1
|
Xiao S, Zhang Y, Tang X, Yang J, Zhong W, Zhang Y, Liu Y, Li D. An improved Trizol method for extracting total RNA from Eleutherococcus senticosus (Rupr. & Maxim.) Maxim leaves. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1613-1619. [PMID: 38952075 DOI: 10.1002/pca.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION High-quality nucleic acids are the basis for molecular biology experiments. Traditional RNA extraction methods are not suitable for Eleutherococcus senticosus Maxim. OBJECTIVE To find a suitable method to improve the quality of RNA extracted, we modified the RNA extraction methods of Trizol. METHODOLOGY Based on the conventional Trizol method, the modified Trizol method 1 and modified Trizol method 2 were used as the control for extraction of RNA from E. senticosus Maxim leaves. The modified Trizol method 1 added β-mercaptoethanol on the conventional Trizol method. After RNA was dissolved, a mixed solution of phenol, chloroform, and isoamyl alcohol was added to denature protein and inhibit the degradation of RNA. The modified Trizol method 2 adds PVPP to grind on the basis of modified Trizol method 1, so as to better remove phenols from leaves, and eliminates the step of incubation at -20°C to reduce extraction time and RNA degradation. Chloroform, CTAB, and CH3COONa were used instead of a phenol, chloroform, and isoamyl alcohol mixed solution to ensure complete separation of nucleic acid from plant tissues and to obtain high-purity RNA. RESULTS The research results showed that the quality of RNA extracted by conventional Trizol method, modified Trizol method 1, was incomplete, accompanied with different degrees of contamination of polysaccharides, polyphenols, and DNA. The modified Trizol method 2 could better extract RNA from E. senticosus Maxim leaves. The ratio of A260/A280 was in the range of 1.8-2.0, and the yield of RNA was the highest, which was 1.68 and 1.15 times compared with that by conventional Trizol method and modified Trizol method 1 extraction, respectively. The reverse transcription cDNA was further tested through PCR with the specific primers. The amplified fragments are displayed in clear and bright bands in accordance with the expected size. CONCLUSION The modified Trizol method 2 could better extract RNA from E. senticosus Maxim leaves. High-quality RNA has more advantages in molecular biology study of E. senticosus Maxim.
Collapse
Affiliation(s)
- Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ying Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaoqing Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Weixue Zhong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Kumar R, Kaundal P, Tiwari RK, Lal MK, Kumari H, Kumar R, Sagar V, Singh B. Optimization of a simple, low-cost one-step reverse transcription recombinase polymerase amplification method for real-time detection of potato virus A in potato leaves and tubers. 3 Biotech 2023; 13:373. [PMID: 37854940 PMCID: PMC10579207 DOI: 10.1007/s13205-023-03791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Vegetative propagation of potatoes makes it possible for potato viruses to be transmitted through tubers. Potato virus A (PVA) is one of these viruses, which belongs to the Potyvirus genus in the Potyviridae family. Potato tuber yield can be reduced by 30-40% by PVA alone. Losses can be further exacerbated by potato virus X and/or potato virus Y infection. PVA is transmitted primarily by several species of aphids in non-persistent manner. With the aim of resolving this problem, we developed one-step reverse transcription-recombinase polymerase amplification (RT-RPA), a highly sensitive and cost-effective method for detecting PVA in both potato tubers and leaves. Detection and amplification are performed using isothermal conditions in this method. There was good amplification of the coat protein gene in PVA with all three primers tested. To conduct this study, a primer set that can amplify specific 185 base pair (bp) product was selected. PVA detection was optimized by 30-min amplification reactions, which showed no cross-reactivity with other potato viruses. A simple heating block or water bath was used to amplify PVA product using RT-RPA at a temperature range of 38-42 °C. In comparison to conventional reverse transcription-polymerase chain reaction (RT-PCR), the newly developed RT-RPA protocol exhibited high sensitivity for both potato leaves and tuber tissues. Using cellular paper-based simple RNA extraction procedure, the virus was detected in leaf samples as efficiently as purified total RNA. We also found that combining LiCl-based RNA precipitation with cellular paper discs allowed us to successfully optimize RNA extraction for one-step RT-RPA for detecting PVA in tubers. Tests using this simplified one-step RT-RPA method were successfully applied to 300 samples of both leaves and tubers from various potato cultivars. In our knowledge, this is the first report of an RT-RPA assay utilizing simple RNA obtained from either cellular disc paper or LiCl coupled with cellular disc paper to detect PVA. As a result, this method was equally sensitive and specific for detecting PVA in potatoes. The developed RT-RPA assay is more versatile, durable, and do not require highly purified RNA templates, thus providing an effective alternative to RT-PCR assays for screening of germplasm, certifying planting materials, breeding for virus resistance, and real-time monitoring of PVA.
Collapse
Affiliation(s)
- Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
- Present Address: ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Hema Kumari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Rakesh Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Sagar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
3
|
Chen J, Yao Y, Zeng H, Zhang X. Integrated Metabolome and Transcriptome Analysis Reveals a Potential Mechanism for Water Accumulation Mediated Translucency in Pineapple ( Ananas comosus (L.) Merr.) Fruit. Int J Mol Sci 2023; 24:ijms24087199. [PMID: 37108358 PMCID: PMC10139408 DOI: 10.3390/ijms24087199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A physiological disease of the pineapple fruit called pineapple translucency causes the pulp to become water-soaked, which affects the fruit's taste, flavor, shelf life, and integrity. In the present study, we analyzed seven pineapple varieties, of which three were watery and four were non-watery. There were no apparent macronutritional (K, P, or N) differences in their pulp, but the non-watery pineapple varieties had higher dry matter and soluble sugar content. The metabolomic analysis found 641 metabolites and revealed differential expression of alkaloids, phenolic acids, nucleotide derivatives, lipids, and other metabolites among the seven species. Transcriptome analysis and further KEGG enrichment showed downregulation of 'flavonoid biosynthesis' pathways, differential expression of metabolic pathways, secondary metabolites biosynthesis, plant-pathogen interaction, and plant hormone signal transduction. We believe this study will provide critical molecular data supporting a deeper understanding of pineapple translucency formation and greatly benefit future research on this commercially important crop.
Collapse
Affiliation(s)
- Jing Chen
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang 524091, China
| | - Yanli Yao
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Hui Zeng
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- The South Subtropical Crops Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
4
|
Transcriptomic Insight into Viviparous Growth in Water Lily. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8445484. [PMID: 35845943 PMCID: PMC9283058 DOI: 10.1155/2022/8445484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Water lily is an important ornamental flower plant which is capable of viviparous plantlet development. But no study has been reported on the molecular basis of viviparity in water lily. Hence, we performed a comparative transcriptome study between viviparous water lily Nymphaea micrantha and a nonviviparous species Nymphaea colorata at four developmental stages. The higher expression of highly conserved AUX/IAA, ARF, GH3, and SAUR gene families in N. micrantha compared to N. colorata is predicted to have a major impact on the development and evolution of viviparity in water lily. Likewise, differential regulation of hormone signaling, brassinosteroid, photosynthesis, and energy-related pathways in the two species provide clues of their involvement in viviparity phenomenon. This study revealed the complex mechanism of viviparity trait in water lily. The transcriptomic signatures identified are important basis for future breeding and research of viviparity in water lily and other plant species.
Collapse
|
5
|
Wang C, Hou X, Qi N, Li C, Luo Y, Hu D, Li Y, Liao W. An optimized method to obtain high-quality RNA from different tissues in Lilium davidii var. unicolor. Sci Rep 2022; 12:2825. [PMID: 35181714 PMCID: PMC8857280 DOI: 10.1038/s41598-022-06810-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The high quality, yield and purity total RNA samples are essential for molecular experiments. However, harvesting high quality RNA in Lilium davidii var. unicolor is a great challenge due to its polysaccharides, polyphenols and other secondary metabolites. In this study, different RNA extraction methods, namely TRIzol method, the modified TRIzol method, Kit method and cetyltrimethylammonium bromide (CTAB) method were employed to obtain total RNA from different tissues in L. davidii var. unicolor. A Nano drop spectrophotometer and 1% agarose gel electrophoresis were used to detect the RNA quality and integrity. Compared with TRIzol, Kit and CTAB methods, the modified TRIzol method obtained higher RNA concentrations from different tissues and the A260/A280 ratios of RNA samples were ranged from 1.97 to 2.27. Thus, the modified TRIzol method was shown to be the most effective RNA extraction protocol in acquiring RNA with high concentrations. Furthermore, the RNA samples isolated by the modified TRIzol and Kit methods were intact, whereas different degrees of degradation happened within RNA samples isolated by the TRIzol and CTAB methods. In addition, the modified TRIzol method could also isolate high-quality RNA from other edible lily bulbs. Taken together, the modified TRIzol method is an efficient method for total RNA isolation from L. davidii var. unicolor.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nana Qi
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanyan Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
6
|
Zhang XL, Huang XL, Li J, Mei M, Zeng WQ, Lu XJ. Evaluation of the RNA extraction methods in different Ginkgo biloba L. tissues. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
de Souza MR, Teixeira RC, Daúde MM, Augusto ANL, Ságio SA, de Almeida AF, Barreto HG. Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J Microbiol Methods 2021; 184:106200. [PMID: 33713728 DOI: 10.1016/j.mimet.2021.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
Isolating high quality RNA is a limiting factor in molecular analysis, since it is the base for transcriptional studies. The RNA extraction method can directly affect the RNA quality and quantity, as well as, its overall cost. The industrial importance of the yeast genus Candida in several sectors comes from their capacity to produce Lipases. These enzymes are one of the main metabolites produced by some Candida species, and it has been shown that Candida yeast can biodegrade petroleum hydrocarbons and diesel oil from biosurfactants that they can produce, a feature that turns these organisms into potential combatants for bioremediation techniques. Thus, this study aimed to determine an efficient method for isolating high quality RNA from Candida viswanathii biomass. To achieve this aim, three different RNA extraction methods, TRIzol, Hot Acid Phenol, and CTAB (Cetyltrimethylammonium Bromide), were tested. The three tested methods allowed the isolation of high-quality RNA from C. viswanathii biomass and yielded suitable RNA quantity for carrying out RT-qPCR studies. In addition, all methods displayed high sensitivity for the expression analysis of the CvGPH1 gene through RT-qPCR, with TRIzol and CTAB showing the best results and the CTAB method displaying the best cost-benefit ratio (US$0.35/sample).
Collapse
Affiliation(s)
- Micaele Rodrigues de Souza
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Ronan Cristhian Teixeira
- Laboratory of Biotechnology, Food analysis, and Product Purification, Federal University of Tocantins, University Campus of Gurupi, TO, Brazil
| | - Matheus Martins Daúde
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Anderson Neiva Lopes Augusto
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Alex Fernando de Almeida
- Laboratory of Biotechnology, Food analysis, and Product Purification, Federal University of Tocantins, University Campus of Gurupi, TO, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil.
| |
Collapse
|