1
|
Gordiyenko OI, Kovalenko IF, Rogulska OY, Trufanova NA, Gurina TM, Trufanov OV, Petrenko OY. Theory-based cryopreservation mode of mesenchymal stromal cell spheroids. Cryobiology 2024; 115:104906. [PMID: 38762155 DOI: 10.1016/j.cryobiol.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Cryopreservation of spheroids requires development of new improved methods. The plasma membranes permeability coefficients for water and cryoprotectants determine time characteristics of mass transfer through the cell membranes, and therefore the optimal modes of cells cryopreservation. Here we proposed an approach to cryopreservation of multicellular spheroids which considers their generalized characteristics as analogues of the membranes' permeability coefficients of the individual cells. We have determined such integral characteristics of spheroids from mesenchymal stromal cells (MSCs) as osmotically inactive volume; permeability coefficients for water and Me2SO molecules and the activation energy of their penetration. Based on these characteristics, we calculated the osmotic behavior of multicellular spheroids under cooling conditions to select the optimal cooling rate. We also determined the optimal cooling rate of spheroids using the probabilistic model developed based on the two-factor theory of cryodamage. From the calculation it follows that the optimal cooling rate of the MSC-based spheroids is 0.75°С/min. To verify the obtained theoretical estimates, we conducted experiments on freezing MSC-based spheroids under different modes. The obtained results of primary viability screening indicate that freezing at a constant linear cooling rate of 0.75-1.0°С/min gives a good result. Theoretical prediction of the spheroid osmotic behavior during cooling provided the basis for experimental verification of varying the temperature to which slow cooling should be carried out before immersion in liquid nitrogen. Slow freezing of spheroids to -40 °C followed by immersion in liquid nitrogen was shown to preserve cells better than slow freezing to -80 °C. Obtained data allow more effective use of MSC-based spheroids in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- O I Gordiyenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - I F Kovalenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Rogulska
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine; Institute of Physiology, Czech Academy of Science, Prague, Czech Republic; Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic.
| | - N A Trufanova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - T M Gurina
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O V Trufanov
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - O Y Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
2
|
Murray K, Gao Y, Griffiths CA, Kinney NLH, Guo Q, Gibson MI, Whale TF. Chemically Induced Extracellular Ice Nucleation Reduces Intracellular Ice Formation Enabling 2D and 3D Cellular Cryopreservation. JACS AU 2023; 3:1314-1320. [PMID: 37234117 PMCID: PMC10207112 DOI: 10.1021/jacsau.3c00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
3D cell assemblies such as spheroids reproduce the in vivo state more accurately than traditional 2D cell monolayers and are emerging as tools to reduce or replace animal testing. Current cryopreservation methods are not optimized for complex cell models, hence they are not easily banked and not as widely used as 2D models. Here we use soluble ice nucleating polysaccharides to nucleate extracellular ice and dramatically improve spheroid cryopreservation outcomes. This protects the cells beyond using DMSO alone, and with the major advantage that the nucleators function extracellularly and hence do not need to permeate the 3D cell models. Critical comparison of suspension, 2D and 3D cryopreservation outcomes demonstrated that warm-temperature ice nucleation reduces the formation of (fatal) intracellular ice, and in the case of 2/3D models this reduces propagation of ice between adjacent cells. This demonstrates that extracellular chemical nucleators could revolutionize the banking and deployment of advanced cell models.
Collapse
Affiliation(s)
- Kathryn
A. Murray
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yanan Gao
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Christopher A. Griffiths
- Department
of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Nina L. H. Kinney
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Qiongyu Guo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Thomas F. Whale
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Bissoyi A, Tomás RMF, Gao Y, Guo Q, Gibson MI. Cryopreservation of Liver-Cell Spheroids with Macromolecular Cryoprotectants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2630-2638. [PMID: 36621888 PMCID: PMC9869333 DOI: 10.1021/acsami.2c18288] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Spheroids are a powerful tool for basic research and to reduce or replace in vivo (animal) studies but are not routinely banked nor shared. Here, we report the successful cryopreservation of hepatocyte spheroids using macromolecular (polyampholyte) cryoprotectants supplemented into dimethyl sulfoxide (DMSO) solutions. We demonstrate that a polyampholyte significantly increases post-thaw recovery, minimizes membrane damage related to cryo-injury, and remains in the extracellular space making it simple to remove post-thaw. In a model toxicology challenge, the thawed spheroids matched the performance of fresh spheroids. F-actin staining showed that DMSO-only cryopreserved samples had reduced actin polymerization, which the polyampholyte rescued, potentially linked to intracellular ice formation. This work may facilitate access to off-the-shelf and ready-to-use frozen spheroids, without the need for in-house culturing. Readily accessible 3-D cell models may also reduce the number of in vivo experiments.
Collapse
Affiliation(s)
- Akalabya Bissoyi
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Ruben M. F. Tomás
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Yanan Gao
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiongyu Guo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I. Gibson
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
4
|
The New Serum-Free OptiPASS ® Medium in Cold and Oxygen-Free Conditions: An Innovative Conservation Method for the Preservation of MDA-MB-231 Triple Negative Breast Cancer Spheroids. Cancers (Basel) 2021; 13:cancers13081945. [PMID: 33919619 PMCID: PMC8073891 DOI: 10.3390/cancers13081945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancer spheroids are reproducible and relevant multicellular in vitro preclinical models. Thus, their use is required more and more for drug development processes in oncology in order to improve the prediction of anticancer drugs responses. Moreover, spheroid models allow for the reduction in animal experimentation, in accordance with the rule of Reduce, Refine, Replace (3Rs). In order to optimize and extend the use of these spheroid models, this works was focused on the development of an original methodology to keep these cancer spheroids in the long term. This innovative concept is based on a cold storage for up to 7 days of Triple-Negative Breast Cancer (TNBC) spheroids cultured in the synthetic serum-free OptiPASS® culture medium. Major spheroid characteristics could be preserved with this new conservation method, allowing their use in high throughput screening tests. Abstract Cancer spheroids are very effective preclinical models to improve anticancer drug screening. In order to optimize and extend the use of spheroid models, these works were focused on the development of a new storage concept to maintain these models in the longer term using the Triple-Negative Breast Cancer MDA-MB-231 spheroid models. The results highlight that the combination of a temperature of 4 °C and oxygen-free conditions allowed the spheroid characteristics of OptiPASS® serum-free culture medium to preserve the spheroid characteristics during 3-, 5- or 7-day-long storage. Indeed, after storage they were returned to normal culture conditions, with recovered spheroids presenting similar growth rates (recovery = 96.2%), viability (Live/Dead® profiles) and metabolic activities (recovery = 90.4%) compared to nonstored control spheroids. Likewise, both recovered spheroids (after storage) and nonstored controls presented the same response profiles as two conventional drugs, i.e., epirubicin and cisplatin, and two anti-PARP1 targeted drugs—i.e., olaparib and veliparib. This new original storage concept seems to induce a temporary stop in spheroid growth while maintaining their principal characteristics for further use. In this way, this innovative and simple storage concept may instigate future biological sample preservation strategies.
Collapse
|
5
|
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020; 21:3017-3025. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current slow-freezing methods are too inefficient for cryopreservation of three-dimensional (3D) tissue constructs. Additionally, conventional vitrification methods use liquid nitrogen, which is inconvenient and increases the chance of cross-contamination. Herein, we have developed polyampholytes with various degrees of hydrophobicity and showed that they could successfully vitrify cell constructs including spheroids and cell monolayers without using liquid nitrogen. The polyampholytes prevented ice crystallization during both cooling and warming, demonstrating their potential to prevent freezing-induced damage. Monolayers and spheroids vitrified in the presence of polyampholytes yielded high viabilities post-thawing with monolayers vitrified with PLL-DMGA exhibiting more than 90% viability. Moreover, spheroids vitrified in the presence of polyampholytes retained their fusibilities, thus revealing the propensity of these polyampholytes to stabilize 3D cell constructs. This study is expected to open new avenues for the development of off-the-shelf tissue engineering constructs that can be prepared and preserved until needed.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sho Hatakeyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Naka
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Hiroshi Ueda
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Daisuke Tanaka
- Genetic Resources Center, National Agriculture and Food Research Organization, 212, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- The Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| |
Collapse
|
6
|
Eini L, Naseri M, Karimi-Busheri F, Bozorgmehr M, Ghods R, Madjd Z. Primary colonospheres maintain stem cell-like key features after cryopreservation. J Cell Physiol 2019; 235:2452-2463. [PMID: 31578720 DOI: 10.1002/jcp.29150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
The development of efficient and repeatable protocols for biobanking and prolonged storage of cancer stem cells (CSCs), with minimum alterations in biological function, is valuable and desired, particularly for retrospective analysis and clinical applications. In particular, data regarding the effect of cryopreservation on CSCs's functional features is scarce. In this regard, few studies have been shown that 3D spheroid structures, which enriched for CSCs, can keep their biological phenotype and genetic profiles. Here, for the first time, we present data on cryopreservation of CT-26 colonospheres, with the focus on essential stem cell-like properties after thawing. Tumor biopsy-derived colonospheres were frozen in standard freezing media (90% fetal bovine serum + 10% dimethyl sulfoxide) and stored in liquid nitrogen for 10 months. Then, cryopreservation effect on preservation of CSCs-related features was verified using real-time polymerase chain reaction for evaluation of stemness genes and flow cytometry for the putative colorectal CSC surface biomarkers. The self-renewal capacity of thawed spheres was also compared with their fresh counterparts using serial formation assay. Finally, tumorigenic capacity of both groups was evaluated in immunocompetence mouse model. Our data indicated that postthawed colonospheres had high viability without drastic alteration in biological and structural features and maintained self-renewal potential after sequential passages. Real-time analysis showed that both fresh and frozen colonospheres displayed similar expression pattern for key stemness genes: SOX2 and OCT4. Cryopreserved spheroids expressed CD133, CD166, and DCLK1 CSCs surface biomarkers at elevated levels when compared with parental as non-cryopreserved counterparts. Our electron scanning microscopy micrographs clearly demonstrated that postthawed colonospheres retain their integrity and cell surface morphology and characteristics. We also found that both fresh and frozen spheroids were equally tumorigenic. This study represented an effective strategy for reliable storage of intact CT-26 colonospheres; this can provide researchers with a functionally reliable repository of murine colorectal CSCs for their future CSCs projects.
Collapse
Affiliation(s)
- Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Basic Science, Faculty of Veterinary, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Marzieh Naseri
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Byun H, Bin Lee Y, Kim EM, Shin H. Fabrication of size-controllable human mesenchymal stromal cell spheroids from micro-scaled cell sheets. Biofabrication 2019; 11:035025. [PMID: 31096204 DOI: 10.1088/1758-5090/ab21f6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, stromal cell spheroids have been actively studied for use in tissue regeneration. In this study, we report a method for the fabrication of size-controllable stromal cell spheroids in different sizes from micro-scaled cell sheets (μCS) using thermosensitive hydrogels and investigated their effects on stromal cell function. Mesenchymal stromal cells isolated from different tissues such as human turbinate tissue, bone marrow, and adipose tissue were adhered selectively to each micro-pattern (squares with widths of 100 and 400 μm) on the surface of the hydrogel and formed μCS. The diameters of the spheroids were modulated by the size of the patterns (45 ± 5 and 129 ± 4 μm in diameter for the 100 and 400 μm micro-patterns, respectively) and the seeding density (129 ± 4, 149 ± 6, and 163 ± 6 μm for 5.0, 10.0, and 15.0 × 104 cells cm-2, respectively, on 400 μm micro-pattern). In addition, the spheroids were successfully fabricated regardless of stromal cell origin, and the diameter of the spheroids was also affected by cell spreading area on a cell culture dish. Stemness markers were highly expressed in the spheroids regardless of the spheroid size. Furthermore, an increase in E-cadherin and decrease in N-cadherin gene expression showed the stable formation of spheroids of different sizes. Gene expression levels of hypoxia inducible factors and secretion of vascular endothelial growth factor were increased (13.2 ± 1.4, 325 ± 83.4 and 534.3 ± 121.5 pg ng-1 DNA in a monolayer, and 100 and 400 μm micro-patterned spheroids, respectively) proportional to the diameters of the spheroids. The size of spheroids were maintained even after injection, cryopreservation and 7 d of suspension culture with high viability (∼90%). In conclusion, this novel technique to fabricate spheroids with controlled size could be widely applied in various applications that require a controlled size in regenerative medicine.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea. BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Impact of alginate concentration on the viability, cryostorage, and angiogenic activity of encapsulated fibroblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:269-77. [PMID: 27157752 DOI: 10.1016/j.msec.2016.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 01/25/2023]
Abstract
Cryopreservation or cryostorage of tissue engineered constructs can enhance the off-the shelf availability of these products and thus can potentially facilitate the commercialization or clinical translation of tissue engineered products. Encapsulation of cells within hydrogel matrices, in particular alginate, is widely used for fabrication of tissue engineered constructs. While previous studies have explored the cryopreservation response of cells encapsulated within alginate matrices, systematic investigation of the impact of alginate concentration on the metabolic activity and functionality of cryopreserved cells is lacking. The objective of the present work is to determine the metabolic and angiogenic activity of cryopreserved human dermal fibroblasts encapsulated within 1.0%, 1.5% and 2.0% (w/v) alginate matrices. In addition, the goal is to compare the efficacy of dimethyl sulfoxide (DMSO) and trehalose as cryoprotectant. Our study revealed that the concentration of alginate plays a significant role in the cryopreservation response of encapsulated cells. The lowest metabolic activity of the cryopreserved cells was observed in 1% alginate microspheres. When higher concentration of alginate was utilized for cell encapsulation, the metabolic and angiogenic activity of the cells frozen in the absence of cryoprotectants was comparable to that observed in the presence of DMSO or trehalose.
Collapse
|
9
|
Lemke K, Förster T, Römer R, Quade M, Wiedemeier S, Grodrian A, Gastrock G. A modular segmented-flow platform for 3D cell cultivation. J Biotechnol 2015; 205:59-69. [DOI: 10.1016/j.jbiotec.2014.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
|
10
|
Biocompatible coating of encapsulated cells using ionotropic gelation. PLoS One 2013; 8:e73498. [PMID: 24039964 PMCID: PMC3767676 DOI: 10.1371/journal.pone.0073498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts’ immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans’ islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy.
Collapse
|
11
|
Mettler E, Trenkler A, Feilen PJ, Wiegand F, Fottner C, Ehrhart F, Zimmermann H, Hwang YH, Lee DY, Fischer S, Schreiber LM, Weber MM. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles. Xenotransplantation 2013; 20:219-26. [PMID: 23789985 DOI: 10.1111/xen.12042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 05/18/2013] [Indexed: 11/28/2022]
Abstract
Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.
Collapse
Affiliation(s)
- Esther Mettler
- Endocrinology and Metabolic Diseases, University Medical Center, Johannes Gutenberg University Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The concept of cancer stem cells (CSCs) provides a new paradigm for understanding cancer biology. Cancer stem cells are defined as a minority of cancer cells with stem cell properties responsible for maintenance and growth of tumors. The targeting of CSCs is a potential therapeutic strategy to combat ovarian cancer. Ovarian epithelial cancer cells cultured in serum-free medium can form sphere cells. These sphere cells may be enriched for cancer stem cells (CSCs). The isolation of sphere cells from solid tumors is an important technique in studying cancer cell biology. Here we describe the isolation of sphere cells from primary ovarian cancer tissue, ascites fluid, and the cancer cell line SKOV3 with stem cell selection medium.
Collapse
Affiliation(s)
- Lijuan Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | |
Collapse
|
13
|
Schulz JC, Germann A, Kemp-Kamke B, Mazzotta A, von Briesen H, Zimmermann H. Towards a xeno-free and fully chemically defined cryopreservation medium for maintaining viability, recovery, and antigen-specific functionality of PBMC during long-term storage. J Immunol Methods 2012; 382:24-31. [PMID: 22580762 DOI: 10.1016/j.jim.2012.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/14/2011] [Accepted: 05/01/2012] [Indexed: 11/29/2022]
Abstract
Analysis of cryopreserved peripheral mononuclear cells (PBMC) is important for evaluating new vaccines in immune based therapies and in pathogenesis studies. To ensure comparable assay results from different laboratories and points of time, collaborative research in multicenter trials needs reliable and reproducible cryopreservation protocols that maintain cell viability and functionality. Current cryomedia consist largely of fetal bovine serum (FBS), a natural mix of growth factors, cytokines, and undefined compounds. Standardized procedures are not possible, as FBS can affect the antigen-specific T-cell response, the most important parameter in functionality assays. Also, worldwide sample exchange is complicated by the strict import restrictions on FBS, because of transfection risk. After establishing a serum-free cryopreservation protocol that maintains cell viability, recovery and antigen-specific T-cell response of PBMC comparably to FBS-based cryomedia (Germann et al., 2011), the aim of this study was the complete avoidance of animal proteins and products in combination with efficient cryopreservation. As long-term stability of the cryopreservation process is crucial for retrospective evaluation of samples at different points of time, PBMC were analyzed after storage for maximal four weeks and again after approximately six months. The cryopreservation efficiency of the protein-free and fully chemically defined cryomedium was comparable to FBS-medium after storage for few weeks and several months. Directly after thawing, this medium yielded viabilities over 97% and recovery values over 84%. Also, the specific T-cell functionality was preserved. Additionally, short-term and six month cryopreservation gave comparable results. The fully chemically defined medium presented here will increase standardization and reproducibility of analysis in multicenter-studies or in retrospective evaluation.
Collapse
Affiliation(s)
- Julia C Schulz
- Fraunhofer Institute for Biomedical Engineering, 66386 St. Ingbert, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Wiedemeier S, Ehrhart F, Mettler E, Gastrock G, Forst T, Weber MM, Zimmermann H, Metze J. Encapsulation of Langerhans' islets: Microtechnological developments for transplantation. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
15
|
Massie I, Selden C, Hodgson H, Fuller B. Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent cryoinjury using an ice nucleating agent. Tissue Eng Part C Methods 2011; 17:765-74. [PMID: 21410301 DOI: 10.1089/ten.tec.2010.0394] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Acute liver failure has high mortality due to donor organ shortages. A bioartificial liver could "bridge the gap" to transplant or spontaneous recovery. Alginate encapsulation of HepG2 cells enables cell spheroid formation, thus providing sufficient functional biomass. Cryopreservation (CryoP) of these spheroids would allow an off-the-shelf capability for unpredictable emergency use. Cell death during CryoP often results from intracellular ice formation, after supercooling. An ice nucleating agent (INA), crystalline cholesterol, was trialled to reduce supercooling and subsequent cryoinjury. MATERIALS AND METHODS Spheroids were cooled in a controlled rate freezer in 12% dimethylsulfoxide/Celsior +/- INA, and sample temperatures were recorded throughout. Viability was assessed using fluorescent staining with image analysis, cell number by nuclei count, function using assays to detect liver-specific protein synthesis and secretion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, and broad-spectrum cytochrome P450 activity. RESULTS Spheroids cryopreserved without INA displayed latent cryoinjury in the first 6 h after thawing. INA reduced supercooling during CryoP and also latent cryoinjury. Cell numbers, viability, and function as measured over 72 h post-thaw were all improved when INA was present during CryoP.
Collapse
Affiliation(s)
- Isobel Massie
- Centre for Hepatology, University College Medical School, Hampstead, London.
| | | | | | | |
Collapse
|
16
|
Effects of Cryopreservation on the Transcriptome of Human Embryonic Stem Cells After Thawing and Culturing. Stem Cell Rev Rep 2011; 7:506-17. [DOI: 10.1007/s12015-011-9230-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Afrimzon E, Zurgil N, Shafran Y, Ehrhart F, Namer Y, Moshkov S, Sobolev M, Deutsch A, Howitz S, Greuner M, Thaele M, Meiser I, Zimmermann H, Deutsch M. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. II: functional activity of cryopreserved cells. BMC Cell Biol 2010; 11:83. [PMID: 20973993 PMCID: PMC2987892 DOI: 10.1186/1471-2121-11-83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 10/25/2010] [Indexed: 12/16/2022] Open
Abstract
Background The cryopreservation and thawing processes are known to induce many deleterious effects in cells and might be detrimental to several cell types. There is an inherent variability in cellular responses among cell types and within individual cells of a given population with regard to their ability to endure the freezing and thawing process. The aim of this study was to evaluate the fate of cryopreserved cells within an optical cryo apparatus, the individual-cell-based cryo-chip (i3C), by monitoring several basic cellular functional activities at the resolution of individual cells. Results In the present study, U937 cells underwent the freezing and thawing cycle in the i3C device. Then a panel of vital tests was performed, including the number of dead cells (PI staining), apoptotic rate (Annexin V staining), mitochondrial membrane potential (TMRM staining), cytoplasm membrane integrity and intracellular metabolism (FDA staining), as well as post-thawing cell proliferation assays. Cells that underwent the freezing - thawing cycle in i3C devices exhibited the same functional activity as control cells. Moreover, the combination of the multi-parametric analysis at a single cell resolution and the optical and biological features of the device enable an accurate determination of the functional status of individual cells and subsequent retrieval and utilization of the most valuable cells. Conclusions The means and methodologies described here enable the freezing and thawing of spatially identifiable cells, as well as the efficient detection of viable, specific, highly biologically active cells for future applications.
Collapse
Affiliation(s)
- Elena Afrimzon
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Malpique R, Osório LM, Ferreira DS, Ehrhart F, Brito C, Zimmermann H, Alves PM. Alginate Encapsulation as a Novel Strategy for the Cryopreservation of Neurospheres. Tissue Eng Part C Methods 2010; 16:965-77. [DOI: 10.1089/ten.tec.2009.0660] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rita Malpique
- Instituto de Biologia Experimental e Tecnológica, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Luísa M. Osório
- Instituto de Biologia Experimental e Tecnológica, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniela S. Ferreira
- Instituto de Biologia Experimental e Tecnológica, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Friederike Ehrhart
- Instituto de Biologia Experimental e Tecnológica, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- Kryobiophysik & Kryotechnologie, Fraunhofer-Institut for Biomedical Engineering, Universität des Saarlandes, St. Ingbert, Germany
| | - Heiko Zimmermann
- Kryobiophysik & Kryotechnologie, Fraunhofer-Institut for Biomedical Engineering, Universität des Saarlandes, St. Ingbert, Germany
| | - Paula M. Alves
- Instituto de Biologia Experimental e Tecnológica, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
19
|
Deutsch M, Afrimzon E, Namer Y, Shafran Y, Sobolev M, Zurgil N, Deutsch A, Howitz S, Greuner M, Thaele M, Zimmermann H, Meiser I, Ehrhart F. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: methodology. BMC Cell Biol 2010; 11:54. [PMID: 20609216 PMCID: PMC2912820 DOI: 10.1186/1471-2121-11-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. RESULTS The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing--thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing--thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. CONCLUSIONS The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing--thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
Collapse
Affiliation(s)
- Mordechai Deutsch
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|