1
|
Strasburg DJ, Sterner RM, Va S, Jacob EK, DiGuardo MA. A 3-step method for preparing cryopreserved samples of apheresis products for post-thaw analysis yields a higher percentage of viable cells. Transfusion 2024; 64:866-870. [PMID: 38606842 DOI: 10.1111/trf.17822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Standard flow cytometry protocols for CD34+ cell enumeration designed for fresh samples are not appropriate for cryopreserved products. Special protocols have been developed to remove the cryoprotectant by quickly washing a freshly thawed sample. Exposing cells to a large volume of hypotonic solution and subsequent washing process was hypothesized to cause lab-induced cell death. Moreover, standard gating strategies must be altered to avoid reporting falsely high viabilities. STUDY DESIGN AND METHODS We developed a novel method whereby thawed samples were diluted step-wise to 1:2 by 3 additions of 1/3 sample volume using 1% Human Albumin in Dextran 40 (10% Low Molecular Weight Dextran in 0.9% NaCl) separated by 5 min between each addition. An additional 1:10 dilution was required to obtain a desired cell concentration for flow cytometry testing resulting in a 1:20 dilution. RESULTS Twenty samples were tested simultaneously in a method comparison; the new method demonstrated significant increases in mean cell viabilities for white blood cells, hematopoietic progenitor cells, and T cells as well as reduced standard deviations for each parameter. DISCUSSION Slow, step-wise dilutions of freshly thawed samples of cryopreserved apheresis products to 1:20 yielded higher and more precise viability measurements compared to quickly washing samples to remove DMSO.
Collapse
Affiliation(s)
- Dustin J Strasburg
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rosalie M Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sildane Va
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eapen K Jacob
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret A DiGuardo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Valentini CG, Pellegrino C, Teofili L. Pros and Cons of Cryopreserving Allogeneic Stem Cell Products. Cells 2024; 13:552. [PMID: 38534396 DOI: 10.3390/cells13060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The COVID-19 pandemic has precipitously changed the practice of transplanting fresh allografts. The safety measures adopted during the pandemic prompted the near-universal graft cryopreservation. However, the influence of cryopreserving allogeneic grafts on long-term transplant outcomes has emerged only in the most recent literature. In this review, the basic principles of cell cryopreservation are revised and the effects of cryopreservation on the different graft components are carefully reexamined. Finally, a literature revision on studies comparing transplant outcomes in patients receiving cryopreserved and fresh grafts is illustrated.
Collapse
Affiliation(s)
- Caterina Giovanna Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Claudio Pellegrino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
Meriç N, Parmaksız A, Gülbaş Z. Determination of the relationship between CD34+ stem cell amount and DMSO in hematopoetic stem cell transplantation. Transpl Immunol 2023; 78:101831. [PMID: 37019290 DOI: 10.1016/j.trim.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
It is important to calculate the CD34+ stem cell (SC) count at the right time in patients with hematological malignancies who will undergo Hematopoietic Stem Cell Transplantation (HSCT). The amount of SC infused into the patient affects the engraftment time and healing process of the patient. In this study, we aimed to compare which of the DMSO-not removed and DMSO-removed samples showed the CD34 + SC amount more accurately as the SC amount determination method after the SC was dissolved after cryopreservation in patients who will undergo HSCT. A total of 22 patients were included in the study. All 22 patients were transplanted from frozen samples using DMSO. After the SC products were dissolved in a 37 °C water bath, they were washed 2 times and the amount of CD34+ SC was studied from the samples taken by removing DMSO and without removing DMSO. In the findings, the amounts of CD34+ SC studied with both methods were compared. The increase in the number and percentage of CD34+ SC after DMSO-removed was found to be statistically significant both in terms of difference and proportionally, and the calculated effect sizes also showed that the increase was clinically significant (Cohen's d is between 0.43 and 0.677). After thawing the frozen SCs of the patients who will undergo HSCT, the analysis of CD34+ SCs from which DMSO is removed provides a more accurate calculation of the CD34+ SC amount in the AP.
Collapse
|
4
|
Kaushal R, Jahan S, McGregor C, Pineault N. Dimethyl sulfoxide-free cryopreservation solutions for hematopoietic stem cell grafts. Cytotherapy 2021; 24:272-281. [PMID: 34654640 DOI: 10.1016/j.jcyt.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS The use of effective methods for the cryopreservation of hematopoietic stem cells (HSCs) is vital to retain the maximum engraftment activity of cord blood units (CBUs). Current protocols entail the use of dimethyl sulfoxide (DMSO) as intracellular cryoprotective agent (CPA) and dextran and plasma proteins as extracellular CPAs, but DMSO is known to be cytotoxic, and its infusion in patients is associated with mild to moderate side effects. However, new, commercially available, DMSO-free cryopreservation solutions have been developed, but their capacity to protect HSCs remains poorly investigated. METHODS Herein the authors compared the capacity of four DMSO-free freezing media to cryopreserve cord blood (CB) HSCs: CryoProtectPureSTEM (CPP-STEM), CryoScarless (CSL), CryoNovo P24 (CN) and Pentaisomaltose (PIM). Clinical-grade DMSO/dextran solution was used as control. RESULTS Of the four cryopreservation solutions tested, the best post-thaw cell viability, recovery of viable CD45+ and CD34+ cells and potency were achieved with CPP-STEM, which was equal or superior to that seen with the control DMSO. CSL provided the second best post-thaw results followed by PIM, whereas CN was associated with modest viability and potency. Further work with CPP-STEM revealed that CB CD34-enriched HSCs and progenitors cryopreserved with CPP-STEM maintained high viability and growth expansion activity. In line with this, a pilot transplantation assay confirmed that CPP-STEM-protected CB grafts supported normal short- and long-term engraftment kinetics. CONCLUSIONS The authors' results suggest that new, valuable alternatives to DMSO are now available for the cryopreservation of HSCs and grafts, including CBUs.
Collapse
Affiliation(s)
- Richa Kaushal
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Centre for Innovation, Canadian Blood Services, Ottawa, Canada
| | - Suria Jahan
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Centre for Innovation, Canadian Blood Services, Ottawa, Canada
| | | | - Nicolas Pineault
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Centre for Innovation, Canadian Blood Services, Ottawa, Canada.
| |
Collapse
|
5
|
Haastrup EK, Munthe-Fog L, Ballesteros OR, Fischer-Nielsen A, Svalgaard JD. DMSO (Me 2SO) concentrations of 1-2% in combination with pentaisomaltose are effective for cryopreservation of T cells. Transfus Apher Sci 2021; 60:103138. [PMID: 33895072 DOI: 10.1016/j.transci.2021.103138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
T cell based treatments in the setting of allogenic haematopoietic stem cell transplantation (HSCT) have been used for decades. In addition, the use of chimeric antigen receptor (CAR) T cells has been introduced as a promising cancer immunotherapy. A prerequisite for many of these treatments is the ability to cryopreserve the cells safely and efficiently. In the present study, we compared freezing media combinations containing pentaisomaltose and 1-2 % DMSO (PIM1 and PIM2, respectively) to 10 % DMSO and commercially available cryosolutions (CS2 and CS10, Cryostor® containing 2 and 10 % DMSO, respectively) for cryopreservation of T cells. T cells isolated from buffy coats from healthy donors were cryopreserved with different freezing media and analysed for 1) viability immediately post-thaw and the following 24 h, 2) recovery, 3) proliferative potential and 4) migration towards a gradient of SDF-1α. The results showed that PIM2 was superior to 10 % DMSO and comparable to CS10 when assessing viability. Furthermore, the results indicated that the T cells cryopreserved with 10 % DMSO showed the lowest proliferative potential. The expression levels of CXCR3, CXCR4 and VLA-4 were similar in T cells independent of the freezing media used; however, T cells cryopreserved with PIM2 demonstrated the highest migratory potential. In summary, the combination of pentaisomaltose and 1-2 % DMSO improves the cryoprotective properties compared to 10 % DMSO while achieving comparable results with CS10 and even showing improved migration towards SDF-1α. Thus, our results show promising potential for pentaisomaltose in combination with low amounts of DMSO for the cryopreservation of T cells.
Collapse
Affiliation(s)
- Eva Kannik Haastrup
- Department of Clinical Immunology, Blood Bank, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Department of Clinical Immunology, Blood Bank, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Anne Fischer-Nielsen
- Department of Clinical Immunology, Blood Bank, Rigshospitalet, 2100, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Cryopreservation of adipose-derived stromal/stem cells using 1–2% Me2SO (DMSO) in combination with pentaisomaltose: An effective and less toxic alternative to comparable freezing media. Cryobiology 2020; 96:207-213. [DOI: 10.1016/j.cryobiol.2020.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
|
7
|
Pietrowski D, Mladek R, Frank M, Erber J, Marschalek J, Schneeberger C. Analyses of human granulosa cell vitality by fluorescence activated cell sorting after rapid cooling. HUM FERTIL 2020; 25:478-486. [PMID: 32914641 DOI: 10.1080/14647273.2020.1817578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In reproductive medicine, the technique of rapid cooling becomes increasingly important for the preservation of tissue and cells. In order to protect the cells, incubation in different cryopreservation solutions is essential. The speed of the cooling process also makes a pivotal contribution to the success of this method. Using Flourescence Activated Cell Sorting (FACS), we investigated the impact of an open rapid and a closed rapid cooling technique on the vitality of human granulosa cells. Furthermore, we examined effects of the different solutions used for rapid cooling and warming before and after rapid cooling. We found a significant lower proportion of vital cells after rapid cooling compared to untreated controls independently of the technique and the tube size. However, we did not find any significant differences between open and closed rapid cooling. In both, a lower proportion of vital granulosa cells were found after incubation in rapid cooling solution only compared to warming solution only. Our results lend support to the conclusion that the difference of cooling-speed between open and closed rapid cooling is, in our settings, not crucial for the success of the procedure and that cryoprotective agents in the rapid cooling solutions have a higher potential to cause severe cell damage than agents used for warming.
Collapse
Affiliation(s)
- Detlef Pietrowski
- Department of Obstetrics and Gynecology, Medical University Vienna, Vienna, Austria
| | - Raphaela Mladek
- FH Campus Wien, University of Applied Science, Vienna, Austria
| | - Maria Frank
- Department of Obstetrics and Gynecology, Medical University Vienna, Vienna, Austria
| | - Julia Erber
- Faculty of Life Science, University of Vienna, Vienna, Austria
| | - Julian Marschalek
- Department of Obstetrics and Gynecology, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
8
|
Jahan S, Adam MK, Manesia JK, Doxtator E, Ben RN, Pineault N. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment. Transfusion 2020; 60:769-778. [PMID: 32187691 DOI: 10.1111/trf.15759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet engraftment following cord blood (CB) transplantation remains a significant hurdle to this day. The uncontrolled growth of ice, a process referred to as ice recrystallization, is one of several mechanisms that lead to cell loss and decreased potency during freezing and thawing. We hypothesized that reducing cell damage induced by ice recrystallization in CB units (CBUs) would reduce losses of stem and progenitor cells and therefore improve engraftment. We previously demonstrated that the ice recrystallization inhibitor (IRI) N-(2-fluorophenyl)-D-gluconamide (IRI 2) increases the postthaw recovery of CB progenitors. Herein, we set out to ascertain whether IRI 2 can enhance platelet and bone marrow engraftment activity of hematopoietic stem cells (HSCs) in cryopreserved CBUs using a serial transplantation model. STUDY DESIGN AND METHODS CBUs were processed following standard volume/red blood cell reduction procedure and portions frozen with dimethyl sulfoxide (DMSO) supplemented or not with IRI 2. Thawed CB samples were serially transplanted into immunodeficient mice. RESULTS Our results show that supplementation of DMSO with IRI 2 had several beneficial effects. Specifically, higher levels of human platelets were observed in the peripheral blood (p < 0.05; n = 4) upon transplant of CBUs preserved with the IRIs. In addition, human BM chimerism and the number of human CFU progenitors in the bone marrow were superior in IRI 2 recipients compared to DMSO recipients. Moreover, IRI 2 had no negative impact on the multilineage differentiation and self-renewal activities of HSCs. DISCUSSION Taken together, these results demonstrate that supplementation of a hematopoietic graft with IRI can improve the postthaw engraftment activities of HSCs.
Collapse
Affiliation(s)
- Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Madeleine K Adam
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Emily Doxtator
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Robert N Ben
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Kilbride P, Meneghel J, Lamb S, Morris J, Pouzet J, Jurgielewicz M, Leonforte C, Gibson D, Madrigal A. Recovery and Post-Thaw Assessment of Human Umbilical Cord Blood Cryopreserved as Quality Control Segments and Bulk Samples. Biol Blood Marrow Transplant 2019; 25:2447-2453. [PMID: 31499214 DOI: 10.1016/j.bbmt.2019.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/30/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
Quality control (QC) segments conjoined to a bulk sample container are used to evaluate the viability and quality of cryopreserved umbilical cord blood (UCB). Such QC segments are typically attached lengths of sealed tubing that are cooled concurrently with the bulk sample, both containing material from the same donor. QC segments are thawed independently of the bulk sample to assess the quality of the cryopreserved product. In current practice, there is typically post-thaw variation between the QC segment and the bulk sample which if suggestive of inadequate performance, could lead to material being needlessly discarded. In this study, these performance differences were quantified. Two cooling protocols in common use, 1 with and 1 without a "plunge" step to induce ice nucleation, gave equivalent results that maintained the QC segment versus bulk sample differences. Ice nucleated at significantly lower temperatures in the QC segments compared with the bulk samples, a consequence of their lower volume, thereby enhancing damaging osmotic stress. A reduction in total viable cells of approximately 10% was recorded in the QC segments compared with comparable bulk samples. It has been shown that CD45+ cells are more adversely impacted by this lower ice nucleation temperature than CD34+ cells, which can result in altered composition of the post-thaw cell population.
Collapse
Affiliation(s)
- Peter Kilbride
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom.
| | - Julie Meneghel
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| | - Stephen Lamb
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| | - John Morris
- Asymptote, General Electric Healthcare, Cambridge, United Kingdom
| | - Jerome Pouzet
- General Electric Healthcare, Biosafe SA, Eysins, Switzerland
| | - Monika Jurgielewicz
- Anthony Nolan Cell Therapy Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Christopher Leonforte
- Anthony Nolan Cell Therapy Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Daniel Gibson
- Anthony Nolan Cell Therapy Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Alejandro Madrigal
- Anthony Nolan Cell Therapy Centre, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
10
|
Lee YH, Koh H, Nam E, Kim YJ. Cryopreserved cord blood mononuclear cells in DMSO are healthy for at least 6 hours after thawing. Transfus Apher Sci 2019; 59:102603. [PMID: 31327732 DOI: 10.1016/j.transci.2019.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
PURPOSES We investigated the impact of time, storage temperature, and dimethyl sulfoxide (DMSO) on the viability of HSCs, as well as on apoptotic changes in thawed CB. MATERIALS & METHODS Thirteen units of cryopreserved CB were thawed and half of each sample was stored at room temperature (RT) and the other half at 4℃, without removing or diluting DMSO. Flow cytometry was employed to enumerate total nucleated cells (TNCs), total/viable CD34+ cells, and early/late apoptotic cells using anti-CD45, anti-CD34, and annexin V(AnV), 7-amino actinomycin D(AAD) staining, respectively. RESULTS In CBs stored at 4℃ there were no significant changes in numbers of TNCs, total/viable CD34+ cells, or early/late apoptotic cell up to 48 h. However, the numbers of these cells declined significantly at RT. Total and viable CD34+ cell counts did not change for up to 6 h at RT but viable CD34+ cells decreased significantly after 24 h, and total CD34+ cell after 48 h. Early and late apoptosis tended to increase with time at RT, and numbers of viable CD34+ cells and early apoptotic cells differed significantly between RT and 4℃ after 48 h. CONCLUSIONS There are no significant changes of viability and apoptosis in CBs stored in DMSO at 4℃ until 48 h after thawing, while at RT, there are no significant changes of total/viable CD34+ cell counts or in the proportion of apoptotic cells for at least 6 h after thawing.
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Pediatrics, Republic of Korea; Blood/Marrow Transplantation, Hanyang University Medical Center, Republic of Korea.
| | - Hani Koh
- Department of Pediatrics, Republic of Korea; Blood/Marrow Transplantation, Hanyang University Medical Center, Republic of Korea
| | - Eunwoo Nam
- Biostatistical Consulting and Research Lab., Hanyang University, Seoul, Republic of Korea
| | | |
Collapse
|
11
|
Abstract
Especially in the field of autologous transplantation, it has been found necessary to develop methods that ensure long-term storage with maintenance of functionality of the cells to bridge the therapy-related temporal separation of collection and application.Based on the experiences of more than 40 years, some practical considerations, especially regarding the cell concentration, final volume, and possibly other exogenous substances, should be considered when establishing a protocol for the routine cryopreservation of peripheral blood stem cells. In the following chapter, we describe a freezing protocol for cryopreservation of peripheral blood stem cells which was used and optimized over the past 8 years and was applied to the cryopreservation of more than 2000 peripheral stem cell transplants.
Collapse
Affiliation(s)
- Petra Pavel
- Stem Cell Laboratory, Institute of Clinical Transfusion Medicine and Cell Therapy Heidelberg GmbH, Heidelberg, Germany.
| | - Sascha Laier
- Stem Cell Laboratory, Institute of Clinical Transfusion Medicine and Cell Therapy Heidelberg GmbH, Heidelberg, Germany
| |
Collapse
|
12
|
Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astúa J. Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1299. [PMID: 30254655 PMCID: PMC6141925 DOI: 10.3389/fpls.2018.01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 05/17/2023]
Abstract
Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.
Collapse
Affiliation(s)
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marilia Santos Silva
- Laboratório de Bioimagem, Embrapa Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | | | - Juliana Freitas-Astúa
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
13
|
Karponi G, Papayanni PG, Zervou F, Bouinta A, Anagnostopoulos A, Yannaki E. The Functional Effect of Repeated Cryopreservation on Transduced CD34 + Cells from Patients with Thalassemia. Hum Gene Ther Methods 2018; 29:220-227. [PMID: 30079761 DOI: 10.1089/hgtb.2018.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stable gene marking and effective engraftment of gene-modified CD34+ hematopoietic stem cells is a prerequisite for gene therapy success but may be challenged by the inevitable cryopreservation of the final product prior to extensive quality assurance testing. We investigated the β-globin gene transfer potency in fresh and cryopreserved CD34+ cells from mobilized patients with β-thalassemia, as well as the qualitative impact of repeated freeze/thaw cycles on the functionality of cultured and unmanipulated CD34+ cells in terms of engrafting capacity in a xenotransplantation model, under partial myeloablation. Cells transduced fresh or after one freeze-thaw cycle yielded similar clonogenic and gene transfer frequencies. Repeated cryopreservation cycles did not affect the transduction rates whereas either one or two freeze-thaw cycles of cultured-but not of unmanipulated-cells significantly reduced their clonogenicity. No differences in the engrafting potential of gene-corrected cells subjected to either none or up to two cryopreservation cycles, were encountered post xenotransplantation. Overall, we assessed the gene transfer efficiency, clonogenicity and engrafting capacity of cryopreserved CD34+ cells and the impact of repeated freeze/thaw cycles in their performance. These observations may prove essential in the design of gene therapy trials, considerably facilitating their logistics.
Collapse
Affiliation(s)
- Garyfalia Karponi
- 1 Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Penelope-Georgia Papayanni
- 1 Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Fani Zervou
- 1 Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Asimina Bouinta
- 2 Cryostorage Lab, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- 1 Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece .,2 Cryostorage Lab, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- 1 Gene and Cell Therapy Center, Hematology Department-Bone Marrow Transplantation Unit, George Papanicolaou Hospital, Thessaloniki, Greece .,3 Department of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
14
|
Svalgaard JD, Talkhoncheh MS, Haastrup EK, Munthe-Fog L, Clausen C, Hansen MB, Andersen P, Gørløv JS, Larsson J, Fischer-Nielsen A. Pentaisomaltose, an Alternative to DMSO. Engraftment of Cryopreserved Human CD34 + Cells in Immunodeficient NSG Mice. Cell Transplant 2018; 27:1407-1412. [PMID: 30056762 PMCID: PMC6168988 DOI: 10.1177/0963689718786226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cell transplantation often involves the cryopreservation of stem cell products. Currently, the standard cryoprotective agent (CPA) is dimethyl sulfoxide (DMSO), which is known to cause concentration-related toxicity and side effects when administered to patients. Based on promising in vitro data from our previous study using pentaisomaltose (a 1 kDa subfraction of Dextran 1) as an alternative to DMSO for cryopreservation of hematopoietic progenitor cells (HPCs) from apheresis products, we proceeded to a preclinical model and compared the two CPAs with respect to engraftment of human hematopoietic stem and progenitor cells (HSPCs) in the immunodeficient NSG mouse model. Human HPCs from apheresis products were cryopreserved with either pentaisomaltose or DMSO, and the following outcomes were measured: (1) the post-thaw recovery of cryopreserved cells and clonogenic potential of CD34+ cells and (2) hematopoietic engraftment in NSG mice. We found that recovery and colony-forming cells data were comparable between pentaisomaltose and DMSO. The engraftment data revealed comparable human CD45+ levels in peripheral blood at 8 weeks and bone marrow at 16 weeks post transplantation. Additionally, the frequencies of CD34+CD38low/negative and myeloid/lymphoid cells in the bone marrow were comparable. We here demonstrated that long-term engrafting HSPCs were well preserved in pentaisomaltose and comparable to cells cryopreserved with DMSO. Although a clinical trial is necessary to translate these results into human use, the present data represent an important step toward the replacement of DMSO with a non-toxic alternative.
Collapse
Affiliation(s)
- Jesper Dyrendom Svalgaard
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Eva Kannik Haastrup
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lea Munthe-Fog
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Morten Bagge Hansen
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Pernille Andersen
- 4 Department of Clinical Immunology, Stem Cell Facility, Herlev Hospital, Herlev, Denmark
| | - Jette Sønderskov Gørløv
- 5 Department of Hematology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jonas Larsson
- 2 Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anne Fischer-Nielsen
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Fritsch G, Frank N, Dmytrus J, Frech C, Pichler H, Witt V, Geyeregger R, Scharner D, Trbojevic D, Zipperer E, Printz D, Worel N. Relevance of flow cytometric enumeration of post-thaw leucocytes: influence of temperature during cell staining on viable cell recovery. Vox Sang 2016; 111:187-96. [PMID: 27037580 DOI: 10.1111/vox.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Our post-thaw cell recovery rates differed substantially in interlaboratory comparisons of identical samples, potentially due to different temperatures during cell staining. MATERIALS AND METHODS Viable CD34(+) cells and leucocyte (WBC) subtypes were quantified by multiparameter single-platform flow cytometry in leucapheresis products collected from 30 adult lymphoma and myeloma patients, and from 10 paediatric patients. After thawing, cells were prepared for analysis within 30 min between thawing and acquisition, at either 4°C or at room temperature. RESULTS For cell products cryopreserved in conventional freezing medium (10% final DMSO), viable cell recovery was clearly lower after staining at 4°C than at RT. Of all WBC subtypes analysed, CD4(+) T cells showed the lowest median recovery of 4% (4°C) vs. 25% (RT), followed by CD3, CD34 and CD8 cells. The recovery was highest for CD3γδ cells with 44% (4°C) vs. 71% (RT). In the 10 samples cryopreserved in synthetic freezing medium (5% final DMSO), median recovery rates were 89% for viable CD34 (both at 4°C and RT) and 79% (4°C) vs 68% (RT) for WBC. CONCLUSIONS The post-thaw environment and, potentially, the cryoprotectant impact the outcome of cell enumeration, and results from the analysis tube may not be representative of the cells infused into a patient.
Collapse
Affiliation(s)
- G Fritsch
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - N Frank
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - J Dmytrus
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - C Frech
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - H Pichler
- St. Anna Kinderspital, Universitätskinderklinik, Vienna, Austria
| | - V Witt
- St. Anna Kinderspital, Universitätskinderklinik, Vienna, Austria
| | - R Geyeregger
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - D Scharner
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - D Trbojevic
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - E Zipperer
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - D Printz
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - N Worel
- Dept. for Blood Group Serology and Transfusion Medicine, Medical University, Vienna, Austria
| |
Collapse
|
16
|
Svalgaard JD, Haastrup EK, Reckzeh K, Holst B, Glovinski PV, Gørløv JS, Hansen MB, Moench KT, Clausen C, Fischer-Nielsen A. Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. Transfusion 2016; 56:1088-95. [PMID: 26991781 DOI: 10.1111/trf.13543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cryopreserved hematopoietic stem cell products are widely used for certain hematologic malignancies. Dimethyl sulfoxide (DMSO) is the most widely used cryoprotective agent (CPA) today, but due to indications of cellular toxicity, changes of the cellular epigenetic state, and patient-related side effects, there is an increasing demand for DMSO-free alternatives. We therefore investigated whether Pentaisomaltose (PIM), a low-molecular-weight carbohydrate (1 kDa), can be used for cryopreservation of peripheral blood stem cells, more specifically hematopoietic progenitor cell apheresis (HPC(A)) product. STUDY DESIGN AND METHODS We cryopreserved patient or donor HPC(A) products using 10% DMSO or 16% PIM and quantified the recovery of CD34+ cells and CD34+ subpopulations by multicolor flow cytometry. In addition, we compared the frequency of HPCs after DMSO and PIM cryopreservation using the colony-forming cells (CFCs) assay. RESULTS The mean CD34+ cell recovery was 56.3 ± 23.7% (11.4%-97.3%) and 58.2 ± 10.0% (45.7%-76.9%) for 10% DMSO and 16% PIM, respectively. The distribution of CD34+ cell subpopulations was similar when comparing DMSO or PIM as CPA. CFC assay showed mean colony numbers of 70.7 ± 25.4 (range, 37.8-115.5) and 67.7 ± 15.7 (range, 48-86) for 10% DMSO and 16% PIM, respectively. CONCLUSION Our findings demonstrate that PIM cryopreservation of HPC(A) products provides recovery of CD34+ cells, CD34+ subpopulations, and CFCs similar to that of DMSO cryopreservation and therefore may have the potential to be used for cryopreservation of peripheral blood stem cells.
Collapse
Affiliation(s)
- Jesper Dyrendom Svalgaard
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Eva Kannik Haastrup
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Biotech Research and Innovation Centre and Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Viktor Glovinski
- Department of Plastic Surgery and Burns, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Morten Bagge Hansen
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Kim Theilgaard Moench
- The Finsen Laboratory, Biotech Research and Innovation Centre and Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Skånes University Hospital, Lund, Sweden
| | | | - Anne Fischer-Nielsen
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Cryopreservation of cells: FT-IR monitoring of lipid membrane at freeze-thaw cycles. Biophys Chem 2015; 208:34-9. [PMID: 26282883 DOI: 10.1016/j.bpc.2015.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 01/30/2023]
Abstract
In the present study, FTIR spectroscopy was used to monitor the freeze-thaw cycle of two cellular lines (HuDe and Jurkat) suspended in three different media: phosphate buffer solution (PBS); dimethylsulfoxide (DMSO)/PBS solution at 0.1 DMSO molar fraction; and CryoSure (0.1 DMSO molar fraction PBS solution+dextran 5% w/v) solution. The Trypan Blue test was also applied before freezing and after thawing each cell sample to estimate the recovery of membrane integrity after thermal treatment, and correlate this datum with spectroscopic results. By following the temperature evolution of two different spectral components (the libration and bending combination mode νc(H2O) at 2000-2500 cm(-1), and the methylene symmetric stretching vibration νsym(CH2) at about 2850 cm(-1)) in the -120÷28°C range, we evidenced the main transition of lipid membrane in connection with cell dehydration, as induced by ice formation in the extracellular medium. In particular, in DMSO/PBS and CryoSure samples we observed a transition to a more rigid state of the lipid membrane together with an increased amount of non-freezable water in the extracellular medium; these results are connected to the role of DMSO as a cryoprotective agent irrespective of the nature of cell type.
Collapse
|
18
|
Asghar W, El Assal R, Shafiee H, Anchan RM, Demirci U. Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnol J 2015; 9:895-903. [PMID: 24995723 DOI: 10.1002/biot.201300074] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 05/21/2014] [Accepted: 05/30/2014] [Indexed: 12/15/2022]
Abstract
Cell cryopreservation maintains cellular life at sub-zero temperatures by slowing down biochemical processes. Various cell types are routinely cryopreserved in modern reproductive, regenerative, and transfusion medicine. Current cell cryopreservation methods involve freezing (slow/rapid) or vitrifying cells in the presence of a cryoprotective agent (CPA). Although these methods are clinically utilized, cryo-injury due to ice crystals, osmotic shock, and CPA toxicity cause loss of cell viability and function. Recent approaches using minimum volume vitrification provide alternatives to the conventional cryopreservation methods. Minimum volume vitrification provides ultra-high cooling and rewarming rates that enable preserving cells without ice crystal formation. Herein, we review recent advances in cell cryopreservation technology and provide examples of techniques that are utilized in oocyte, stem cell, and red blood cell cryopreservation.
Collapse
Affiliation(s)
- Waseem Asghar
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
19
|
Yang H, Pidgorna A, Loutfy MR, Shuen P. Effects of interruptions of controlled-rate freezing on the viability of umbilical cord blood stem cells. Transfusion 2014; 55:70-8. [DOI: 10.1111/trf.12774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Hongyou Yang
- Progenics Cord Blood Cryobank; Women's College Research Institute; Women's College Hospital; University of Toronto; North York General Hospital; Toronto Ontario Canada
| | - Alla Pidgorna
- Progenics Cord Blood Cryobank; Women's College Research Institute; Women's College Hospital; University of Toronto; North York General Hospital; Toronto Ontario Canada
| | - Mona R. Loutfy
- Progenics Cord Blood Cryobank; Women's College Research Institute; Women's College Hospital; University of Toronto; North York General Hospital; Toronto Ontario Canada
| | - Paul Shuen
- Progenics Cord Blood Cryobank; Women's College Research Institute; Women's College Hospital; University of Toronto; North York General Hospital; Toronto Ontario Canada
| |
Collapse
|
20
|
Zhou X, Kang X, Shu Z, Chen H, Ding W, Du P, Yadock D, Chi Liu C, Chung JH, Heimfeld S, Gao D. Cryopreservation of Peripheral Blood Stem Cells Using a Box-in-Box Cooling Device. Biopreserv Biobank 2014; 7:107-14. [PMID: 24835682 DOI: 10.1089/bio.2009.0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cooling process is critical for the cryopreservation of human hematopoietic stem cells (HSCs). Currently, programmed freezing methods and uncontrolled cooling methods are in use, both having obvious disadvantages. In this article, a novel device termed Box-in-Box (BIB) was developed and evaluated by in vitro cryopreservation tests in 2 different operation modes ("against-side" mode for Group I (n = 10), and "in-middle" mode for Group II (n = 10), respectively), and compared with an uncontrolled cooling method (Group III (n = 7), Styrofoam boxes) as well as a conventional programmed freezer method (Group IV (n = 10), CryoMed TM 1010, Cryogenic Tech., FL). Recorded temperature profiles of samples cryopreserved with BIB show that a consistent cooling procedure with a rate around -1°C to -3.5°C/min can be achieved during their transfer from room temperature to an -80°C freezer. Statistical analysis of the stem cell population recovery, survival, and colony generation recovery shows that there is no significant difference (P > 0.26) among the methods using the BIB or programmed freezer (Group I, Group II, and Group IV), and their related deviations are smaller than the uncontrolled cooling rate method (Group III). Methods using the BIB (Group I and Group II) generated significantly better cell survival rate (P < 0.01) than the uncontrolled cooling rate method (Group III). The results indicate that the controlled cooling rate methods (BIB or CryoMed PF) are more consistent and reliable for clinical use. Considering the advantages of low cost, durability, and no liquid nitrogen consumption for the cooling process, the BIB can be a good alternative to the programmed freezers for the cryopreservation of HSCs.
Collapse
Affiliation(s)
- Xiaoming Zhou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China. , Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Y, Xu X, Ma X, Martin-Rendon E, Watt S, Cui Z. Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol Prog 2011; 26:1635-43. [PMID: 20572296 DOI: 10.1002/btpr.464] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study is to investigate the feasibility of using well defined, serum-free freezing solutions with a reduced level of dimethylsulfoxide (DMSO) of 7.5, 5, and 2.5% (v/v) in the combination with polyethylene glycol (PEG) or trehalose to cryopreserve human bone marrow-derived mesenchymal stem cells (hBMSCs), a main source of stem cells for cell therapy and tissue engineering. The standard laboratory freezing protocol of around 1°C/min was used in the experiments. The efficiency of 1,2-propandiol on cryopreservation of hBMSCs was explored. We measured the post-thawing cell viability and early apoptotic behaviors, cell metabolic activities, and growth dynamics. Cell morphology and osteogenic, adipogenic and chondrogenic differentiation capability were also tested after cryopreservation. The results showed that post-thawing viability of hBMSCs in 7.5% DMSO (v/v), 2.5% PEG (w/v), and 2% bovine serum albumin (BSA) (w/v) was comparable with that obtained in conventional 10% DMSO, that is, 82.9 ± 4.3% and 82.7 ± 3.7%, respectively. In addition, 5% DMSO (v/v) with 5% PEG (w/v) and 7.5% 1,2-propandiol (v/v) with 2.5% PEG (w/v) can provide good protection to hBMSCs when 2% albumin (w/v) is present. Enhanced cell viability was observed with the addition of albumin to all tested freezing solutions.
Collapse
Affiliation(s)
- Yang Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Hayakawa J, Joyal EG, Gildner JF, Washington KN, Phang OA, Uchida N, Hsieh MM, Tisdale JF. 5% dimethyl sulfoxide (DMSO) and pentastarch improves cryopreservation of cord blood cells over 10% DMSO. Transfusion 2010; 50:2158-66. [PMID: 20492608 DOI: 10.1111/j.1537-2995.2010.02684.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cell number and viability are important in cord blood (CB) transplantation. While 10% dimethyl sulfoxide (DMSO) is the standard medium, adding a starch to freezing medium is increasingly utilized as a cytoprotectant for the thawing process. Similar to hetastarch, pentastarch has the advantages of faster renal clearance and less effect on the coagulation system. STUDY DESIGN AND METHODS We compared a lower DMSO concentration (5%) containing pentastarch with 10% DMSO and performed cell viability assay, colony-forming units (CFUs), and transplantation of CB cells in NOD/SCID IL2Rγ(null) mice. RESULTS CB cells in 5% DMSO/pentastarch had similar CD34+, CD3+, and CD19+ cell percentages after thawing as fresh CB cells. CB cells in 5% DMSO/pentastarch had higher viability (83.3±9.23%) than those frozen in 10% DMSO (75.3±11.0%, p<0.05). We monitored cell viability postthaw every 30 minutes. The mean loss in the first 30 minutes was less in the 5% DMSO/pentastarch group. At the end of 3 hours, the viability decreased by a mean of 7.75% for the 5% DMSO/pentastarch and 17.5% for the 10% DMSO groups. CFUs were similar between the two cryopreserved groups. Frozen CB cells engrafted equally well in IL2Rγ(null) mice compared to fresh CB cells up to 24 weeks, and CB cells frozen in 5% DMSO/pentastarch engrafted better than those in 10% DMSO. CONCLUSION Our data indicate that the lower DMSO concentration with pentastarch represents an improvement in the CB cryopreservation process and could have wider clinical application as an alternate freezing medium over 10% DMSO.
Collapse
Affiliation(s)
- Jun Hayakawa
- Molecular and Clinical Hematology Branch (MCHB), National Institutes of Diabetes and Digestive and Kidney Disorders (NIDDK), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Watt SM, Austin E, Armitage S. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use. Methods Mol Biol 2008; 368:237-59. [PMID: 18080475 DOI: 10.1007/978-1-59745-362-2_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with the Bone Marrow Donors Worldwide registry. In this chapter, we describe several protocols that we have used to cryopreserve these different sources of hematopoietic stem/progenitor cells, keeping in mind that the protocols may vary among transplant processing centers.
Collapse
Affiliation(s)
- Suzanne M Watt
- National Blood Service-Oxford and Manchester, NHS Blood and Transplant Authority, UK
| | | | | |
Collapse
|
24
|
Koliakos G, Alamdari D, Tsagias N, Kouzi-Koliakos K, Michaloudi E, Karagiannis V. A novel high-yield volume-reduction method for the cryopreservation of UC blood units. Cytotherapy 2007; 9:654-9. [DOI: 10.1080/14653240701508445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Wagner E, Duval M, Dalle JH, Morin H, Bizier S, Champagne J, Champagne MA. Assessment of cord blood unit characteristics on the day of transplant: comparison with data issued by cord blood banks. Transfusion 2006; 46:1190-8. [PMID: 16836567 DOI: 10.1111/j.1537-2995.2006.00870.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Selection of a cord blood (CB) unit for allogeneic transplantation relies on graft characterization results provided by cord blood banks (CBBs). The goal was to compare the graft characterization results obtained upon thawing and washing to those provided by CBBs at selection. STUDY DESIGN AND METHODS With tests that assess CB graft characteristics known to impact engraftment, CB units have been analyzed after thaw and before infusion. Our results were compared to data provided by CBBs to determine the impact on engraftment and assess how CBB-supplied information can affect future CB unit selection. RESULTS Variability was noted as to the type of information provided by the different CBBs. Also, variability was found between the information provided by CBBs and the graft characterization results obtained upon thawing and washing. In some cases, CB measures known to be predictive of engraftment were found much lower than reported by CBBs. Only the total nucleated cell count, which is the main CB graft selection criterion besides HLA matching, correlated favorably. CONCLUSIONS Our data reveal a high degree of variability in graft characteristics provided by CBBs and often poor correlation with results obtained on thawed and washed CB units. We suggest that standardized laboratory procedures aimed at graft characterization should be used by both CBBs and transplant centers to avoid unacceptable discrepancies.
Collapse
Affiliation(s)
- Eric Wagner
- Division of Hematology-Oncology, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|