1
|
McKenzie AT, Wowk B, Arkhipov A, Wróbel B, Cheng N, Kendziorra EF. Biostasis: A Roadmap for Research in Preservation and Potential Revival of Humans. Brain Sci 2024; 14:942. [PMID: 39335436 PMCID: PMC11430499 DOI: 10.3390/brainsci14090942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Human biostasis, the preservation of a human when all other contemporary options for extension of quality life are exhausted, offers the speculative potential for survival via continuation of life in the future. While provably reversible preservation, also known as suspended animation, is not yet possible for humans, the primary justification for contemporary biostasis is the preservation of the brain, which is broadly considered the seat of memories, personality, and identity. By preserving the information contained within the brain's structures, it may be possible to resuscitate a healthy whole individual using advanced future technologies. There are numerous challenges in biostasis, including inadequacies in current preservation techniques, methods to evaluate the quality of preservation, and potential future revival technologies. In this report, we describe a roadmap that attempts to delineate research directions that could improve the field of biostasis, focusing on optimizing preservation protocols and establishing metrics for querying preservation quality, as well as pre- and post-cardiac arrest factors, stabilization strategies, and methods for long-term preservation. We acknowledge the highly theoretical nature of future revival technologies and the importance of achieving high-fidelity brain preservation to maximize the potential of future repair technologies. We plan to update the research roadmap biennially. Our goal is to encourage multidisciplinary communication and collaboration in this field.
Collapse
Affiliation(s)
| | - Brian Wowk
- 21st Century Medicine, Inc., Fontana, CA 92336, USA
| | | | - Borys Wróbel
- European Institute for Brain Research, 1181LE Amstelveen, The Netherlands
- BioPreservation Institute, Vancouver, WA 98661, USA
| | - Nathan Cheng
- Longevity Biotech Fellowship, San Francisco, CA 95050, USA
| | | |
Collapse
|
2
|
McKenzie AT, Zeleznikow-Johnston A, Sparks JS, Nnadi O, Smart J, Wiley K, Cerullo MA, de Wolf A, Minerva F, Risco R, Church GM, de Magalhães JP, Kendziorra EF. Structural brain preservation: a potential bridge to future medical technologies. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1400615. [PMID: 39315362 PMCID: PMC11416988 DOI: 10.3389/fmedt.2024.1400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today-although it has never been proven-using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community.
Collapse
Affiliation(s)
| | - Ariel Zeleznikow-Johnston
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, VA, United States
| | - John Smart
- Brain Preservation Foundation, Ashburn, VA, United States
| | - Keith Wiley
- Brain Preservation Foundation, Ashburn, VA, United States
| | | | | | | | - Ramón Risco
- Escuela Superior de Ingeniería, Universidad de Sevilla & National Accelerators Center, CNA-CSIC, Seville, Spain
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - João Pedro de Magalhães
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
James RI, Verma R, Johnson LR, Manesh A, Jayakumar J, Sen M, Joseph J, Kumarasami R, Mitra PP, Sivaprakasam M, Varghese GM. A Standardized Protocol for the Safe Retrieval of Infectious Postmortem Human Brain for Studying Whole-Brain Pathology. Am J Forensic Med Pathol 2023; 44:303-310. [PMID: 37490584 PMCID: PMC10662599 DOI: 10.1097/paf.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
ABSTRACT We describe a safe and standardized perfusion protocol for studying brain pathology in high-risk autopsies using a custom-designed low-cost infection containment chamber and high-resolution histology. The output quality was studied using the histological data from the whole cerebellum and brain stem processed using a high-resolution cryohistology pipeline at 0.5 μm per pixel, in-plane resolution with serial sections at 20-μm thickness. To understand the pathophysiology of highly infectious diseases, it is necessary to have a safe and cost-effective method of performing high-risk autopsies and a standardized perfusion protocol for preparing high-quality tissues. Using the low-cost infection containment chamber, we detail the cranial autopsy protocol and ex situ perfusion-fixation of 4 highly infectious adult human brains. The digitized high-resolution histology images of the Nissl-stained series reveal that most of the sections were free of processing artifacts, such as fixation damage, freezing artifacts, and osmotic shock, at the macrocellular and microcellular level. The quality of our protocol was also tested with the highly sensitive immunohistochemistry staining for specific protein markers. Our protocol provides a safe and effective method in high-risk autopsies that allows for the evaluation of pathogen-host interaction, the underlying pathophysiology, and the extent of the infection across the whole brain at microscopic resolutions.
Collapse
Affiliation(s)
- Ranjit Immanuel James
- From the Department of Forensic Medicine and Toxicology, Christian Medical College, Vellore
| | - Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai
| | - Latif Rajesh Johnson
- From the Department of Forensic Medicine and Toxicology, Christian Medical College, Vellore
| | - Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai
- Center for Computational Brain Research
| | - Mousumi Sen
- From the Department of Forensic Medicine and Toxicology, Christian Medical College, Vellore
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai
- Department of Electrical Engineering
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, India
| | - Ramdayalan Kumarasami
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, India
| | - Partha P. Mitra
- Center for Computational Brain Research
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai
- Department of Electrical Engineering
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
4
|
Warner RM, Yang J, Drake A, Lee Y, Nemanic S, Scott D, Higgins AZ. Osmotic response during kidney perfusion with cryoprotectant in isotonic or hypotonic vehicle solution. PeerJ 2023; 11:e16323. [PMID: 38025736 PMCID: PMC10668850 DOI: 10.7717/peerj.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Organ cryopreservation would revolutionize transplantation by overcoming the shelf-life limitations of conventional organ storage. To prepare an organ for cryopreservation, it is first perfused with cryoprotectants (CPAs). These chemicals can enable vitrification during cooling, preventing ice damage. However, CPAs can also cause toxicity and osmotic damage. It is a major challenge to find the optimal balance between protecting the cells from ice and avoiding CPA-induced damage. In this study, we examined the organ perfusion process to shed light on phenomena relevant to cryopreservation protocol design, including changes in organ size and vascular resistance. In particular, we compared perfusion of kidneys (porcine and human) with CPA in either hypotonic or isotonic vehicle solution. Our results demonstrate that CPA perfusion causes kidney mass changes consistent with the shrink-swell response observed in cells. This response was observed when the kidneys were relatively fresh, but disappeared after prolonged warm and/or cold ischemia. Perfusion with CPA in a hypotonic vehicle solution led to a significant increase in vascular resistance, suggesting reduced capillary diameter due to cell swelling. This could be reversed by switching to perfusion with CPA in isotonic vehicle solution. Hypotonic vehicle solution did not cause notable osmotic damage, as evidenced by low levels of lactate dehydrogenase (LDH) in the effluent, and it did not have a statistically significant effect on the delivery of CPA into the kidney, as assessed by computed tomography (CT). Overall, our results show that CPA vehicle solution tonicity affects organ size and vascular resistance, which may have important implications for cryopreservation protocol design.
Collapse
Affiliation(s)
- Ross M. Warner
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Jun Yang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Andrew Drake
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Youngjoo Lee
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Sarah Nemanic
- Veterinary Radiology Consulting LLC, Lebanon, Oregon, United States
| | - David Scott
- Department of Abdominal Transplantation, Oregon Health & Science University, Portland, Oregon, United States
| | - Adam Z. Higgins
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
5
|
Dein S. Cryonics: Science or Religion. JOURNAL OF RELIGION AND HEALTH 2022; 61:3164-3176. [PMID: 33523374 DOI: 10.1007/s10943-020-01166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Cryonics involves the low-temperature freezing of human corpses in the hope that they will one day be reanimated. Its advocates see it as a medical treatment but as in any medical procedure, this presupposes some scientific evidence. This paper examines the scientific basis of this technology and argues that cryonics is based upon assertions which have never been (and potentially can never be empirically demonstrated) scientifically. After providing a general overview of cryogenic preservation, I discuss how advocates of this technology have conceptualized death and more specifically their notion of information-theoretic death. I conclude that cryonics is based upon a naive faith rather than upon science. It does what David Chidester (2005) calls 'religious work,' even if it is not explicitly religious. It offers transcendence over death.
Collapse
Affiliation(s)
- Simon Dein
- Queen Mary College, University of London, London, UK.
| |
Collapse
|
6
|
Ekpo MD, Boafo GF, Gambo SS, Hu Y, Liu X, Xie J, Tan S. Cryopreservation of Animals and Cryonics: Current Technical Progress, Difficulties and Possible Research Directions. Front Vet Sci 2022; 9:877163. [PMID: 35754544 PMCID: PMC9219731 DOI: 10.3389/fvets.2022.877163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The basis of cryonics or medical cryopreservation is to safely store a legally dead subject until a time in the future when technology and medicine will permit reanimation after eliminating the disease or cause of death. Death has been debunked as an event occurring after cardiac arrest to a process where interjecting its progression can allow for reversal when feasible. Cryonics technology artificially halts further damages and injury by restoring respiration and blood circulation, and rapidly reducing temperature. The body can then be preserved at this extremely low temperature until the need for reanimation. Presently, the area has attracted numerous scientific contributions and advancement but the practice is still flooded with challenges. This paper presents the current progression in cryonics research. We also discuss obstacles to success in the field, and identify the possible solutions and future research directions.
Collapse
Affiliation(s)
- Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Suleiman Shafiu Gambo
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
de Wolf A, Phaedra C, Perry RM, Maire M. Ultrastructural Characterization of Prolonged Normothermic and Cold Cerebral Ischemia in the Adult Rat. Rejuvenation Res 2020; 23:193-206. [DOI: 10.1089/rej.2019.2225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
| | - Chana Phaedra
- Advanced Neural Biosciences (ANB), Portland, Oregon, USA
| | | | - Michael Maire
- Department of Computer Science, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
McFadden WC, Walsh H, Richter F, Soudant C, Bryce CH, Hof PR, Fowkes M, Crary JF, McKenzie AT. Perfusion fixation in brain banking: a systematic review. Acta Neuropathol Commun 2019; 7:146. [PMID: 31488214 PMCID: PMC6728946 DOI: 10.1186/s40478-019-0799-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background Perfusing fixatives through the cerebrovascular system is the gold standard approach in animals to prepare brain tissue for spatial biomolecular profiling, circuit tracing, and ultrastructural studies such as connectomics. Translating these discoveries to humans requires examination of postmortem autopsy brain tissue. Yet banked brain tissue is routinely prepared using immersion fixation, which is a significant barrier to optimal preservation of tissue architecture. The challenges involved in adopting perfusion fixation in brain banks and the extent to which it improves histology quality are not well defined. Methodology We searched four databases to identify studies that have performed perfusion fixation in human brain tissue and screened the references of the eligible studies to identify further studies. From the included studies, we extracted data about the methods that they used, as well as any data comparing perfusion fixation to immersion fixation. The protocol was preregistered at the Open Science Framework: https://osf.io/cv3ys/. Results We screened 4489 abstracts, 214 full-text publications, and identified 35 studies that met our inclusion criteria, which collectively reported on the perfusion fixation of 558 human brains. We identified a wide variety of approaches to perfusion fixation, including perfusion fixation of the brain in situ and ex situ, perfusion fixation through different sets of blood vessels, and perfusion fixation with different washout solutions, fixatives, perfusion pressures, and postfixation tissue processing methods. Through a qualitative synthesis of data comparing the outcomes of perfusion and immersion fixation, we found moderate confidence evidence showing that perfusion fixation results in equal or greater subjective histology quality compared to immersion fixation of relatively large volumes of brain tissue, in an equal or shorter amount of time. Conclusions This manuscript serves as a resource for investigators interested in building upon the methods and results of previous research in designing their own perfusion fixation studies in human brains or other large animal brains. We also suggest several future research directions, such as comparing the in situ and ex situ approaches to perfusion fixation, studying the efficacy of different washout solutions, and elucidating the types of brain donors in which perfusion fixation is likely to result in higher fixation quality than immersion fixation. Electronic supplementary material The online version of this article (10.1186/s40478-019-0799-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Carneiro I, Carvalho S, Henrique R, Oliveira LM, Tuchin VV. A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. JOURNAL OF BIOPHOTONICS 2019; 12:e201800333. [PMID: 30585430 DOI: 10.1002/jbio.201800333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
A robust method is presented for evaluating the diffusion properties of chemicals in ex vivo biological tissues. Using this method that relies only on thickness and collimated transmittance measurements, the diffusion properties of glycerol, fructose, polypropylene glycol and water in muscle tissues were evaluated. Amongst other results, the diffusion coefficient of glycerol in colorectal muscle was estimated with a value of 3.3 × 10-7 cm2 /s. Due to the robustness and simplicity of the method, it can be used in other fields of biomedical engineering, namely in organ cryoprotection and food industry.
Collapse
Affiliation(s)
- Isa Carneiro
- Department of Pathology and Cancer Biology, and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Sónia Carvalho
- Department of Pathology and Cancer Biology, and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Cancer Biology, and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Luís M Oliveira
- Physics Department - Polytechnic Institute of Porto, School of Engineering, Porto, Portugal
- Centre of Innovation in Engineering and Industrial Technology (CIETI), School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russian Federation
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russian Federation
- Laboratory of Femtomedicine, ITMO University, Saint-Petersburg, Russian Federation
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russian Federation
| |
Collapse
|
10
|
Berger DR, Seung HS, Lichtman JW. VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Front Neural Circuits 2018; 12:88. [PMID: 30386216 PMCID: PMC6198149 DOI: 10.3389/fncir.2018.00088] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Recent developments in serial-section electron microscopy allow the efficient generation of very large image data sets but analyzing such data poses challenges for software tools. Here we introduce Volume Annotation and Segmentation Tool (VAST), a freely available utility program for generating and editing annotations and segmentations of large volumetric image (voxel) data sets. It provides a simple yet powerful user interface for real-time exploration and analysis of large data sets even in the Petabyte range.
Collapse
Affiliation(s)
- Daniel R Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - H Sebastian Seung
- Computer Science Department, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
11
|
Yamada H, Yamaguchi M, Shimizu K, Murayama SY, Mitarai S, Sasakawa C, Chibana H. Structome analysis of Escherichia coli cells by serial ultrathin sectioning reveals the precise cell profiles and the ribosome density. Microscopy (Oxf) 2018; 66:283-294. [PMID: 28854579 DOI: 10.1093/jmicro/dfx019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022] Open
Abstract
Structome analysis, the quantitative three-dimensional structural analysis of whole cells at the electron microscopic level, of Exophiala dermatitidis (black yeast), Saccharomyces cerevisiae, Mycobacterium tuberculosis (MTB) and Myojin spiral bacteria (MSB) have already been reported. Here, the results of the structome analysis of Escherichia coli cells based on transmission electron microscope observation of serial ultrathin sections was reported, and compared with the data obtained from phase contrast microscopy and scanning electron microscopy. On average, the cells had 0.89 μm in diameter, 2.47 μm in length and 1.16 fl (μm3) in cell volume in the structome analysis. Furthermore, E. coli cells had 26 100 ribosomes per whole cell with density of 2840 per 0.1 fl cytoplasm. The total ribosome number per cell was 15 times larger than that of MTB and about one-eighth of those of the yeast cells above. On the other hand, the ribosome density of E. coli cells are more than 13 times, 4 times, 2.5-times and 1.5-times higher than MSB, MTB, E. dermatitidis and S. cerevisiae, respectively. Finally, our ribosome enumeration data were compared between the structome-analyzed species and the relationship between the ribosome density and the growth rate among these species was discussed.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24, Matsuyama, Kiyose, Tokyo204-8533, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1Inohana, Chuo-ku, Chiba260-8673, Japan
| | - Kiminori Shimizu
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
- Graduate School of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Somay Yamagata Murayama
- Laboratory of Medical Microbiology, Graduate School of Pharmacy, Nihon University, 7-7-1Narashinodai, Funabashi, Chiba274-8555, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24, Matsuyama, Kiyose, Tokyo204-8533, Japan
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, 1-8-1Inohana, Chuo-ku, Chiba260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1Inohana, Chuo-ku, Chiba260-8673, Japan
| |
Collapse
|