the most promising results are achieved in rodents with robust, pan-retinal transduction following intravitreal delivery. Trials in larger animal models demonstrate transduction mostly of inner retinal layers. Despite ongoing efforts, currently no intravitreally-injected vector has demonstrated outer retinal transduction efficacy comparable to that of subretinal delivery. Further work is warranted to test promising new viral and non-viral vectors on large animal models of inherited retinal degenerations. Positive results will pave the way to development of the next generation of treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Frederick A, Sullivan J, Liu L, Adamowicz M, Lukason M, Raymer J, Luo Z, Jin X, Rao KN, O'Riordan C. Engineered Capsids for Efficient Gene Delivery to the Retina and Cornea. Hum Gene Ther 2021; 31:756-774. [PMID: 32578442 DOI: 10.1089/hum.2020.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adeno-associated viral (AAV) vectors represent an ideal vehicle for human gene transfer. One advantage to the AAV vector system is the availability of multiple naturally occurring serotypes that provide selective tropisms for various target cells. Strategies to enhance the properties of the natural AAV isolates have been developed and can be divided into two approaches, rational design or directed evolution. The rational design approach utilizes knowledge of AAV capsids to make targeted changes to the capsid to alter transduction efficiency or specificity, while the directed evolution approach does not require a priori knowledge of capsid structure and includes random mutagenesis, capsid shuffling, or random peptide insertion. In this study, we describe the generation of novel variants for both AAV2 and AAV5 using a rational design approach and knowledge of AAV receptor binding, surface charge, and AAV capsid protein posttranslational modifications. The novel AAV2 and AAV5 variants demonstrate improved transduction properties in both the mouse retina and cornea. The translational fidelity of the novel AAV2 variant was confirmed in the context of the nonhuman primate (NHP) retina, whereas a NHP tissue explant model was established to allow the rapid assessment of translational fidelity between species for the AAV5 variants. The capsid-modified AAV2 and AAV5 variants described in this study have novel attributes that will add to the efficacy and specificity of their potential use in gene therapy for a range of human ocular diseases.
Collapse
Affiliation(s)
- Amy Frederick
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Jennifer Sullivan
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Lin Liu
- Department of BioAnalytics, Sanofi, Framingham, Massachusetts, USA
| | - Matthew Adamowicz
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Michael Lukason
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Jasmine Raymer
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Zhengyu Luo
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Xiaoying Jin
- Department of BioAnalytics, Sanofi, Framingham, Massachusetts, USA
| | - Kollu Nageswara Rao
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| | - Catherine O'Riordan
- Department of Gene Therapy Research, Rare and Neurologic Diseases Therapeutic Area, Sanofi, Framingham, Massachusetts, USA
| |
Collapse
|
11
|
Cui S, Ganjawala TH, Abrams GW, Pan ZH. Effect of Proteasome Inhibitors on the AAV-Mediated Transduction Efficiency in Retinal Bipolar Cells. Curr Gene Ther 2021; 19:404-412. [PMID: 32072884 DOI: 10.2174/1566523220666200211111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adeno-associated Virus (AAV) vectors are the most promising vehicles for therapeutic gene delivery to the retina. To develop a practical gene delivery tool, achieving high AAV transduction efficiency in specific cell types is often required. AAV-mediated targeted expression in retinal bipolar cells is needed in certain applications such as optogenetic therapy, however, the transduction efficiency driven by endogenous cell-specific promoters is usually low. Methods that can improve AAV transduction efficiency in bipolar cells need to be developed. OBJECTIVE The study aimed to examine the effect of proteasome inhibitors on AAV-mediated transduction efficiency in retinal bipolar cells. METHODS Quantitative analysis of fluorescent reporter protein expression was performed to assess the effect of two proteasome inhibitors, doxorubicin and MG132, on AAV-mediated transduction efficiency in retinal bipolar cells in mice. RESULTS Our results showed that doxorubicin can increase the AAV transduction efficiency in retinal bipolar cells in a dose-dependent manner. We also observed doxorubicin-mediated cytotoxicity in retinal neurons, but the cytotoxicity could be mitigated by the coapplication of dexrazoxane. Three months after the coapplication of doxorubicin (300 μM) and dexrazoxane, the AAV transduction efficiency in retinal bipolar cells increased by 33.8% and no cytotoxicity was observed in all the layers of the retina. CONCLUSION Doxorubicin could enhance the AAV transduction efficiency in retinal bipolar cells in vivo. The potential long-term cytotoxicity caused by doxorubicin to retinal neurons could be partially mitigated by dexrazoxane. The coapplication of doxorubicin and dexrazoxane may serve as a potential adjuvant regimen for improving AAV transduction efficiency in retinal bipolar cells.
Collapse
Affiliation(s)
- Shengjie Cui
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Tushar H Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Gary W Abrams
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| |
Collapse
|
12
|
Neuroprotective Effect of siRNA Entrapped in Hyaluronic Acid-Coated Lipoplexes by Intravitreal Administration. Pharmaceutics 2021; 13:pharmaceutics13060845. [PMID: 34200993 PMCID: PMC8226864 DOI: 10.3390/pharmaceutics13060845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the possibility of silencing specific genes linked to retinal degeneration has become a reality with the use of small interfering RNAs (siRNAs), this technology has been widely studied to promote the treatment of several ocular diseases. Despite recent advances, the clinical success of gene silencing in the retina is significantly reduced by inherent anatomical and physiological ocular barriers, and new strategies are required to achieve intraocular therapeutic effectiveness. In this study, we developed lipoplexes, prepared with sodium alginate as an adjuvant and strategically coated with hyaluronic acid (HA-LIP), and investigated the potential neuroprotective effect of these systems in a retinal light damage model. Successful functionalization of the lipoplexes with hyaluronic acid was indicated in the dynamic light scattering and transmission electron microscopy results. Moreover, these HA-LIP nanoparticles were able to protect and deliver siRNA molecules targeting caspase-3 into the retina. After retinal degeneration induced by high light exposure, in vitro and in vivo quantitative reverse transcription-PCR (RT-qPCR) assays demonstrated significant inhibition of caspase-3 expression by HA-LIP. Furthermore, these systems were shown to be safe, as no evidence of retinal toxicity was observed by electroretinography, clinical evaluation or histology.
Collapse
|
13
|
Murenu E, Pavlou M, Richter L, Rapti K, Just S, Cehajic-Kapetanovic J, Tafrishi N, Hayes A, Scholey R, Lucas R, Büning H, Grimm D, Michalakis S. A universal protocol for isolating retinal ON bipolar cells across species via fluorescence-activated cell sorting. Mol Ther Methods Clin Dev 2021; 20:587-600. [PMID: 33665228 PMCID: PMC7895692 DOI: 10.1016/j.omtm.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
Inherited retinal dystrophies (IRDs) are characterized by progressive degeneration and loss of light-sensing photoreceptors. The most promising therapeutic approach for IRDs is gene supplementation therapy using viral vectors, which requires the presence of viable photoreceptors at the time of intervention. At later disease stages, photoreceptors are lost and can no longer be rescued with this approach. For these patients, conferring light-sensing abilities to the remaining interneurons of the ON circuit (i.e., ON bipolar cells) using optogenetic tools poses an alternative treatment strategy. Such treatments, however, are hampered by the lack of efficient gene delivery tools targeting ON bipolar cells, which in turn rely on the effective isolation of these cells to facilitate tool development. Herein, we describe a method to selectively isolate ON bipolar cells via fluorescence-activated cell sorting (FACS), based on the expression of two intracellular markers. We show that the method is compatible with highly sensitive downstream analyses and suitable for the isolation of ON bipolar cells from healthy as well as degenerated mouse retinas. Moreover, we demonstrate that this approach works effectively using non-human primate (NHP) retinal tissue, thereby offering a reliable pipeline for universal screening strategies that do not require inter-species adaptations or transgenic animals.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Marina Pavlou
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sabrina Just
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University and Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Neda Tafrishi
- Core Facility Flow Cytometry, Gene Center, BioSysM, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Andrew Hayes
- Center for Biological Timing & School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Rachel Scholey
- Center for Biological Timing & School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Robert Lucas
- Center for Biological Timing & School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site, Hannover, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
- BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site, Heidelberg, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
Hu ML, Edwards TL, O'Hare F, Hickey DG, Wang JH, Liu Z, Ayton LN. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom 2021; 104:444-454. [PMID: 33689657 DOI: 10.1080/08164622.2021.1880863] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) comprise a heterogeneous group of genetic disorders affecting the retina. Caused by mutations in over 300 genes, IRDs result in visual impairment due to dysfunction and degeneration of photoreceptors, retinal pigment epithelium, or the choroid. Important photoreceptor IRDs include retinitis pigmentosa and Leber congenital amaurosis. Macular dystrophies include Stargardt and Best disease. Currently, IRDs are largely incurable but the landscape of treatment options is rapidly changing for these diseases which, untreated, result in severe visual impairment and blindness.Advances in DNA delivery to the retina and improved genetic diagnosis of IRDs have led to a new era of research into gene therapy for these vision-threatening disorders. Gene therapy is a compelling approach due to the monogenic nature of most IRDs, with the retina being a favourable target for administering genetic vectors due to its immunoprivileged environment, direct visibility, and multiple methods to assess sensitivity and function. Generally, retinal gene therapy involves a subretinal or intravitreal injection of a viral vector, which infects target cells to deliver a therapeutic gene, or transgene. A gene augmentation strategy introduces a functioning copy of a gene to restore expression of a mutated gene, whereas a gene-editing strategy aims to directly edit and correct the mutation. Common delivery vectors include adeno-associated virus (AAV) and lentivirus.Voretigene neparvovec-rzyl (Luxturna) became the first FDA-approved direct gene therapy in December 2017, and the Australian TGA followed suit in August 2020. More are projected to follow, with clinical trials underway for many other IRDs.This review provides an overview of gene therapy for IRDs, including current progress and challenges. A companion article in this issue details target patient populations for IRD gene therapy, and how optometrists can assist in assessing individuals who may be eligible for current and future therapies.
Collapse
Affiliation(s)
- Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| | - Fleur O'Hare
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhengyang Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Mishra A, Vijayasarathy C, Cukras CA, Wiley HE, Sen HN, Zeng Y, Wei LL, Sieving PA. Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Mol Ther 2021; 29:2030-2040. [PMID: 33601057 DOI: 10.1016/j.ymthe.2021.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
This study explored systemic immune changes in 11 subjects with X-linked retinoschisis (XLRS) in a phase I/IIa adeno-associated virus 8 (AAV8)-RS1 gene therapy trial (ClinicalTrials.gov: NCT02317887). Immune cell proportions and serum analytes were compared to 12 healthy male controls. At pre-dosing baseline the mean CD4/CD8 ratio of XLRS subjects was elevated. CD11c+ myeloid dendritic cells (DCs) and the serum epidermal growth factor (EGF) level were decreased, while CD123+ plasmacytoid DCs and serum interferon (IFN)-γ and tumor necrosis factor (TNF)-α were increased, indicating that the XLRS baseline immune status differs from that of controls. XLRS samples 14 days after AAV8-RS1 administration were compared with the XLRS baseline. Frequency of CD11b+CD11c+ DCc was decreased in 8 of 11 XLRS subjects across all vector doses (1e9-3e11 vector genomes [vg]/eye). CD8+human leukocyte antigen-DR isotype (HLA-DR)+ cytotoxic T cells and CD68+CD80+ macrophages were upregulated in 10 of 11 XLRS subjects, along with increased serum granzyme B in 8 of 11 XLRS subjects and elevated IFN-γ in 9 of 11 XLRS subjects. The six XLRS subjects with ocular inflammation after vector application gave a modestly positive correlation of inflammation score to their respective baseline CD4/CD8 ratios. This exploratory study indicates that XLRS subjects may exhibit a proinflammatory, baseline immune phenotype, and that intravitreal dosing with AAV8-RS1 leads to systemic immune activation with an increase of activated lymphocytes, macrophages, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Alaknanda Mishra
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Catherine A Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa L Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, University of California Davis, Davis, CA 95817, USA.
| |
Collapse
|
16
|
Ross M, Obolensky A, Averbukh E, Ezra-Elia R, Yamin E, Honig H, Dvir H, Rosov A, Hauswirth WW, Gootwine E, Banin E, Ofri R. Evaluation of Photoreceptor Transduction Efficacy of Capsid-Modified Adeno-Associated Viral Vectors Following Intravitreal and Subretinal Delivery in Sheep. Hum Gene Ther 2020; 31:719-729. [PMID: 32486858 DOI: 10.1089/hum.2020.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene augmentation therapy based on subretinal delivery of adeno-associated viral (AAV) vectors is proving to be highly efficient in treating several inherited retinal degenerations. However, due to potential complications and drawbacks posed by subretinal injections, there is a great impetus to find alternative methods of delivering the desired genetic inserts to the retina. One such method is an intravitreal delivery of the vector. Our aim was to evaluate the efficacy of two capsid-modified vectors that are less susceptible to cellular degradation, AAV8 (doubleY-F) and AAV2 (quadY-F+T-V), as well as a third, chimeric vector AAV[max], to transduce photoreceptor cells following intravitreal injection in sheep. We further tested whether saturation of inner limiting membrane (ILM) viral binding sites using a nonmodified vector, before the intravitreal injection, would enhance the efficacy of photoreceptor transduction. Only AAV[max] resulted in moderate photoreceptor transduction following intravitreal injection. Intravitreal injection of the two other vectors did not result in photoreceptor transduction nor did the saturation of the ILM before the intravitreal injection. However, two of the vectors efficiently transduced photoreceptor cells following subretinal injection in positive control eyes. Previous trials with the same vectors in both murine and canine models resulted in robust and moderate transduction efficacy, respectively, of photoreceptors following intravitreal delivery, demonstrating the importance of utilizing as many animal models as possible when evaluating new strategies for retinal gene therapy. The successful photoreceptor transduction of AAV[max] injected intravitreally makes it a potential candidate for intravitreal delivery, but further trials are warranted to determine whether the transduction efficacy is sufficient for a clinical outcome.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raaya Ezra-Elia
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Esther Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hen Honig
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Hay Dvir
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Alexander Rosov
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Elisha Gootwine
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Jackson K, Vergilio GK, Cooper RF, Ying GS, Morgan JIW. A 2-Year Longitudinal Study of Normal Cone Photoreceptor Density. Invest Ophthalmol Vis Sci 2019; 60:1420-1430. [PMID: 30943290 PMCID: PMC6736277 DOI: 10.1167/iovs.18-25904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Despite the potential for adaptive optics scanning light ophthalmoscopy (AOSLO) to quantify retinal disease progression at the cellular level, there remain few longitudinal studies investigating changes in cone density as a measure of disease progression. Here, we undertook a prospective, longitudinal study to investigate the variability of cone density measurements in normal subjects during a 2-year period. Methods Fourteen eyes of nine subjects with no known ocular pathology were imaged both at a baseline and a 2-year follow-up visit by using confocal AOSLO at five retinal locations. Two-year affine-registered images were created to minimize the effects of intraframe distortions. Regions of interest were cropped from baseline, 2-year manually aligned, and 2-year affine-registered images. Cones were identified (graded masked) and cone density was extracted. Results Mean baseline cone density (cones/mm2) was 87,300, 62,200, 45,500, 28,700, and 18,200 at 190, 350, 500, 900, and 1500 μm, respectively. The mean difference (± standard deviation [SD]) in cone density from baseline to 2-year affine-registered images was 1400 (1700), 100 (1800), 300 (800), 400 (800), and 1000 (2400) cones/mm2 at the same locations. The mean difference in cone density during the 2-year period was lower for affine-registered images than manually aligned images. Conclusions There was no meaningful change in normal cone density during a 2-year period. Intervisit variability in cone density measurements decreased when intraframe distortions between time points were minimized. This variability must be considered when planning prospective longitudinal clinical trials using changes in cone density as an outcome measure for assessing retinal disease progression.
Collapse
Affiliation(s)
- Kevin Jackson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Grace K Vergilio
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Robert F Cooper
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui-Shuang Ying
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jessica I W Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
18
|
Gomez JP, Tresset G, Pichon C, Midoux P. Improved histidinylated lPEI polyplexes for skeletal muscle cells transfection. Int J Pharm 2019; 559:58-67. [DOI: 10.1016/j.ijpharm.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
19
|
|
20
|
Ross M, Honig H, Ezra-Elia R, Banin E, Obolensky A, Averbukh E, Rosov A, Gootwine E, Ofri R. Consecutive unilateral recording of the two eyes affects dark-adapted ERG responses, when compared to simultaneous bilateral recording. Doc Ophthalmol 2018; 137:183-192. [DOI: 10.1007/s10633-018-9661-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
|
21
|
Prevention of Photoreceptor Cell Loss in a Cln6 nclf Mouse Model of Batten Disease Requires CLN6 Gene Transfer to Bipolar Cells. Mol Ther 2018; 26:1343-1353. [PMID: 29606505 DOI: 10.1016/j.ymthe.2018.02.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage disorders characterized by general neurodegeneration and premature death. Sight loss is also a major symptom in NCLs, severely affecting the quality of life of patients, but it is not targeted effectively by brain-directed therapies. Here we set out to explore the therapeutic potential of an ocular gene therapy to treat sight loss in NCL due to a deficiency in the transmembrane protein CLN6. We found that, although Cln6nclf mice presented mainly with photoreceptor degeneration, supplementation of CLN6 in photoreceptors was not beneficial. Because the level of CLN6 is low in photoreceptors but high in bipolar cells (retinal interneurons that are only lost in Cln6-deficient mice at late disease stages), we explored the therapeutic effects of delivering CLN6 to bipolar cells using adeno-associated virus (AAV) serotype 7m8. Bipolar cell-specific expression of CLN6 slowed significantly the loss of photoreceptor function and photoreceptor cells. This study shows that the deficiency of a gene normally expressed in bipolar cells can cause the loss of photoreceptors and that this can be prevented by bipolar cell-directed treatment.
Collapse
|
22
|
Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res 2018; 63:69-91. [DOI: 10.1016/j.preteyeres.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
|
23
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
24
|
Öner A. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies. Turk J Ophthalmol 2017; 47:338-343. [PMID: 29326851 PMCID: PMC5758769 DOI: 10.4274/tjo.41017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/20/2017] [Indexed: 12/01/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ayşe Öner
- Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
| |
Collapse
|
25
|
Cooper RF, Tuten WS, Dubra A, Brainard DH, Morgan JIW. Non-invasive assessment of human cone photoreceptor function. BIOMEDICAL OPTICS EXPRESS 2017; 8:5098-5112. [PMID: 29188106 PMCID: PMC5695956 DOI: 10.1364/boe.8.005098] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 05/18/2023]
Abstract
Vision begins when light isomerizes the photopigments within photoreceptors. Noninvasive cellular-scale observation of the structure of the human photoreceptor mosaic is made possible through the use of adaptive optics (AO) enhanced ophthalmoscopes, but establishing noninvasive objective measures of photoreceptor function on a similar scale has been more difficult. AO ophthalmoscope images acquired with near-infrared light show that individual cone photoreceptor reflectance can change in response to a visible stimulus. Here we show that the intrinsic response depends on stimulus wavelength and intensity, and that its action spectrum is well-matched to the spectral sensitivity of cone-mediated vision. Our results demonstrate that the cone reflectance response is mediated by photoisomerization, thus making it a direct measure of photoreceptor function.
Collapse
Affiliation(s)
- Robert F. Cooper
- Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
- Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - William S. Tuten
- Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
- Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfredo Dubra
- Ophthalmology, Stanford University, Stanford, CA, USA
| | | | - Jessica I. W. Morgan
- Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, Kwon YJ. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2017; 63:107-131. [PMID: 29097191 DOI: 10.1016/j.preteyeres.2017.10.004] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinopathy that affects about 2.5 million people worldwide. It is characterized with progressive loss of rods and cones and causes severe visual dysfunction and eventual blindness in bilateral eyes. In addition to more than 3000 genetic mutations from about 70 genes, a wide genetic overlap with other types of retinal dystrophies has been reported with RP. This diversity of genetic pathophysiology makes treatment extremely challenging. Although therapeutic attempts have been made using various pharmacologic agents (neurotrophic factors, antioxidants, and anti-apoptotic agents), most are not targeted to the fundamental cause of RP, and their clinical efficacy has not been clearly proven. Current therapies for RP in ongoing or completed clinical trials include gene therapy, cell therapy, and retinal prostheses. Gene therapy, a strategy to correct the genetic defects using viral or non-viral vectors, has the potential to achieve definitive treatment by replacing or silencing a causative gene. Among many clinical trials of gene therapy for hereditary retinal diseases, a phase 3 clinical trial of voretigene neparvovec (AAV2-hRPE65v2, Luxturna) recently showed significant efficacy for RPE65-mediated inherited retinal dystrophy including Leber congenital amaurosis and RP. It is about to be approved as the first ocular gene therapy biologic product. Despite current limitations such as limited target genes and indicated patients, modest efficacy, and the invasive administration method, development in gene editing technology and novel gene delivery carriers make gene therapy a promising therapeutic modality for RP and other hereditary retinal dystrophies in the future.
Collapse
Affiliation(s)
- Marina França Dias
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | | | - Se Joon Woo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
27
|
Boye SE, Alexander JJ, Witherspoon CD, Boye SL, Peterson JJ, Clark ME, Sandefer KJ, Girkin CA, Hauswirth WW, Gamlin PD. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina. Hum Gene Ther 2017; 27:580-97. [PMID: 27439313 DOI: 10.1089/hum.2016.085] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and depth to which AAV2 promotes transduction of multiple retinal cell classes are greatly enhanced.
Collapse
Affiliation(s)
- Shannon E Boye
- 1 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - John J Alexander
- 2 Department of Human Genetics, Emory University , Atlanta, Georgia
| | - C Douglas Witherspoon
- 3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Sanford L Boye
- 1 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - James J Peterson
- 1 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - Mark E Clark
- 3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kristen J Sandefer
- 4 Department of Neurology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chris A Girkin
- 3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - William W Hauswirth
- 1 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - Paul D Gamlin
- 3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
28
|
Occelli LM, Tran NM, Narfström K, Chen S, Petersen-Jones SM. CrxRdy Cat: A Large Animal Model for CRX-Associated Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci 2017; 57:3780-92. [PMID: 27427859 PMCID: PMC4960999 DOI: 10.1167/iovs.16-19444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Purpose Mutations in the retinal transcription factor cone-rod homeobox (CRX) gene result in severe dominant retinopathies. A large animal model, the Rdy cat, carrying a spontaneous frameshift mutation in Crx, was reported previously. The present study aimed to further understand pathogenesis in this model by thoroughly characterizing the Rdy retina. Methods Structural and functional changes were found in a comparison between the retinas of CrxRdy/+ kittens and those of wild-type littermates and were determined at various ages by fundus examination, electroretinography (ERG), optical coherence tomography, and histologic analyses. RNA and protein expression changes of Crx and key target genes were analyzed using quantitative reverse-transcribed PCR, Western blot analysis, and immunohistochemistry. Transcription activity of the mutant Crx was measured by a dual-luciferase transactivation assay. Results CrxRdy/+ kittens had no recordable cone ERGs. Rod responses were delayed in development and markedly reduced at young ages and lost by 20 weeks. Photoreceptor outer segment development was incomplete and was followed by progressive outer retinal thinning starting in the cone-rich area centralis. Expression of cone and rod Crx target genes was significantly down-regulated. The mutant Crx allele was overexpressed, leading to high levels of the mutant protein lacking transactivation activity. Conclusions The CrxRdy mutation exerts a dominant negative effect on wild-type Crx by overexpressing mutant protein. These findings, consistent with those of studies in a mouse model, support a conserved pathogenic mechanism for CRX frameshift mutations. The similarities between the feline eye and the human eye with the presence of a central region of high cone density makes the CrxRdy/+ cat a valuable model for preclinical testing of therapies for dominant CRX diseases.
Collapse
Affiliation(s)
- Laurence M Occelli
- Small Animal Clinical Sciences Michigan State University, East Lansing, Michigan, United States
| | - Nicholas M Tran
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kristina Narfström
- Department of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, Missouri, United States
| | - Shiming Chen
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
29
|
Zhong X, Zhao H, Liang S, Zhou D, Zhang W, Yuan L. Gene delivery of apoptin-derived peptide using an adeno-associated virus vector inhibits glioma and prolongs animal survival. Biochem Biophys Res Commun 2017; 482:506-513. [PMID: 28212737 DOI: 10.1016/j.bbrc.2016.10.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of the secreted HSP70-targeted peptide APOPTIN derived from Apoptin to GBM tumors. We applied this therapy to GBM models using human U87MG glioma cells and GBM xenograft models in mice. In U87MG and U251MG cells, conditioned medium from AAV2-apoptin-derived peptide (ADP)-expressing cells induced 83% and 78% cell death. In mice bearing intracranial U87MG tumors treated with AAV2-ADP, treatment resulted in a significant decrease in tumor growth and longer survival in mice bearing orthotopic invasive GBM brain tumors. These data indicate that ssAAV2-ADP injection in the left hemisphere effectively prevented ipsilateral tumor growth but was insufficient to prevent distal tumor growth in the contralateral hemisphere. However, the systemic route is the most effective approach for treating widely dispersed tumors. In summary, systemic delivery of AAV2-ADP is an attractive approach for invasive GBM treatment.
Collapse
Affiliation(s)
- Xiuli Zhong
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, 163319, PR China
| | - Hengyu Zhao
- Daqing Oilfield General Hospital, Daqing, PR China
| | - Songhe Liang
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, 163319, PR China
| | - DanYang Zhou
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, 163319, PR China
| | - Wenjia Zhang
- Daqing Oilfield General Hospital, Daqing, PR China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, 163319, PR China.
| |
Collapse
|
30
|
Taylan Şekeroğlu H, Utine GE, Alikaşifoğlu M. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist's Perspective. Turk J Ophthalmol 2016; 46:299-300. [PMID: 28050330 PMCID: PMC5177790 DOI: 10.4274/tjo.59375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/23/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Gülen Eda Utine
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Hacettepe University Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| |
Collapse
|
31
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
32
|
Ophthalmic Drug Delivery. Drug Deliv 2016. [DOI: 10.1201/9781315382579-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Grob SR, Finn A, Papakostas TD, Eliott D. Clinical Trials in Retinal Dystrophies. Middle East Afr J Ophthalmol 2016; 23:49-59. [PMID: 26957839 PMCID: PMC4759904 DOI: 10.4103/0974-9233.173135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges.
Collapse
Affiliation(s)
- Seanna R Grob
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Avni Finn
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Thanos D Papakostas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; Retina, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Dean Eliott
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA; Retina, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, Li H, Lin X. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med 2016; 7:1077-86. [PMID: 26084842 PMCID: PMC4551345 DOI: 10.15252/emmm.201404929] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss.
Collapse
Affiliation(s)
- Qing Chang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Wang
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qi Li
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yeunjung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Binfei Zhou
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunfeng Wang
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huawei Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xi Lin
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Boyd RF, Sledge DG, Boye SL, Boye SE, Hauswirth WW, Komáromy AM, Petersen-Jones SM, Bartoe JT. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs. Gene Ther 2016; 23:223-30. [PMID: 26467396 PMCID: PMC4840844 DOI: 10.1038/gt.2015.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Delivery of therapeutic transgenes to retinal photoreceptors using adeno-associated virus (AAV) vectors has traditionally required subretinal injection. Recently, photoreceptor transduction efficiency following intravitreal injection (IVT) has improved in rodent models through use of capsid-mutant AAV vectors; but remains limited in large animal models. Thickness of the inner limiting membrane (ILM) in large animals is thought to impair retinal penetration by AAV. Our study compared two newly developed AAV vectors containing multiple capsid amino acid substitutions following IVT in dogs. The ability of two promoter constructs to restrict reporter transgene expression to photoreceptors was also evaluated. AAV vectors containing the interphotoreceptor-binding protein (IRBP) promoter drove expression exclusively in rod and cone photoreceptors, with transduction efficiencies of ~4% of cones and 2% of rods. Notably, in the central region containing the cone-rich visual streak, 15.6% of cones were transduced. Significant regional variation existed, with lower transduction efficiencies in the temporal regions of all eyes. This variation did not correlate with ILM thickness. Vectors carrying a cone-specific promoter failed to transduce a quantifiable percentage of cone photoreceptors. The newly developed AAV vectors containing the IRBP promoter were capable of producing photoreceptor-specific transgene expression following IVT in the dog.
Collapse
Affiliation(s)
- RF Boyd
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - DG Sledge
- Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, MI, USA
| | - SL Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - SE Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - WW Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - AM Komáromy
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - SM Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - JT Bartoe
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther 2016; 26:193-200. [PMID: 25762209 DOI: 10.1089/hum.2015.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Dozens of promising proofs of concept have been obtained in animal models of inherited retinal degenerations (IRDs), and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. However, this progress has also generated new questions and posed challenges that need to be addressed to further expand the applicability of gene therapy in the eye, including safe delivery of viral vectors to the outer retina, treatment of dominant IRDs as well as of IRDs caused by mutations in large genes, and, finally, selection of the appropriate IRDs and patients to maximize the efficacy of gene transfer. This review summarizes the strategies that are currently being exploited to overcome these challenges and drive the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ivana Trapani
- 1 Telethon Institute of Genetics and Medicine (TIGEM) , Pozzuoli, Naples 80078, Italy
| | | | | | | | | |
Collapse
|
37
|
Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases. Stem Cells Int 2015; 2016:5078619. [PMID: 26649049 PMCID: PMC4663341 DOI: 10.1155/2016/5078619] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.
Collapse
|
38
|
Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity. Mol Ther 2015; 23:1562-71. [PMID: 26137852 PMCID: PMC4817926 DOI: 10.1038/mt.2015.121] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022] Open
Abstract
Retinal disease is one of the most active areas of gene therapy, with clinical trials ongoing in the United States for five diseases. There are currently no treatments for patients with late-stage disease in which photoreceptors have been lost. Optogenetic gene therapies are in development, but, to date, have suffered from the low light sensitivity of microbial opsins, such as channelrhodopsin and halorhodopsin, and azobenzene-based photoswitches. Several groups have shown that photoreceptive G-protein-coupled receptors (GPCRs) can be expressed heterologously, and photoactivate endogenous Gi/o signaling. We hypothesized such a GPCR could increase sensitivity due to endogenous signal amplification. We targeted vertebrate rhodopsin to retinal ON-bipolar cells of blind rd1 mice and observed restoration of: (i) light responses in retinal explants, (ii) visually-evoked potentials in visual cortex in vivo, and (iii) two forms of visually-guided behavior: innate light avoidance and discrimination of temporal light patterns in the context of fear conditioning. Importantly, both the light responses of the retinal explants and the visually-guided behavior occurred reliably at light levels that were two to three orders of magnitude dimmer than required for channelrhodopsin. Thus, gene therapy with native light-gated GPCRs presents a novel approach to impart light sensitivity for visual restoration in a useful range of illumination.
Collapse
Affiliation(s)
- Benjamin M Gaub
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Michael H Berry
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Amy E Holt
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- Vision Science, University of California, Berkeley, California, USA
| |
Collapse
|
39
|
MacLaren RE. Gene Therapy for Retinal Disease: What Lies Ahead. Ophthalmologica 2015; 234:1-5. [PMID: 26279067 DOI: 10.1159/000438872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 07/19/2015] [Indexed: 11/19/2022]
Abstract
Gene therapy in simple terms can be defined as a medical treatment that exerts its effects using molecules of DNA or RNA within cells. Most traditional drugs act by mechanisms that include binding to cell surface receptors, inhibiting enzymes in intracellular pathways or by modifying transcription. These approaches rely to some extent on a normal genetic make-up of the cell in the final common pathway, which raises significant challenges in diseases that are caused by specific gene mutations. An alternative gene therapy approach to change the behaviour of cells at the most fundamental level by one single genetic modification is therefore potentially very powerful and wide ranging. This paper presents an overview of retinal gene therapy at the current time and highlights the future therapeutic potential for a number of diseases that are currently incurable.
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, London, UK
| |
Collapse
|
40
|
Sánchez-Vallejo V, Benlloch-Navarro S, López-Pedrajas R, Romero FJ, Miranda M. Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. Pharmacol Res 2015; 99:276-88. [PMID: 26158501 DOI: 10.1016/j.phrs.2015.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 11/27/2022]
Abstract
Progesterone has been shown to have neuroprotective effects in experimental acute brain injury models, but little is known about the effects of steroid sex hormones in models of retinitis pigmentosa (RP). The aim of this study was to asses whether progesterone had a protective effect in one animal model of RP (the rd1 mice), and whether its action was due at least in part, to its ability to reduce free radical damage or to increase antioxidant defences. Rd1 and wild type (wt) mice received an oral administration of 100 mg/kg body/weight of progesterone on alternate days starting at postnatal day 7 (PN7) and were sacrificed at different postnatal days. Our results show that progesterone decreases cell death, as the number of TUNEL-positive cells were decreased in the ONL of the retina from treated rd1 mice. At PN15, treatment with progesterone increased values of ERG b-wave amplitude (p<0,5) when compared with untreated mice. Progesterone also decreased the observed gliosis in RP, though this effect was transient. Treatment with progesterone significantly reduced retinal glutamate concentrations at PN15 and PN17. To clarify the mechanism by which progesterone is able to decrease retinal glutamate concentration, we examined expression levels of glutamine synthase (GS). Our results showed a significant increase in GS in rd1 treated retinas at PN13. Treatment with progesterone, significantly increase not only GSH but also oxidized glutathione retinal concentrations, probably because progesterone is able to partially increase glutamate cysteine ligase c subunit (GCLC) at PN15 and PN17 (p<0,05). In summary, our results demonstrate that oral administration of progesterone appears to act on multiple levels to delay photoreceptor death in this model of RP.
Collapse
Affiliation(s)
- V Sánchez-Vallejo
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - S Benlloch-Navarro
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - R López-Pedrajas
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain
| | - F J Romero
- Facultad de Medicina, Universidad Católica de Valencia 'San Vicente Mártir', Valencia, Spain
| | - M Miranda
- Departamento de Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113 Moncada, Valencia, Spain.
| |
Collapse
|
41
|
Vandecasteele M, Senova YS, Palfi S, Dugué GP. Potentiel thérapeutique de la neuromodulation optogénétique. Med Sci (Paris) 2015; 31:404-16. [DOI: 10.1051/medsci/20153104015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
42
|
Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, Hauswirth WW, Heckenlively JR, Iannaccone A, Jayasundera KT, Khan NW, Molday RS, Pennesi ME, Reh TA, Weleber RG, Zacks DN. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 2015; 56:918-31. [PMID: 25667399 DOI: 10.1167/iovs.14-16049] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although rare in the general population, retinal dystrophies occupy a central position in current efforts to develop innovative therapies for blinding diseases. This status derives, in part, from the unique biology, accessibility, and function of the retina, as well as from the synergy between molecular discoveries and transformative advances in functional assessment and retinal imaging. The combination of these factors has fueled remarkable progress in the field, while at the same time creating complex challenges for organizing collective efforts aimed at advancing translational research. The present position paper outlines recent progress in gene therapy and cell therapy for this group of disorders, and presents a set of recommendations for addressing the challenges remaining for the coming decade. It is hoped that the formulation of these recommendations will stimulate discussions among researchers, funding agencies, industry, and policy makers that will accelerate the development of safe and effective treatments for retinal dystrophies and related diseases.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States Division of Molecular Therapy, University College London Institute of Ophthalmology, London, England, United Kingdom
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark E Pennesi
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Richard G Weleber
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | |
Collapse
|
43
|
Khan AO, Bergmann C, Eisenberger T, Bolz HJ. ATULP1founder mutation, p.Gln301*, underlies a recognisable congenital rod–cone dystrophy phenotype on the Arabian Peninsula. Br J Ophthalmol 2014; 99:488-92. [DOI: 10.1136/bjophthalmol-2014-305836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Senís E, Fatouros C, Große S, Wiedtke E, Niopek D, Mueller AK, Börner K, Grimm D. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J 2014; 9:1402-12. [PMID: 25186301 DOI: 10.1002/biot.201400046] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/12/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022]
Abstract
Its remarkable ease and efficiency make the CRISPR (clustered regularly interspaced short palindromic repeats) DNA editing machinery highly attractive as a new tool for experimental gene annotation and therapeutic genome engineering in eukaryotes. Here, we report a versatile set of plasmids and vectors derived from adeno-associated virus (AAV) that allow robust and specific delivery of the two essential CRISPR components - Cas9 and chimeric g(uide)RNA - either alone or in combination. All our constructs share a modular design that enables simple and stringent guide RNA (gRNA) cloning as well as rapid exchange of promoters driving Cas9 or gRNA. Packaging into potent synthetic AAV capsids permits CRISPR delivery even into hard-to-transfect targets, as shown for human T-cells. Moreover, we demonstrate the feasibility to direct Cas9 expression to or away from hepatocytes, using a liver-specific promoter or a hepatic miRNA binding site, respectively. We also report a streamlined and economical protocol for detection of CRISPR-induced mutations in less than 3 h. Finally, we provide original evidence that AAV/CRISPR vectors can be exploited for gene engineering in vivo, as exemplified in the liver of adult mice. Our new tools and protocols should foster the broad application of CRISPR technology in eukaryotic cells and organisms, and accelerate its clinical translation into humans.
Collapse
Affiliation(s)
- Elena Senís
- Heidelberg University Hospital, Cluster of Excellence CellNetworks, Centre for Infectious Diseases, Virology, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vision Res 2014; 111:124-33. [PMID: 25094052 DOI: 10.1016/j.visres.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.
Collapse
Affiliation(s)
- Livia S Carvalho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|