1
|
Bloskie T, Storey KB. Histone H3 and H4 Modifications Point to Transcriptional Suppression as a Component of Winter Freeze Tolerance in the Gall Fly Eurosta solidaginis. Int J Mol Sci 2023; 24:10153. [PMID: 37373302 DOI: 10.3390/ijms241210153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The goldenrod gall fly (Eurosta solidaginis) is a well-studied model of insect freeze tolerance. In situations of prolonged winter subzero temperatures, larvae of E. solidaginis accept ice penetration throughout extracellular spaces while protecting the intracellular environment by producing extreme amounts of glycerol and sorbitol as cryoprotectants. Hypometabolism (diapause) is implemented, and energy use is reprioritized to essential pathways. Gene transcription is one energy-expensive process likely suppressed over the winter, in part, due to epigenetic controls. The present study profiled the prevalence of 24 histone H3/H4 modifications of E. solidaginis larvae after 3-week acclimations to decreasing environmental temperatures (5 °C, -5 °C and -15 °C). Using immunoblotting, the data show freeze-mediated reductions (p < 0.05) in seven permissive histone modifications (H3K27me1, H4K20me1, H3K9ac, H3K14ac, H3K27ac, H4K8ac, H3R26me2a). Along with the maintenance of various repressive marks, the data are indicative of a suppressed transcriptional state at subzero temperatures. Elevated nuclear levels of histone H4, but not histone H3, were also observed in response to both cold and freeze acclimation. Together, the present study provides evidence for epigenetic-mediated transcriptional suppression in support of the winter diapause state and freeze tolerance of E. solidaginis.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
3
|
Purification and characterization of NADP-isocitrate dehydrogenase from skeletal muscle of Urocitellus richardsonii. Mol Cell Biochem 2023; 478:415-426. [PMID: 35802222 DOI: 10.1007/s11010-022-04516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
NADP-dependent isocitrate dehydrogenase (NADP-IDH, EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with the concomitant production of NADPH. NADPH plays important roles in many biosynthesis pathways, maintenance of proper oxidation-reduction balance, and protection against oxidative damage. This present study investigated the dynamic nature of NADP-IDH during hibernation by purifying it from the skeletal muscle of Richardson's ground squirrel (Urocitellus richardsonii) and analyzing its structural and functional changes in response to hibernation. Kinetic parameters of purified NADP-IDH from euthermic and hibernating ground squirrel skeletal muscle were characterized at 22 °C and 5 °C. Relative to euthermic muscle, -NADP-IDH in hibernating muscle had a higher affinity for its substrate, isocitrate at 22 °C, whereas at 5 °C, there was a significant decrease in isocitrate affinity. Western blot analysis revealed greater serine and threonine phosphorylation in hibernator NADP-IDH as compared to euthermic NADP-IDH. In addition, Bioinformatic analysis predicted the presence of 18 threonine and 21 serine phosphorylation sites on squirrel NADP-IDH. The structural and functional changes in NADP-IDH indicate the ability of the organism to reduce energy consumption during hibernation, while emphasizing increased NADPH production, and thus antioxidant activity, during torpor arousal cycles.
Collapse
|
4
|
Al-Attar R, Storey KB. Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110747. [PMID: 35460874 DOI: 10.1016/j.cbpb.2022.110747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The freeze-tolerant wood frog, Rana sylvatica, is one of the very few vertebrate species known to endure full body freezing in winter and thaw in early spring without any significant sign of damage. Once frozen, wood frogs show no cardiac or lung activity, brain function, or physical movement yet resume full physiological and biochemical functions within hours after thawing. The miraculous ability to tolerate such extreme stresses makes wood frogs an attractive model for identifying the molecular mechanisms that can promote freeze/thaw endurance. Recapitulating these pro-survival strategies in transplantable human cells and organs could improve viability post-thaw leading to better post-transplant outcomes, in addition to providing more time for adequate distribution of these transplantable materials across larger geographical areas. Indeed, several laboratories are beginning to mimic the pro-survival responses observed in wood frogs to preservation of human cells, tissues and organs and, to date, a few trials have been successful in extending preservation time prior to transplantation. In this review, we discuss the biology of the freeze-tolerant wood frog, current advances in biobanking based on these animals, and extend our discussion to future prospects for cryopreservation as an aid to regenerative medicine.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
DNA Hypomethylation May Contribute to Metabolic Recovery of Frozen Wood Frog Brains. EPIGENOMES 2022; 6:epigenomes6030017. [PMID: 35893013 PMCID: PMC9326605 DOI: 10.3390/epigenomes6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional suppression is characteristic of extreme stress responses, speculated to preserve energetic resources in the maintenance of hypometabolism. In recent years, epigenetic regulation has become heavily implicated in stress adaptation of many animals, including supporting freeze tolerance of the wood frog (Rana sylvatica). However, nervous tissues are frequently lacking in these multi-tissue analyses which warrants investigation. The present study examines the role of DNA methylation, a core epigenetic mechanism, in the response of wood frog brains to freezing. We use immunoblot analysis to track the relative expression of DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins and ten-eleven-translocation (TET) demethylases across the freeze-thaw cycle in R. sylvatica brain, including selected comparisons to freeze-associated sub-stresses (anoxia and dehydration). Global methyltransferase activities and 5-hmC content were also assessed. The data show coordinated evidence for DNA hypomethylation in wood frog brains during freeze-recovery through the combined roles of depressed DNMT3A/3L expression driving lowered DNMT activity and increased TET2/3 levels leading to elevated 5-hmC genomic content (p < 0.05). Raised levels of DNMT1 during high dehydration were also noteworthy. The above suggest that alleviation of transcriptionally repressive 5-mC DNA methylation is a necessary component of the wood frog freeze-thaw cycle, potentially facilitating the resumption of a normoxic transcriptional state as frogs thaw and resume normal metabolic activities.
Collapse
|
6
|
Bloskie T, Storey KB. Epigenetics of the frozen brain: roles for lysine methylation in hypometabolism. FEBS Lett 2022; 596:2007-2020. [PMID: 35770350 DOI: 10.1002/1873-3468.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Wood frog (Rana sylvatica) freeze tolerance necessitates metabolic rate depression, where costly processes such as gene transcription are commonly suppressed. Epigenetic mechanisms, such as histone lysine methylation, have recently been implicated in hypometabolic states of various animals, although they are underreported in nervous tissues. In the present study, we track the expression of eight lysine methyltransferases, as well as the activity on, and abundance of putative histone products across the freeze-thaw cycle and freeze-associated sub-stresses (anoxia, dehydration) of wood frog brains. Our results suggest that hypomethylation of transcriptionally repressive H3K9 may be a key facet of metabolic recovery during the thawing of nervous tissue, which we speculate may have a positive effect on global gene transcription. Some non-histone roles for lysine methylation are also proposed.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
7
|
Watts AJ, Storey KB. Peripheral circadian gene activity is altered during hibernation in the thirteen-lined ground squirrel. Cryobiology 2022; 107:48-56. [DOI: 10.1016/j.cryobiol.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
|
8
|
Hibernation slows epigenetic ageing in yellow-bellied marmots. Nat Ecol Evol 2022; 6:418-426. [PMID: 35256811 PMCID: PMC8986532 DOI: 10.1038/s41559-022-01679-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators. Species that hibernate generally have longer lifespans than expected based on their body size. The authors show epigenetic ageing patterns from a natural population of hibernating yellow-bellied marmots consistent with the hypothesis that ageing is suspended during hibernation.
Collapse
|
9
|
Erman A, Hawkins LJ, Storey KB. MicroRNA, mRNA and protein responses to dehydration in skeletal muscle of the African-clawed frog, Xenopus laevis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Muscles in Winter: The Epigenetics of Metabolic Arrest. EPIGENOMES 2021; 5:epigenomes5040028. [PMID: 34968252 PMCID: PMC8715459 DOI: 10.3390/epigenomes5040028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The winter months are challenging for many animal species, which often enter a state of dormancy or hypometabolism to “wait out” the cold weather, food scarcity, reduced daylight, and restricted mobility that can characterize the season. To survive, many species use metabolic rate depression (MRD) to suppress nonessential metabolic processes, conserving energy and limiting tissue atrophy particularly of skeletal and cardiac muscles. Mammalian hibernation is the best recognized example of winter MRD, but some turtle species spend the winter unable to breathe air and use MRD to survive with little or no oxygen (hypoxia/anoxia), and various frogs endure the freezing of about two-thirds of their total body water as extracellular ice. These winter survival strategies are highly effective, but create physiological and metabolic challenges that require specific biochemical adaptive strategies. Gene-related processes as well as epigenetic processes can lower the risk of atrophy during prolonged inactivity and limited nutrient stores, and DNA modifications, mRNA storage, and microRNA action are enacted to maintain and preserve muscle. This review article focuses on epigenetic controls on muscle metabolism that regulate MRD to avoid muscle atrophy and support winter survival in model species of hibernating mammals, anoxia-tolerant turtles and freeze-tolerant frogs. Such research may lead to human applications including muscle-wasting disorders such as sarcopenia, or other conditions of limited mobility.
Collapse
|
11
|
Williamson SM, Ingelson-Filpula WA, Hadj-Moussa H, Storey KB. Epigenetic underpinnings of freeze avoidance in the goldenrod gall moth, Epiblema scudderiana. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104298. [PMID: 34411584 DOI: 10.1016/j.jinsphys.2021.104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The goldenrod gall moth (Epiblema scudderiana) is a cold hardy insect that survives subzero temperatures during the winter by supercooling bodily fluids to approximately -40 °C, allowing the insect to remain unfrozen despite the freezing temperatures. This is characterized by a drastic increase of cryoprotectant glycerol along with widespread downregulation of non-essential genes and processes to conserve cellular energy. This study examined the role of epigenetic enzymes in regulating this freeze-avoidant process across a range of freezing temperatures experienced in nature. Cold and subzero temperature exposure in E. scudderiana resulted in upregulation of select DNA methyltransferase (DNMT) enzymes with concurrent decreases in DNMT activity and no change in activity of the Ten-Eleven Translocation (TET) demethylation enzyme activities. Levels of histone acetyltransferase (HAT) and histone deacetylase (HDAC) activity decreased during cold exposures. The increase in DNMT expression and concurrent decrease in HAT activity suggests a role for DNA methylation to assist with transcriptional suppression. These findings propose that epigenetic regulation of genes and histones underpin the winter survival strategies of this insect.
Collapse
Affiliation(s)
- Sam M Williamson
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
12
|
G. Martín A, Fernández-Isabel A, Martín de Diego I, Beltrán M. A survey for user behavior analysis based on machine learning techniques: current models and applications. APPL INTELL 2021. [DOI: 10.1007/s10489-020-02160-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Tessier SN, Ingelson-Filpula WA, Storey KB. Epigenetic regulation by DNA methyltransferases during torpor in the thirteen-lined ground squirrel Ictidomys tridecemlineatus. Mol Cell Biochem 2021; 476:3975-3985. [PMID: 34191233 DOI: 10.1007/s11010-021-04214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/21/2021] [Indexed: 12/31/2022]
Abstract
The thirteen-lined ground squirrel, Ictidomys tridecemlineatus, is a mammal capable of lowering its Tb to almost 0 °C while undergoing deep torpor bouts over the winter. To decrease its metabolic rate to such a drastic extent, the squirrel must undergo multiple physiological, biological, and molecular alterations including downregulation of almost all nonessential processes. Epigenetic regulation allows for a dynamic range of transient phenotypes, allowing the squirrel to downregulate energy-expensive and nonessential pathways during torpor. DNA methylation is a prominent form of epigenetic regulation; therefore, the DNA methyltransferase (DNMT) family of enzymes were studied by measuring expression and activity levels of the five major proteins during torpor bouts. Additionally, specific cytosine marks on genomic DNA were quantified to further elucidate DNA methylation during hibernation. A tissue-specific response was observed that highlighted variant degrees of DNA methylation and DNMT expression/activity, demonstrating that DNA methylation is a highly complex form of epigenetic regulation and likely one of many regulatory mechanisms that enables metabolic rate depression in response to torpor.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
14
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Tessier SN, Breedon SA, Storey KB. Modulating Nrf2 transcription factor activity: Revealing the regulatory mechanisms of antioxidant defenses during hibernation in 13-lined ground squirrels. Cell Biochem Funct 2021; 39:623-635. [PMID: 33624895 DOI: 10.1002/cbf.3627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
Mammalian hibernators undergo major behavioural, physiological and biochemical changes to survive hypothermia, ischaemia-reperfusion and finite fuel reserves during days or weeks of continuous torpor. During hibernation, the 13-lined ground squirrel (Ictidomys tridecemlineatus) undergoes a global suppression of energetically expensive processes such as transcription and translation, while selectively upregulating certain genes/proteins to mitigate torpor-related damage. Antioxidant defenses are critical for preventing damage caused by reactive oxygen species (ROS) during torpor and arousal, and Nrf2 is a critical regulator of these antioxidant genes. This study analysed the relative protein expression levels of Nrf2, KEAP1, small Mafs (MafF, MafK and MafG) and catalase and the regulation of Nrf2 transcription factors by post-translational modifications (PTMs) and protein-protein interactions with a negative regulator (KEAP1) during hibernation. It was found that a significant increase in MafK during late torpor predicated an increase in relative Nrf2 and catalase levels seen in arousal. Additionally, Nrf2-KEAP1 protein-protein interactions and Nrf2 PTMs, including serine phosphorylation and lysine acetylation, were responsive to cycles of torpor-arousal with peak responses occurring during arousal. These peaks seen during arousal correspond to a surge in oxygen consumption, which causes increased ROS production. Thus, these regulatory mechanisms could be important during hibernation because they provide mechanisms for mitigating the deleterious effects of oxidative stress by modifying Nrf2 expression and function in an energetically inexpensive manner.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine and Surgery, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sarah A Breedon
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France.,Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
17
|
Logan SM, Storey KB. Cold-inducible RNA-binding protein Cirp, but not Rbm3, may regulate transcript processing and protection in tissues of the hibernating ground squirrel. Cell Stress Chaperones 2020; 25:857-868. [PMID: 32307648 PMCID: PMC7591650 DOI: 10.1007/s12192-020-01110-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) have important roles in transcription, pre-mRNA processing/transport, mRNA degradation, translation, and non-coding RNA processing, among others. RBPs that are expressed in response to cold stress, such as Cirp and Rbm3, could regulate RNA stability and translation in hibernating mammals that reduce their body temperatures from 37 °C to as low as 0-5 °C during torpor bouts. RBPs including Cirp, Rbm3, and stress-inducible HuR translocate from the nucleus to stabilize mRNAs in the cytoplasm, and thereby could regulate which mRNA transcripts are protected from degradation and are translated, versus stored, for future protein synthesis or degraded by nucleases during cell stress associated with metabolic rate depression. This is the first study to explore the transcriptional/translational regulation, and subcellular localization of cold-inducible RBPs in a model hibernator, the 13-lined ground squirrel (Ictidomys tridecemlineatus). Cirp protein levels were upregulated in liver, skeletal muscle, and brown adipose tissue throughout the torpor-arousal cycle whereas Rbm3 protein levels stayed constant or decreased, suggesting an important role for Cirp, but likely not Rbm3, in the hibernator stress response. Increased cytoplasmic localization of Cirp in liver and muscle and HuR in liver during torpor, but no changes in the relative levels of Rbm3 in the cytoplasm, emphasizes a role for Cirp and possibly HuR in regulating mRNA processing during torpor. This study informs our understanding of the natural adaptations that extreme animals use in the face of stress, and highlight natural stress response mediators that could be used to bolster cryoprotection of human organs donated for transplant.
Collapse
Affiliation(s)
- Samantha M Logan
- Departments of Biology and Chemistry, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Departments of Biology and Chemistry, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Characterizing the regulation of pyruvate kinase in response to hibernation in ground squirrel liver (Urocitellus richardsonii). Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110466. [DOI: 10.1016/j.cbpb.2020.110466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
|
19
|
Gagnon MF, Lafleur C, Landry-Cuerrier M, Humphries MM, Kimmins S. Torpor expression is associated with differential spermatogenesis in hibernating eastern chipmunks. Am J Physiol Regul Integr Comp Physiol 2020; 319:R455-R465. [PMID: 32783688 DOI: 10.1152/ajpregu.00328.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hibernators suppress physiological processes when expressing torpor, yet little is known about the effects of torpor on male reproductive physiology. Studies of hibernating mammals suggest that deep torpor negatively impacts spermatogenesis and that transitions between torpor and euthermic arousals increase cellular oxidative stress, with potentially damaging effects on sperm. Here, we hypothesize that variation in torpor expression affects the reproductive readiness of hibernators by impacting their sperm production. To test this, we examined the relationship between torpor expression and spermatogenesis in captive eastern chipmunks (Tamias striatus). We determined torpor depth with temperature data loggers and assessed its relationship with spermatogenesis by examining spermatogenic progression, cell division, sperm counts, sperm maturity, and DNA damage. We show that deep hibernators (high levels of torpor) largely halted spermatogenesis in late hibernation in comparison with shallow hibernators (low levels of torpor), where ongoing spermatogenesis was observed. Despite these differences in spermatogenic state during hibernation, spermatogenic progression, sperm numbers, and maturity did not differ in spring, potentially reflecting similar degrees of reproductive readiness. Interestingly, shallow hibernators exhibited higher rates of DNA damage in spermatogenic cells during hibernation, with this trend reversing in spring. Our results thus indicate that once heterothermy is terminated, deep hibernators resume spermatogenesis but are characterized by higher rates of DNA damage in spermatogenic cells at the seasonal stage when spring mating commences. Therefore, our study confirmed posthibernation recovery of sperm production but also a potential impact of deep torpor expression during winter on DNA damage in spring.
Collapse
Affiliation(s)
- Marianne F Gagnon
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Christine Lafleur
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Manuelle Landry-Cuerrier
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Murray M Humphries
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sarah Kimmins
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
20
|
Garcia-Elfring A, Barrett RDH, Millien V. Genomic Signatures of Selection along a Climatic Gradient in the Northern Range Margin of the White-Footed Mouse (Peromyscus leucopus). J Hered 2020; 110:684-695. [PMID: 31300816 DOI: 10.1093/jhered/esz045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Identifying genetic variation involved in thermal adaptation is likely to yield insights into how species adapt to different climates. Physiological and behavioral responses associated with overwintering (e.g., torpor) are thought to serve important functions in climate adaptation. In this study, we use 2 isolated Peromyscus leucopus lineages on the northern margin of the species range to identify single nucleotide polymorphisms (SNPs) showing a strong environmental association and test for evidence of parallel evolution. We found signatures of clinal selection in each lineage, but evidence of parallelism was limited, with only 2 SNPs showing parallel allele frequencies across transects. These parallel SNPs map to a gene involved in protection against iron-dependent oxidative stress (Fxn) and to a gene with unknown function but containing a forkhead-associated domain (Fhad1). Furthermore, within transects, we find significant clinal patterns in genes enriched for functions associated with glycogen homeostasis, synaptic function, intracellular Ca2+ balance, H3 histone modification, as well as the G2/M transition of cell division. Our results are consistent with recent literature on the cellular and molecular basis of climate adaptation in small mammals and provide candidate genomic regions for further study.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Redpath Museum, McGill University, Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Redpath Museum, McGill University, Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| | - Virginie Millien
- Redpath Museum, McGill University, Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Al-Attar R, Storey KB. Suspended in time: Molecular responses to hibernation also promote longevity. Exp Gerontol 2020; 134:110889. [PMID: 32114078 DOI: 10.1016/j.exger.2020.110889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Aging in most animals is an inevitable process that causes or is a result of physiological, biochemical, and molecular changes in the body, and has a strong influence on an organism's lifespan. Although advancement in medicine has allowed humans to live longer, the prevalence of age-associated medical complications is continuously burdening older adults worldwide. Current animal models used in research to study aging have provided novel information that has helped investigators understand the aging process; however, these models are limiting. Aging is a complex process that is regulated at multiple biological levels, and while a single manipulation in these models can provide information on a process, it is not enough to understand the global regulation of aging. Some mammalian hibernators live up to 9.8-times higher than their expected average lifespan, and new research attributes this increase to their ability to hibernate. A common theme amongst these mammalian hibernators is their ability to greatly reduce their metabolic rate to a fraction of their normal rate and initiate cytoprotective responses that enable their survival. Metabolic rate depression is strictly regulated at different biological levels in order to enable the animal to not only survive, but to also do so by relying mainly on their limited internal fuels. As such, understanding both the global and specific regulatory mechanisms used to promote survival during hibernation could, in theory, allow investigators to have a better understanding of the aging process. This can also allow pharmaceutical industries to find therapeutics that could delay or reverse age-associated medical complications and promote healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
22
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
23
|
Capraro A, O'Meally D, Waters SA, Patel HR, Georges A, Waters PD. Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps. BMC Genomics 2019; 20:460. [PMID: 31170930 PMCID: PMC6555745 DOI: 10.1186/s12864-019-5750-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. Results We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. Conclusions These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression. Electronic supplementary material The online version of this article (10.1186/s12864-019-5750-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Capraro
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Present address: Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Shafagh A Waters
- School of Women's & Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Watts AJ, Storey KB. Hibernation impacts lysine methylation dynamics in the 13-lined ground squirrel, Ictidomys tridecemlineatus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:234-244. [PMID: 30767414 DOI: 10.1002/jez.2259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/11/2022]
Abstract
During winter hibernation in mammals, body temperature falls to near-ambient levels, metabolism shifts to favor lipid oxidation, and metabolic rate is strongly suppressed by inhibiting many ATP-expensive processes (e.g., transcription, translation) for animals in order to survive for many months on limited reserves of body fuels. Regulation of such profound changes (i.e., metabolic rate depression) requires rapid and reversible controls provided by protein posttranslational modifications. Protein lysine methylation provides one mechanism by which the functionality, activity, and stability of cellular proteins and enzymes can be modified for the needs of the hibernator. The present study reports the responses of seven lysine methyltransferases (SMYD2, SUV39H1, SET8, SET7/9, G9a, ASH2L, and RBBP5) in skeletal muscle and liver over seven stages of the torpor/arousal cycle in 13-lined ground squirrels (Ictidomys tridecemlineatus). A tissue-specific and stage-specific analysis revealed significant changes in the protein levels of lysine methyltransferases, methylation patterns on histone H3, histone methyltransferase activity, and methylation of the p53 transcription factor. Enzymes typically increased in protein amount in either torpor, arousal, or the transitory periods. Methylation of histone H3 and p53 typically followed the patterns of the methyltransferase enzymes. Overall, these data show that protein lysine methylation is an important regulator of the mammalian hibernation phenotype.
Collapse
Affiliation(s)
- Alexander J Watts
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
25
|
Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C. Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents. J Proteome Res 2019; 18:1175-1190. [DOI: 10.1021/acs.jproteome.8b00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Mamen Regalado-Reyes
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Calle de Valderrebollo, 5, 28031 Madrid, Spain
| | | |
Collapse
|
26
|
Logan SM, Wu CW, Storey KB. The squirrel with the lagging eIF2: Global suppression of protein synthesis during torpor. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:161-171. [PMID: 30343059 DOI: 10.1016/j.cbpa.2018.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/17/2022]
Abstract
Hibernating mammals use strong metabolic rate depression and a reduction in body temperature to near-ambient to survive the cold winter months. During torpor, protein synthesis is suppressed but can resume during interbout arousals. The current study aimed to identify molecular targets responsible for the global suppression of protein synthesis during torpor as well as possible mechanisms that could allow for selective protein translation to continue over this time. Relative changes in protein expression and/or phosphorylation levels of key translation factors (ribosomal protein S6, eIF4E, eIF2α, eEF2) and their upstream regulators (mTOR, TSC2, p70 S6K, 4EBP) were analyzed in liver and kidney of 13-lined ground squirrels (Ictidomys tridecemlineatus) sampled from six points over the torpor-arousal cycle. The results indicate that both organs reduce protein synthesis during torpor by decreasing mTOR and TSC2 phosphorylation between 30 and 70% of control levels. Translation resumes during interbout arousal when p-p70 S6K, p-rpS6, and p-4EBP levels returned to control values or above. Only liver translation factors were activated or disinhibited during periods of torpor itself, with >3-fold increases in total eIF2α and eEF2 protein levels, and a decrease in p-eEF2 (T56) to as low as 16% of the euthermic control value. These data shed light on a possible molecular mechanism involving eIF2α that could enable the translation of key transcripts during times of cell stress.
Collapse
Affiliation(s)
- Samantha M Logan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Cheng-Wei Wu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
27
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
28
|
Wei Y, Gong L, Fu W, Xu S, Wang Z, Zhang J, Ning E, Chang H, Wang H, Gao Y. Unexpected regulation pattern of the IKKβ/NF‐κB/MuRF1 pathway with remarkable muscle plasticity in the Daurian ground squirrel (
Spermophilus dauricus
). J Cell Physiol 2018; 233:8711-8722. [DOI: 10.1002/jcp.26751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Wei
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Lingchen Gong
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Weiwei Fu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Shenhui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Zhe Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Jie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Er Ning
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| | - Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaCollege of Life SciencesNorthwest University, Ministry of EducationXi'anChina
| |
Collapse
|
29
|
Rouble AN, Hawkins LJ, Storey KB. Roles for lysine acetyltransferases during mammalian hibernation. J Therm Biol 2018; 74:71-76. [DOI: 10.1016/j.jtherbio.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/20/2023]
|
30
|
Tsukamoto D, Ito M, Takamatsu N. Epigenetic regulation of hibernation-associated HP-20 and HP-27 gene transcription in chipmunk liver. Biochem Biophys Res Commun 2018; 495:1758-1765. [PMID: 29233692 DOI: 10.1016/j.bbrc.2017.12.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 11/19/2022]
Abstract
The chipmunk hibernation-related proteins (HPs) HP-20 and HP-27 are components of a 140-kDa complex that dramatically decreases in the blood during hibernation. The HP-20 and HP-27 genes are expressed specifically in the liver and are downregulated in hibernating chipmunks. Hibernation-associated physiological changes are assumed to be under genetic control. Therefore, to elucidate the molecular mechanisms of hibernation, here we examined the mechanisms behind the altered HP-20 and HP-27 gene expression in nonhibernating versus hibernating chipmunks. Chromatin immunoprecipitation (ChIP) analyses revealed that histone H3 on the HP-20 and HP-27 gene promoters was highly acetylated at lysine (K) 9 and K14 and highly trimethylated at K4 in the liver of nonhibernating chipmunks, while these active histone modifications were nearly absent in hibernating chipmunks. Furthermore, histone acetyltransferases and a histone methyltransferase were associated with the HP-20 and HP-27 gene promoters primarily in nonhibernating chipmunks. Consistent with a previous finding that HNF-1 and USF can activate HP-20 and HP-27 gene transcription by binding to the proximal promoter region, ChIP-quantitative PCR (qPCR) analyses revealed that significantly less HNF-1 and USF were bound to these gene promoters in hibernating than in nonhibernating chipmunks. These findings collectively indicated that the hibernation-associated HP-20 and HP-27 gene expression is epigenetically regulated at the transcriptional level by the binding of HNF-1 and USF to their proximal promoters, and that histone modification has a key role in hibernation-associated transcriptional regulation.
Collapse
Affiliation(s)
- Daisuke Tsukamoto
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, 252-0373, Japan.
| | - Michihiko Ito
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, 252-0373, Japan
| | - Nobuhiko Takamatsu
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, 252-0373, Japan.
| |
Collapse
|
31
|
Dhillon RS, Denu JM. Using comparative biology to understand how aging affects mitochondrial metabolism. Mol Cell Endocrinol 2017; 455:54-61. [PMID: 28025033 DOI: 10.1016/j.mce.2016.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/24/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Lifespan varies considerably among even closely related species, as exemplified by rodents and primates. Despite these disparities in lifespan, most studies have focused on intra-specific aging pathologies, primarily within a select few systems. While mice have provided much insight into aging biology, it is unclear if such a short-lived species lack defences against senescence that may have evolved in related longevous species. Many age-related diseases have been linked to mitochondrial dysfunction that are measured by decreased energy generation, structural damage to cellular components, and even cell death. Post translational modifications (PTMs) orchestrate many of the pathways associated with cellular metabolism, and are thought to be a key regulator in biological senescence. We propose hyperacylation as one such modification that may be implicated in numerous mitochondrial impairments affecting energy metabolism.
Collapse
Affiliation(s)
- Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin- Madison, Madison, WI 53715, USA.
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin- Madison, Madison, WI 53715, USA
| |
Collapse
|
32
|
Tessier SN, Zhang Y, Wijenayake S, Storey KB. MAP kinase signaling and Elk1 transcriptional activity in hibernating thirteen-lined ground squirrels. Biochim Biophys Acta Gen Subj 2017; 1861:2811-2821. [DOI: 10.1016/j.bbagen.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
33
|
Hawkins LJ, Storey KB. Improved high-throughput quantification of luminescent microplate assays using a common Western-blot imaging system. MethodsX 2017; 4:413-422. [PMID: 29124018 PMCID: PMC5671400 DOI: 10.1016/j.mex.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
Common Western-blot imaging systems have previously been adapted to measure signals from luminescent microplate assays. This can be a cost saving measure as Western-blot imaging systems are common laboratory equipment and could substitute a dedicated luminometer if one is not otherwise available. One previously unrecognized limitation is that the signals captured by the cameras in these systems are not equal for all wells. Signals are dependent on the angle of incidence to the camera, and thus the location of the well on the microplate. Here we show that: •The position of a well on a microplate significantly affects the signal captured by a common Western-blot imaging system from a luminescent assay.•The effect of well position can easily be corrected for.•This method can be applied to commercially available luminescent assays, allowing for high-throughput quantification of a wide range of biological processes and biochemical reactions.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
34
|
Wu CW, Storey KB. Regulation of Smad mediated microRNA transcriptional response in ground squirrels during hibernation. Mol Cell Biochem 2017; 439:151-161. [PMID: 28780752 DOI: 10.1007/s11010-017-3144-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
Mammalian hibernation is a state of dormancy that is used by some animals to survive through the unfavorable conditions of winter, and is characterized by coordinated suppression of basal metabolism that is supported by global inhibition of energy/ATP-consuming processes. In this study, we examine the regulation of the anti-proliferatory TGF-β/Smad transcription factor signaling pathway in the liver tissue of the hibernating 13-lined ground squirrel Ictidomys tridecemlineatus. The TGF-β/Smad signaling pathway is known to mediate cell cycle arrest through induction of cell cycle dependent kinase inhibitors, and more recently, has been shown to regulate a wide range of cellular processes via its control of microRNA biosynthesis. We show that phosphorylation levels of the Smad3 protein at its activation residue is increased by ~1.5-fold during torpor, and this is associated with an increase in nuclear localization and DNA binding activity of Smad3. Expression levels of several TGF-β induced microRNAs previously described in human cells were also activated in ground squirrel during torpor. Among these were miR-21, miR-23a, and miR-107, which contain either the conserved R-SBE or R-SBE related motif found in microRNAs that are post-transcriptionally processed by Smad proteins. We show that levels of miR-21 were highly elevated at multiple stages of torpor, and predicted gene targets of miR-21 were enriched to multiple pro-growth cellular processes. Overall, we provide evidence that show the Smad3 transcription factor is activated in ground squirrels during torpor, and suggest a role for this signaling pathway in mediating anti-proliferatory signals via its transcriptional control of cell cycle inhibitors and downstream microRNAs.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
35
|
Tsukamoto D, Ito M, Takamatsu N. HNF-4 participates in the hibernation-associated transcriptional regulation of the chipmunk hibernation-related protein gene. Sci Rep 2017; 7:44279. [PMID: 28281641 PMCID: PMC5345028 DOI: 10.1038/srep44279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
The chipmunk hibernation-related protein 25 (HP-25) is involved in the circannual control of hibernation in the brain. The liver-specific expression of the HP-25 gene is repressed in hibernating chipmunks under the control of endogenous circannual rhythms. However, the molecular mechanisms that differentially regulate the HP-25 gene during the nonhibernation and hibernation seasons are unknown. Here, we show that the hibernation-associated HP-25 expression is regulated epigenetically. Chromatin immunoprecipitation analyses revealed that significantly less hepatocyte nuclear receptor HNF-4 bound to the HP-25 gene promoter in the liver of hibernating chipmunks compared to nonhibernating chipmunks. Concurrently in the hibernating chipmunks, coactivators were dissociated from the promoter, and active transcription histone marks on the HP-25 gene promoter were lost. On the other hand, small heterodimer partner (SHP) expression was upregulated in the liver of hibernating chipmunks. Overexpressing SHP in primary hepatocytes prepared from nonhibernating chipmunks caused HNF-4 to dissociate from the HP-25 gene promoter, and reduced the HP-25 mRNA level. These results suggest that hibernation-related HP-25 expression is epigenetically regulated by the binding of HNF-4 to the HP-25 promoter, and that this binding might be modulated by SHP in hibernating chipmunks.
Collapse
Affiliation(s)
| | - Michihiko Ito
- Kitasato University School of Science, Kanagawa 252-0373, Japan
| | | |
Collapse
|
36
|
Tessier SN, Luu BE, Smith JC, Storey KB. The role of global histone post-translational modifications during mammalian hibernation. Cryobiology 2017; 75:28-36. [PMID: 28257856 DOI: 10.1016/j.cryobiol.2017.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/22/2022]
Abstract
Mammalian hibernators must cope with hypothermia, ischemia-reperfusion, and finite fuel reserves during days or weeks of continuous torpor. One means of lowering ATP demands during hibernation involves substantial transcriptional controls. The present research analyzed epigenetic regulatory factors as a means of achieving transcriptional control over cycles of torpor-arousal. This study analyzes differential regulation of select histone modifications (e.g. phosphorylation, acetylation, methylation), and identifies post-translational modifications on purified histones using mass spectrometry from thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Post-translational modifications on histone proteins were responsive to torpor-arousal, suggesting a potential mechanism to dynamically alter chromatin structure. Furthermore, proteomic sequencing data of ground squirrel histones identified lysine 19 and 24 acetylation on histone H3, while acetylation sites identified on H2B were lysine 6, 47, 110, and 117. The present study provides a new glimpse into the epigenetic mechanisms which may play a role in transcriptional regulation during mammalian hibernation.
Collapse
Affiliation(s)
- Shannon N Tessier
- Department of Surgery & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Bryan E Luu
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Institute of Biochemistry & Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
37
|
Wu CW, Storey KB. Life in the cold: links between mammalian hibernation and longevity. Biomol Concepts 2016; 7:41-52. [PMID: 26820181 DOI: 10.1515/bmc-2015-0032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/09/2016] [Indexed: 01/07/2023] Open
Abstract
The biological process of aging is the primary determinant of lifespan, but the factors that influence the rate of aging are not yet clearly understood and remain a challenging question. Mammals are characterized by >100-fold differences in maximal lifespan, influenced by relative variances in body mass and metabolic rate. Recent discoveries have identified long-lived mammalian species that deviate from the expected longevity quotient. A commonality among many long-lived species is the capacity to undergo metabolic rate depression, effectively re-programming normal metabolism in response to extreme environmental stress and enter states of torpor or hibernation. This stress tolerant phenotype often involves a reduction in overall metabolic rate to just 1-5% of the normal basal rate as well as activation of cytoprotective responses. At the cellular level, major energy savings are achieved via coordinated suppression of many ATP-expensive cell functions; e.g. global rates of protein synthesis are strongly reduced via inhibition of the insulin signaling axis. At the same time, various studies have shown activation of stress survival signaling during hibernation including up-regulation of protein chaperones, increased antioxidant defenses, and transcriptional activation of pro-survival signaling such as the FOXO and p53 pathways. Many similarities and parallels exist between hibernation phenotypes and different long-lived models, e.g. signal transduction pathways found to be commonly regulated during hibernation are also known to induce lifespan extension in animals such as Drosophila melanogaster and Caenorhabditis elegans. In this review, we highlight some of the molecular mechanisms that promote longevity in classic aging models C. elegans, Drosophila, and mice, while providing a comparative analysis to how they are regulated during mammalian hibernation.
Collapse
|
38
|
Inhibition of skeletal muscle atrophy during torpor in ground squirrels occurs through downregulation of MyoG and inactivation of Foxo4. Cryobiology 2016; 73:112-9. [PMID: 27593478 DOI: 10.1016/j.cryobiol.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Foxo4 and MyoG proteins regulate the transcription of numerous genes, including the E3 ubiquitin ligases MAFbx and MuRF1, which are activated in skeletal muscle under atrophy-inducing conditions. In the thirteen-lined ground squirrel, there is little muscle wasting that occurs during hibernation, a process characterized by bouts of torpor and arousal, despite virtual inactivity. Consequently, we were interested in studying the regulatory role of Foxo4 and MyoG on ubiquitin ligases throughout torpor-arousal cycles. Findings indicate that MAFbx and MuRF1 decreased during early torpor (ET) by 42% and 40%, respectively, relative to euthermic control (EC), although MuRF1 expression subsequently increased at late torpor (LT). The expression pattern of MyoG most closely resembled that of MAFbx, with levels decreasing during LT. In addition, the phosphorylation of Foxo4 at Thr-451 showed an initial increase during EN, followed by a decline throughout the remainder of the torpor-arousal cycle, suggesting Foxo4 inhibition. This trend was mirrored by inhibition of the Ras-Ral pathway, as the Ras and Ral proteins were decreased by 77% and 41% respectively, at ET. Foxo4 phosphorylation at S197 was depressed during entrance and torpor, suggesting Foxo4 nuclear localization, and possibly regulating the increase in MuRF1 levels at LT. These findings indicate that signaling pathways involved in regulating muscle atrophy, such as MyoG and Foxo4 through the Ras-Ral pathway, contribute to important muscle-specific changes during hibernation. Therefore, this data provides novel insight into the molecular mechanisms regulating muscle remodeling in a hibernator model.
Collapse
|
39
|
Reynolds JA, Bautista-Jimenez R, Denlinger DL. Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:29-37. [PMID: 27350056 DOI: 10.1016/j.ibmb.2016.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The growing appreciation that epigenetic processes are integral to the responses of many organisms to changes in the environment suggests a possible role for epigenetics in coordination of insect diapause. The results we present suggest that histone modification may be one type of epigenetic process that contributes to regulation of pupal diapause in the flesh fly, Sarcophaga bullata. Reduction in total histone H3 acetylation in diapausing pupae, shifts in mRNA expression profiles of genes encoding histone acetyltransferase (HAT) and histone deacetylase (HDAC) in pre-diapause, diapause and post-diapause flies compared to their nondiapause counterparts, and alterations in HDAC enzyme activity during and post-diapause lend support to the hypothesis that this specific type of histone modification is involved in regulating diapause programming, maintenance, and termination. Transcription of genes encoding HDAC1, HDAC3, HDAC6, and Sirtuin2 were all upregulated in photosensitive first instar larvae programmed to enter pupal diapause, suggesting that histone deacetylation may be linked to the early decision to enter diapause. A 50% reduction in transcription of hdac3 and a corresponding 30% reduction in HDAC activity during diapause suggest that removal of acetyl groups from histones primarily occurs prior to diapause entry and that further histone deacetylation is not necessary to maintain diapause. Transcription of the HDAC genes was quickly elevated when diapause was terminated, followed by an increase in enzyme activity after a short delay. A maternal effect operating in these flies prevents pupal diapause in progeny whose mothers experienced pupal diapause, even if the progeny are reared in strong diapause-inducing short-day conditions. Such nondiapausing pupae had HDAC transcription profiles nearly identical to the profiles seen in nondiapausing pupae generated under a long-day photoperiod. Together, these results provide consistent evidence for histone acetylation and deacetylation as regulators of this insect's developmental trajectory.
Collapse
Affiliation(s)
- J A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Robin Bautista-Jimenez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - D L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Khoury N, Koronowski KB, Perez-Pinzon MA. Long-term window of ischemic tolerance: An evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications? ACTA ACUST UNITED AC 2016; 1:6-12. [PMID: 27796011 DOI: 10.29245/2572.942x/2016/2.1021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the absence of effective neuroprotective agents in the clinic, ischemic and pharmacological preconditioning are gaining increased interest in the field of cerebral ischemia. Our lab recently reported that resveratrol preconditioning affords tolerance against a focal cerebral ischemic insult in mice that can last for at least 14 days in vivo making it the longest window of ischemic tolerance discovered to date by a single administration of a pharmacological agent. The mechanism behind this novel extended window of ischemic tolerance remains elusive. In the below commentary we discuss potential mechanisms that could explain this novel extended window of ischemic tolerance in the context of previously identified windows and the known mechanisms behind them. We also draw parallels from the fields of hibernation and hypoxia-tolerance, which are chronic adaptations to severe conditions of hypoxia and ischemia known to be mediated by a form of metabolic depression. We also briefly discuss the importance of epigenetic modifications in maintaining this depressed state of metabolism.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kevin B Koronowski
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
41
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
42
|
Wu CW, Biggar KK, Luu BE, Szereszewski KE, Storey KB. Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Physiol Genomics 2016; 48:388-96. [PMID: 27084747 DOI: 10.1152/physiolgenomics.00005.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/06/2023] Open
Abstract
Hibernation is a highly regulated stress response that is utilized by some mammals to survive harsh winter conditions and involves a complex metabolic reprogramming at the cellular level to maintain tissue protections at low temperature. In this study, we profiled the expression of 117 conserved microRNAs in the heart, muscle, and liver of the 13-lined ground squirrel (Ictidomys tridecemlineatus) across four stages of the torpor-arousal cycle (euthermia, early torpor, late torpor, and interbout arousal) by real-time PCR. We found significant differential regulation of numerous microRNAs that were both tissue specific and torpor stage specific. Among the most significant regulated microRNAs was miR-208b, a positive regulator of muscle development that was found to be upregulated by fivefold in the heart during late torpor (13-fold during arousal), while decreased by 3.7-fold in the skeletal muscle, implicating a potential regulatory role in the development of cardiac hypertrophy and skeletal muscle atrophy in the ground squirrels during torpor. In addition, the insulin resistance marker miR-181a was upregulated by 5.7-fold in the liver during early torpor, which supports previous suggestions of hyperinsulinemia in hibernators during the early stages of the hibernation cycle. Although microRNA expression profiles were largely unique between the three tissues, GO annotation analysis revealed that the putative targets of upregulated microRNAs tend to enrich toward suppression of progrowth-related processes in all three tissues. These findings implicate microRNAs in the regulation of both tissue-specific processes and general suppression of cell growth during hibernation.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kama E Szereszewski
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Tamaoki K, Okada R, Ishihara A, Shiojiri N, Mochizuki K, Goda T, Yamauchi K. Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis. Cell Biosci 2016; 6:2. [PMID: 26798452 PMCID: PMC4721045 DOI: 10.1186/s13578-016-0067-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background Amphibians are able to survive for several months without food. However, it is unclear what molecular mechanisms underlie their survival. To characterize the intestinal responses to fasting and refeeding, we investigated morphological, biochemical, transcriptional and epigenetic changes in the intestine from adult male Xenopus laevis. Results Frogs were fed for 22 days, fasted for 22 days, or fasted for 21 days and refed for 1 day. Fasting reduced, and refeeding recovered partially or fully, morphological parameters (wet weight of the intestine, circumference of the epithelial layer and number of troughs in a villus-trough unit), activities of digestive enzymes and plasma biochemical parameters (glucose, triglycerides, cholesterol and free fatty acids). Reverse transcription-quantitative polymerase chain reaction analysis revealed overall suppression of the transcript levels by fasting, with various recovery rates on refeeding. Chromatin immunoprecipitation assays on the selected genes whose transcript levels declined with fasting and recovered quickly with refeeding, showed several euchromatin marks in histone (acetylation and methylation) and RNA polymerase II modifications (phosphorylation) with fasting, and returned to the feeding levels by refeeding. The mRNA levels of these genes responded to fasting and refeeding to greater extents than did the pre-mRNA levels, suggesting the involvement of post-transcriptional regulation. Conclusions Our results demonstrate that the X. laevis intestine may undergo overall metabolic suppression at least at the transcriptional level to save energy during fasting and quickly recovered to moderate nutritional deficiency by refeeding, and suggest that these dietary responses of the intestine are epigenetically and post-transcriptionally regulated. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0067-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiji Tamaoki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Reiko Okada
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan ; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Akinori Ishihara
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan ; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Nobuyoshi Shiojiri
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, 400-8510 Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, School of Food and Nutritional Sciences, The University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Kiyoshi Yamauchi
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan ; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529 Japan
| |
Collapse
|
44
|
Transcriptional Activation of p53 during Cold Induced Torpor in the 13-Lined Ground Squirrel Ictidomys tridecemlineatus. Biochem Res Int 2015; 2015:731595. [PMID: 26843984 PMCID: PMC4710910 DOI: 10.1155/2015/731595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor p53 is located at the centre of multiple pathways relating the cellular response to stress. Commonly known as a tumor suppressor, it is responsible for initiating diverse actions to protect the integrity of the genome, ranging from cell cycle arrest to apoptosis. This study investigated the regulation of p53 protein in hibernating 13-lined ground squirrel Ictidomys tridecemlineatus during multiple stages of the torpor-arousal cycle. Transcript and protein levels of p53 were both elevated in the skeletal muscle during early and late torpor stages of the hibernation cycle. Nuclear localization of p53 was also increased during late torpor, and this is associated with an increase in its DNA binding activity and expression of p53 transcriptional targets p21CIP, gadd45α, and 14-3-3σ. The increase in p53 transcriptional activity appears to be independent of its phosphorylation at Ser-15, Ser-46, and Ser-392, consistent with an absence of checkpoint kinase activation during torpor. Sequence analysis revealed unique amino acid substitutions in the ground squirrel p53 protein, which may contribute to an increase in protein stability compared to nonhibernators. Overall, the study results provided evidences for a potential role of p53 in the protection of the skeletal muscle during torpor.
Collapse
|
45
|
Lewis JK, Bischof JC, Braslavsky I, Brockbank KGM, Fahy GM, Fuller BJ, Rabin Y, Tocchio A, Woods EJ, Wowk BG, Acker JP, Giwa S. The Grand Challenges of Organ Banking: Proceedings from the first global summit on complex tissue cryopreservation. Cryobiology 2015; 72:169-82. [PMID: 26687388 DOI: 10.1016/j.cryobiol.2015.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 01/29/2023]
Abstract
The first Organ Banking Summit was convened from Feb. 27 - March 1, 2015 in Palo Alto, CA, with events at Stanford University, NASA Research Park, and Lawrence Berkeley National Labs. Experts at the summit outlined the potential public health impact of organ banking, discussed the major remaining scientific challenges that need to be overcome in order to bank organs, and identified key opportunities to accelerate progress toward this goal. Many areas of public health could be revolutionized by the banking of organs and other complex tissues, including transplantation, oncofertility, tissue engineering, trauma medicine and emergency preparedness, basic biomedical research and drug discovery - and even space travel. Key remaining scientific sub-challenges were discussed including ice nucleation and growth, cryoprotectant and osmotic toxicities, chilling injury, thermo-mechanical stress, the need for rapid and uniform rewarming, and ischemia/reperfusion injury. A variety of opportunities to overcome these challenge areas were discussed, i.e. preconditioning for enhanced stress tolerance, nanoparticle rewarming, cyroprotectant screening strategies, and the use of cryoprotectant cocktails including ice binding agents.
Collapse
Affiliation(s)
- Jedediah K Lewis
- Organ Preservation Alliance, NASA Research Park Bldg. 20, S. Akron Road, Moffett Field, CA, USA; Stanford University, Palo Alto, CA, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ido Braslavsky
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Kelvin G M Brockbank
- Tissue Testing Technologies LLC, North Charleston, SC, USA; Department of Bioengineering, Clemson University, SC, USA
| | | | - Barry J Fuller
- UCL Medical School/Royal Free Hospital, Division of Surgery & Interventional Science, UCL Medical School, Royal Free Hospital Campus, London, UK
| | - Yoed Rabin
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alessandro Tocchio
- Organ Preservation Alliance, NASA Research Park Bldg. 20, S. Akron Road, Moffett Field, CA, USA; Stanford University, Palo Alto, CA, USA
| | - Erik J Woods
- Society for Cryobiology, USA; Cook Regentec, Indianapolis, IN, USA
| | | | - Jason P Acker
- Society for Cryobiology, USA; Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sebastian Giwa
- Organ Preservation Alliance, NASA Research Park Bldg. 20, S. Akron Road, Moffett Field, CA, USA; Sylvatica Biotech Inc., Charleston, SC, USA.
| |
Collapse
|
46
|
Zhang Y, Storey KB. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 2015; 412:27-40. [PMID: 26597853 DOI: 10.1007/s11010-015-2605-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through downregulation of the NFAT-Cn pathway.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
47
|
Rouble AN, Storey KB. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel. Cryobiology 2015; 71:334-43. [DOI: 10.1016/j.cryobiol.2015.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022]
|
48
|
Chen M, Zhu A, Storey KB. Comparative phosphoproteomic analysis of intestinal phosphorylated proteins in active versus aestivating sea cucumbers. J Proteomics 2015; 135:141-150. [PMID: 26385000 DOI: 10.1016/j.jprot.2015.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
UNLABELLED The sea cucumber Apostichopus japonicus is becoming an excellent model marine invertebrate for studies of environmentally-induced aestivation. Reversible protein phosphorylation as a regulatory mechanism in aestivation is known for some terrestrial aestivators but has never before been documented in sea cucumbers. The present study provides a global quantitative analysis of the role of reversible phosphorylation in sea cucumber aestivation by using tandem mass tag (TMT) labeling followed by an IMAC enrichment strategy to map aestivation-responsive changes in the phosphoproteome of sea cucumber intestine. We identified 2295 unique phosphosites derived from 1283 phosphoproteins and, of these, 211 hyperphosphorylated and 65 hypophosphorylated phosphoproteins were identified in intestine during deep aestivation compared with the active state based on the following criterion: quantitative ratios over 1.5 or less than 0.67 with corrected p-value <0.05. Six major functional classes of proteins exhibited changes in their phosphorylation status during aestivation: (1) protein synthesis, (2) transcriptional regulators, (3) kinases, (4) signaling, (5) transporter, (6) DNA binding. These data on the global involvement of phosphorylation in sea cucumber aestivation significantly improve our understanding of the regulatory mechanisms involved in metabolic arrest when marine invertebrates face environmental stress and provide substantial candidate phosphorylated proteins that could be important for identifying functionally adaptive variation in marine invertebrates. SIGNIFICANCE Sea cucumber Apostichopus japonicus is an excellent model organism for studies of environmentally-induced aestivation by a marine invertebrate. The present study provides the first quantitative phosphoproteomic analysis of sea cucumber aestivation using isobaric tag based TMT labeling followed by an IMAC enrichment strategy. These data on the global involvement of phosphorylation in sea cucumber aestivation significantly improve our understanding of the regulatory mechanism involved in metabolic arrest when marine invertebrates face environmental stress and provide substantial candidate phosphorylated proteins that could be important for identifying functionally adaptive variation in marine invertebrates. This study also demonstrates the usefulness of the TMT-based quantitative phosphoproteomics approach to explore the survival responses of a non-model marine invertebrate species to seasonal changes in its environment.
Collapse
Affiliation(s)
- Muyan Chen
- Fisheries College, Ocean University of China, Qingdao, PR China.
| | - Aijun Zhu
- Fisheries College, Ocean University of China, Qingdao, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
49
|
Ratigan ED, McKay DB. Exploring principles of hibernation for organ preservation. Transplant Rev (Orlando) 2015; 30:13-9. [PMID: 26613668 DOI: 10.1016/j.trre.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 11/25/2022]
Abstract
Interest in mimicking hibernating states has led investigators to explore the biological mechanisms that permit hibernating mammals to survive for months at extremely low ambient temperatures, with no food or water, and awaken from their hibernation without apparent organ injury. Hibernators have evolved mechanisms to adapt to dramatic reductions in core body temperature and metabolic rate, accompanied by prolonged periods without nutritional intake and at the same time tolerate the metabolic demands of arousal. This review discusses the inherent resilience of hibernators to kidney injury and provides a potential framework for new therapies targeting ex vivo preservation of kidneys for transplantation.
Collapse
Affiliation(s)
- Emmett D Ratigan
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Dianne B McKay
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
50
|
Sugimoto K. Establishment of a sticky, large, oval-shaped thrombocyte cell line from tree frog as an ancestor of mammalian megakaryocytes. SPRINGERPLUS 2015; 4:447. [PMID: 26322253 PMCID: PMC4547970 DOI: 10.1186/s40064-015-1237-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
Maintenance of blood vessels is important for homeostasis. Many types of cells and cytokines are involved in angiogenesis and blood vessel repair. In mammals, platelets, which are produced from megakaryocytes, play a major role in hemostasis. Other vertebrates have no platelets in their bloodstream. In these animals, thrombocytes aggregate to form a thrombus. Therefore, I established a frog hematopoietic cell line to elucidate the mechanism of hematopoiesis in this species. The frog-derived thrombocytic cell line was established from a long-term bone marrow culture of Hyla japonica and was designated as a frog-derived unique hematopoietic non-adherent (FUHEN) cell line. The FUHEN cells had unique characteristics in that they proliferated in suspension culture without adherence to the culture flask, and the shapes of the FUHEN cells changed drastically to become very large ovals with growth. These cells reached more than 40 µm in length and had multi-lobed nuclei. The FUHEN cells expressed CD41, a specific surface marker of thrombocytes. These results indicated that the FUHEN cells were thrombocytes. Deprivation of divalent ions quickly induced adherence of the cells to the petri dish. This characteristic may be important for hemostasis. Furthermore, some of the FUHEN cells survived at 16 °C for 1 month and re-established proliferation when the cells were moved to 28 °C. Taken together, this new thrombocytic frog cell line, as an ancestor of mammalian megakaryocytes, could provide useful material to study the functions of thrombocytes and the hemostasis mechanism of amphibians.
Collapse
Affiliation(s)
- Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Ikarashi-2, Niigata 950-2181 Japan
| |
Collapse
|