1
|
Bolarin A, Berndtson J, Tejerina F, Cobos S, Pomarino C, D'Alessio F, Blackburn H, Kaeoket K. Boar semen cryopreservation: State of the art, and international trade vision. Anim Reprod Sci 2024; 269:107496. [PMID: 38763787 DOI: 10.1016/j.anireprosci.2024.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Biosecurity is a major concern in the global pig production. The separation in time of semen collection, processing and insemination in the pig farm is a few days for chilled semen but it can be indefinite when using cryopreserved semen. Field fertility results of boar cryopreserved semen are close to chilled semen, which makes it a valuable resource for the establishment of semen genebanks, long-distance semen trade, and the implementation of other technologies such as the sex-sorted semen. But cryopreserved semen is far from being routine in pig farms. The most recent research efforts to facilitate its implementation include the use of additives before freezing, or in the thawing extender. Long-term preserved semen trade is a biosecurity challenge. To harmonize international trade of germplasm, the World Organization of Animal Health (WOAH) established a regulatory framework for all member countries. The present paper aims to review the latest advances of boar semen cryopreservation with special focus on the benefits of its inclusion as a routine tool in the pig industry. We also review recently reported field fertility results of cryopreserved semen, its international trade compared to chilled semen, and the regulatory framework involved. Boar cryopreserved semen is a valuable tool to control biosecurity risk, implement other technologies, and facilitate international trade. Research already demonstrated good field fertility results, but it still represents less than 0.1 % of the international trade. As boar cryopreserved semen gets closer to implementation, the correspondent authorities are reviewing the trade rules.
Collapse
Affiliation(s)
| | | | - F Tejerina
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Livestock Inputs, Madrid, Spain
| | - S Cobos
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Health Agreements and Border Control, Madrid, Spain
| | - C Pomarino
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Animal Health and Hygiene and Traceability, Madrid, Spain
| | - F D'Alessio
- World Organization for Animal Health (OIE), Paris, France
| | - H Blackburn
- USDA-ARS, National Animal Germplasm Program, Fort Collins, CO, United States
| | - K Kaeoket
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon-Pathom 73170, Thailand
| |
Collapse
|
2
|
Parrilla I, Cambra JM, Cuello C, Rodriguez-Martinez H, Gil MA, Martinez EA. Cryopreservation of highly extended pig spermatozoa remodels its proteome and counteracts polyspermic fertilization in vitro. Andrology 2024; 12:1356-1372. [PMID: 38131448 DOI: 10.1111/andr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Currently, high polyspermy remains a significant obstacle to achieving optimal efficiency in in vitro fertilization (IVF) and in vitro embryo production (IVP) systems in pigs. Developing strategies that would prevent polyspermy is essential in overcoming this challenge and maximizing the potential of this reproductive biotechnology. Previous results have demonstrated that using boar spermatozoa subjected to a high-extension and reconcentration procedure and then cryopreserved resulted in significant improvements in IVF/IVP systems with high rates of monospermy and penetration. OBJECTIVE The aim of the present study was to unveil the molecular mechanisms that may underlie the changes in fertilization patterns exhibited by highly extended and cryopreserved boar spermatozoa. MATERIALS AND METHODS To achieve this goal, we used quantitative proteomic analysis (LC‒ESI‒MS/MS SWATH) to identify differentially abundant proteins (DAPs) between highly extended (HE) and conventionally (control; CT) cryopreserved boar spermatozoa. Prior to the analysis, we evaluated the in vitro post-thawing fertilizing ability of the sperm samples. The results demonstrated a remarkable improvement in monospermy and IVF efficiency when using HE spermatozoa in IVF compared with CT spermatozoa. RESULTS At the proteomic level, the combination of high-extension and cryopreservation had a significant impact on the frozen-thawed sperm proteome. A total of 45 proteins (24 downregulated and 21 upregulated) were identified as DAPs (FC > 1 or ≤1; p < 0.05) when compared with CT spermatozoa. Some of these proteins were primarily linked to metabolic processes and the structural composition of sperm cells. The dysregulation of these proteins may have a direct or indirect effect on essential sperm functions and significantly affect spermatozoa-oocyte interaction and, therefore, the sperm fertilization profile under in vitro conditions. While these findings are promising, further research is necessary to comprehend how the disturbance of specific proteins affects sperm fertilization ability.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Technical University of Munich, Munich, Germany
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
3
|
Xu C, Yang X, Sui H, Tong X, Zhang D, Zheng X, Jiao J, Wang C, Cao Z, Zhang Y. Effects of different ages on frozen semen quality and in vitro fertilization efficiency in Wannan black pigs. Front Vet Sci 2024; 11:1395718. [PMID: 38881785 PMCID: PMC11177872 DOI: 10.3389/fvets.2024.1395718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
According to previous studies, the quality and fertilization rate of fresh sperm from boars of different ages were significantly different. However, the difference of freeze-thaw sperm quality and fertility in boars of different ages is unclear. In this study, boars of a Chinese native breed were assigned into two groups. Each group consisted of five boars aged aged either 2-3 years (young boars = YB) or 5-6 years (aging boars = AB) A total of 60 ejaculates for each group were collected and cryopreserved. Semen quality and in vitro fertility of post-thaw sperm was evaluated. The results showed that the concentration and motility of fresh sperm collected from AB were similar to YB, but their semen volume was higher than that in YB (p < 0.05). Frozen-thawed sperm of AB had lower viability than YB, and higher abnormal rate and reactive oxygen species (ROS) levels of YB (p < 0.05). There was no effect of the age on post-thaw sperm motility and time survival. Functional assessments indicated that increasing age markedly compromises the integrity of the sperm plasma membrane and acrosome, as well as mitochondrial functionality post-thaw, albeit without affecting DNA integrity. Furthermore, increasing age of boars reduces the ability of sperm to bind to the oocyte zona pellucida after thawing, delaying the time of the first embryo cleavage after fertilization. Finally, the early developmental efficiency of in vitro fertilized embryos progressing from 4-cell to blastocyst derived from post-thaw sperm in AB significantly decreased compared to those from YB (p < 0.05). Taken together, these results suggest that increasing age in boars impairs the quality and in vitro fertility of frozen thawed sperm.
Collapse
Affiliation(s)
- Changzhi Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianshu Yang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Heming Sui
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xu Tong
- Suzhou Key Laboratory of Reproductive Medicine, Department of Reproductive Medicine, General Hospital of WanBei Coal Group Hospital of WanBei Coal Group, Suzhou, China
| | - Dandan Zhang
- Suzhou Key Laboratory of Reproductive Medicine, Department of Reproductive Medicine, General Hospital of WanBei Coal Group Hospital of WanBei Coal Group, Suzhou, China
| | - Xianrui Zheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jun Jiao
- Anhui Haoyu Animal Husbandry Co. Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Li J, Li J, Wang S, Ju H, Chen S, Basioura A, Ferreira-Dias G, Liu Z, Zhu J. Post-Thaw Storage Temperature Influenced Boar Sperm Quality and Lifespan through Apoptosis and Lipid Peroxidation. Animals (Basel) 2023; 14:87. [PMID: 38200818 PMCID: PMC10778526 DOI: 10.3390/ani14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cryopreservation deteriorates boar sperm quality and lifespan, which restricts the use of artificial insemination with frozen-thawed boar semen in field conditions. The objective of this study was to test the effects of post-thaw storage time and temperature on boar sperm survival. Semen ejaculates from five Landrace boars (one ejaculate per boar) were collected and frozen following a 0.5 mL-straw protocol. Straws from the five boars were thawed and diluted 1:1 (v:v) in BTS. The frozen-thawed semen samples were aliquoted into three parts and respectively stored at 5 °C, 17 °C, and 37 °C for up to 6 h. At 0.5, 2, and 6 h of storage, sperm motility, viability, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels and apoptotic changes were measured. Antioxidant and oxidant levels were tested in boar sperm (SPZ) and their surrounding environment (SN) at each timepoint. The results showed significant effects of post-thaw storage time and temperature and an impact on boar sperm quality (total and progressive motility, VCL, viability, acrosome integrity), early and late sperm apoptotic changes, and changes in MDA levels in SPZ and SN. Compared to storage at 5 °C and 37 °C, frozen-thawed semen samples stored at 17 °C displayed better sperm quality, less apoptotic levels, and lower levels of SPZ MDA and SN MDA. Notably, post-thaw storage at 17 °C extended boar sperm lifespan up to 6 h without obvious reduction in sperm quality. In conclusion, storage of frozen-thawed boar semen at 17 °C preserves sperm quality for up to 6 h, which facilitates the use of cryopreserved boar semen for field artificial insemination.
Collapse
Affiliation(s)
- Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (J.L.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Juncheng Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (J.L.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuaibiao Wang
- DanAg Agritech Consulting (Zhengzhou) Co., Ltd., Zhengzhou 450046, China;
- Royal Veterinary College, London NW1 0TU, UK
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (J.L.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Science, Ningbo 315040, China;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (J.L.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (J.L.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Pezo F, Zambrano F, Uribe P, de Andrade AFC, Sánchez R. Slow Freezing of Preserved Boar Sperm: Comparison of Conventional and Automated Techniques on Post-Thaw Functional Quality by a New Combination of Sperm Function Tests. Animals (Basel) 2023; 13:2826. [PMID: 37760225 PMCID: PMC10525940 DOI: 10.3390/ani13182826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
The slow freezing of boar sperm is the only way to preserve genetic material for extended periods; this can be achieved with exposure to liquid nitrogen vapors (conventional) or by using automated freezing equipment. The aim was to compare the effect of both techniques on post-thaw functionality. Boar sperm devoid of seminal plasma and resuspended in lactose-egg yolk-glycerol medium were cryopreserved. Conventional: straws were exposed to LN2 vapors; automated: using a drop curve of -39.82 °C·min-1 for 113 s from -5 to -80 °C during the critical period; and subsequent immersion in NL2. Cell viability, cholesterol flow, mitochondrial membrane potential (MMP), lipid peroxidation, peroxynitrite, superoxide anion levels, phosphatidylserine translocation, and caspase activation were evaluated by flow cytometry. In addition, total motility (TM) and progressive motility (PM) were determined by the SCA system immediately (T0), 60 (T60), and 120 min (T120) post-thawing. Automated freezing significantly reduces cholesterol flow and free radical and lipid peroxidation levels, making it possible to preserve motility for 120 min of incubation. At the same time, viability, acrosome integrity, MMP, and caspase activation did not differ from the conventional technique. In conclusion, controlling the temperature drop curve using automated freezing equipment reduces oxidative/nitrosative stress, preserving membrane fluidity and sperm motility.
Collapse
Affiliation(s)
- Felipe Pezo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomas, Santiago 8370003, Chile;
| | - Fabiola Zambrano
- Laboratory of Reproductive Physiopathology, Center for Translational Medicine (CEMT-BIOREN), Temuco 4811230, Chile; (F.Z.); (P.U.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Uribe
- Laboratory of Reproductive Physiopathology, Center for Translational Medicine (CEMT-BIOREN), Temuco 4811230, Chile; (F.Z.); (P.U.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil;
| | - Raúl Sánchez
- Laboratory of Reproductive Physiopathology, Center for Translational Medicine (CEMT-BIOREN), Temuco 4811230, Chile; (F.Z.); (P.U.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
6
|
Gonzalez‐Castro R, Porflidt C, Patton T, Goins D, Herickhoff L. Effect of season, genetic line and temperature during transport on sperm motility of commercial insemination doses of pooled boar semen: a retrospective study. Reprod Domest Anim 2022; 57:1363-1374. [DOI: 10.1111/rda.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Raul Gonzalez‐Castro
- Membrane Protective Technologies Inc, Fort Collins Colorado US
- Colorado State University Department of Biomedical Sciences, Fort Collins Colorado US
| | | | - Toni Patton
- Membrane Protective Technologies Inc, Fort Collins Colorado US
| | - Donna Goins
- Membrane Protective Technologies Inc, Fort Collins Colorado US
| | - Lisa Herickhoff
- Membrane Protective Technologies Inc, Fort Collins Colorado US
| |
Collapse
|
7
|
Caamaño JN, Tamargo C, Parrilla I, Martínez-Pastor F, Padilla L, Salman A, Fueyo C, Fernández Á, Merino MJ, Iglesias T, Hidalgo CO. Post-Thaw Sperm Quality and Functionality in the Autochthonous Pig Breed Gochu Asturcelta. Animals (Basel) 2021; 11:ani11071885. [PMID: 34202862 PMCID: PMC8300257 DOI: 10.3390/ani11071885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Genetic resource banks were created to preserve the genetic material of endangered, rare, valuable individuals or genetically relevant breeds. Sperm cryopreservation is a practical and widespread strategy to preserve these genetic materials. This study aimed to characterize the frozen-thawed sperm of the native pig breed Gochu Asturcelta, considering the effects of boar age and season of semen collection on post-thaw sperm quality. We found that the boar age did not have a significant effect on the sperm parameters assessed. However, the season significantly affected many of these parameters (motility, viability, acrosomal status, mitochondrial activity). In general, sperm samples collected in spring and summer showed higher quality post-thawing, the lowest in winter. Our findings demonstrated that the post-thawing sperm quality of Gochu Asturcelta was in the range of results for commercial breeds, bringing a good prospect for the use of assisted reproductive technologies in this local breed. Abstract Genetic resource banks (GRB) preserve the genetic material of endangered, valuable individuals or genetically relevant breeds. Semen cryopreservation is a crucial technique to reach these goals. Thus, we aimed to assess the sperm parameters of semen doses from the native pig breed Gochu Asturcelta stored at the GRB of Principado de Asturias (GRB-PA, Gijón, Spain), focusing on intrinsic and extrinsic (boar, season) factors. Two straws per boar (n = 18, 8–71 months of age) were thawed, pooled, and assessed after 30 and 150 min at 37 °C by CASA (computer-assisted sperm analysis system; motility and kinematic parameters) and flow cytometry (viability, acrosomal status, mitochondrial activity, apoptosis, reactive oxygen species, and chromatin status). The effects of age, incubation, and season on post-thawing quality were determined using linear mixed-effects models. Parameters were on the range for commercial boar breeds, with chromatin status (SCSA: fragmentation and immaturity) being excellent. Incubation decreased sperm quality and functionality. The boar age did not have a significant effect (p > 0.05), but the between-boar variability was significant (p < 0.001). The season significantly affected many parameters (motility, kinematics, viability, acrosomal status, mitochondrial activity), especially after 150 min of incubation. In general, samples collected in spring and summer showed higher quality post-thawing, the lowest in winter. In conclusion, the sperm doses from the Gochu Asturcelta breed stored at the GRB-PA showed excellent chromatin status and acceptable characteristics after thawing. Therefore, boar and seasonal variability in this autochthonous breed could be relevant for cryobank management.
Collapse
Affiliation(s)
- José Néstor Caamaño
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
- Correspondence: ; Tel.: +34-98-450-2010
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - Inmaculada Parrilla
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, 30071 Murcia, Spain; (I.P.); (L.P.)
| | - Felipe Martínez-Pastor
- INDEGSAL, Universidad de León, 24071 León, Spain; (F.M.-P.); (A.S.)
- Molecular Biology (Cell Biology), Universidad de León, 24071 León, Spain
| | - Lorena Padilla
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, 30071 Murcia, Spain; (I.P.); (L.P.)
| | - Amer Salman
- INDEGSAL, Universidad de León, 24071 León, Spain; (F.M.-P.); (A.S.)
| | - Carmen Fueyo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - Ángel Fernández
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - María José Merino
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Universidad de Oviedo, 33203 Gijón, Spain;
| | - Carlos Olegario Hidalgo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), 33394 Gijon, Spain; (C.T.); (C.F.); (Á.F.); (M.J.M.); (C.O.H.)
| |
Collapse
|
8
|
Khan IM, Cao Z, Liu H, Khan A, Rahman SU, Khan MZ, Sathanawongs A, Zhang Y. Impact of Cryopreservation on Spermatozoa Freeze-Thawed Traits and Relevance OMICS to Assess Sperm Cryo-Tolerance in Farm Animals. Front Vet Sci 2021; 8:609180. [PMID: 33718466 PMCID: PMC7947673 DOI: 10.3389/fvets.2021.609180] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cryopreservation is a powerful tool for the livestock breeding program. Several technical attempts have been made to enhance the efficiency of spermatozoa cryopreservation in different farm animal species. However, it is well-recognized that mammalian spermatozoa are susceptible to cryo-injury caused by cryopreservation processes. Moreover, the factors leading to cryo-injuries are complicated, and the cryo-damage mechanism has not been methodically explained until now, which directly influences the quality of frozen–thawed spermatozoa. Currently, the various OMICS technologies in sperm cryo-biology have been conducted, particularly proteomics and transcriptomics studies. It has contributed while exploring the molecular alterations caused by cryopreservation, identification of various freezability markers and specific proteins that could be added to semen diluents before cryopreservation to improve sperm cryo-survival. Therefore, understanding the cryo-injury mechanism of spermatozoa is essential for the optimization of current cryopreservation processes. Recently, the application of newly-emerged proteomics and transcriptomics technologies to study the effects of cryopreservation on sperm is becoming a hotspot. This review detailed an updated overview of OMICS elements involved in sperm cryo-tolerance and freeze-thawed quality. While also detailed a mechanism of sperm cryo-injury and utilizing OMICS technology that assesses the sperm freezability potential biomarkers as well as the accurate classification between the excellent and poor freezer breeding candidate.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agricultural Sciences, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agriculture University, Beijing, China
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Pezo F, Yeste M, Zambrano F, Uribe P, Risopatrón J, Sánchez R. Antioxidants and their effect on the oxidative/nitrosative stress of frozen-thawed boar sperm. Cryobiology 2020; 98:5-11. [PMID: 33248047 DOI: 10.1016/j.cryobiol.2020.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
In swine, the use of frozen-thawed boar sperm for artificial insemination remains a suboptimal reproductive technology. Among the negative effects of cryopreservation on sperm cells, it is worth highlighting that cryopreservation causes irreversible alterations in motility and components of the sperm membrane as a result of dramatic changes in temperature (cooling/freezing curve) and osmolality. In addition, freeze-thawing may induce oxidative stress and increase the generation of reactive oxygen species (ROS) and nitrogen reactive species (RNS). While boar sperm cryopreservation has been reported to increase lipid peroxidation and the intracellular levels of hydrogen peroxide, less research on its impact on RNS has been conducted. Furthermore, previous studies have investigated the effects of supplementing cryopreservation media with antioxidants to counteract the deleterious effects of ROS and RNS. Antioxidants of synthetic origin or natural extracts have been used, with some showing noticeable and positive effects on functional sperm parameters both in vitro and in vivo. The aim of this review is to provide an update on the effect of different molecules with antioxidant capacity on the function of cryopreserved boar sperm.
Collapse
Affiliation(s)
- Felipe Pezo
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomas, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Institute of Food and Agricultural Technology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Fabiola Zambrano
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jennie Risopatrón
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Laboratory of Reproductive Medicine and Molecular Endocrinology, Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
10
|
Barranco I, Padilla L, Pérez-Patiño C, Vazquez JM, Martínez EA, Rodríguez-Martínez H, Roca J, Parrilla I. Seminal Plasma Cytokines Are Predictive of the Outcome of Boar Sperm Preservation. Front Vet Sci 2019; 6:436. [PMID: 31867346 PMCID: PMC6904304 DOI: 10.3389/fvets.2019.00436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Boar seminal plasma is rich in cytokines, which could influence the capability of spermatozoa to tolerate preservation. Objectives: To evaluate the involvement of boar seminal plasma cytokines in the changes experienced by boar spermatozoa during their storage, either in liquid or frozen state. Materials and Methods: In two separated experiments, semen samples from healthy and fertile boars were split in two aliquots, one centrifuged twice (1,500 ×g for 10 min) to harvest seminal plasma, whereas the other was either commercially extended (3 × 107 sperm/mL) and liquid-stored at 17°C during 144 h (n = 28, Experiment 1) or frozen-thawed using a standard 0.5 mL protocol (n = 27, Experiment 2). Sixteen cytokines were quantified using Luminex xMAP®. Sperm attributes (CASA-evaluated total and progressive motility; flow cytometry-evaluated sperm viability, production of intracellular H2O2 and O 2 • - and levels of lipid peroxidation in viable spermatozoa) were evaluated either at 0, 72, or 144 h of liquid storage (Experiment 1) or before freezing and at 30- and 150-min post-thawing (Experiment 2). Results: Multiple linear regression models, with Bayesian approach for variable selection, revealed that the anti-inflammatory TGF-β2, TGF-β3, IL-1Ra, and IL-4 and the pro-inflammatory IL-8 and IL-18, predicted changes in sperm motility for liquid-stored semen while the anti-inflammatory IFN-γ was included in the models predicting changes in all sperm attributes for cryopreserved semen. Conclusion: Specific boar seminal plasma cytokines would contribute to modulate the structural and metabolic changes shown by spermatozoa during preservation, either in liquid or frozen state.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.,Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Cristina Pérez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Emilio A Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Huang C, Lei L, Wu HL, Gan RX, Yuan XB, Fan LQ, Zhu WB. Long-term cryostorage of semen in a human sperm bank does not affect clinical outcomes. Fertil Steril 2019; 112:663-669.e1. [DOI: 10.1016/j.fertnstert.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
|
12
|
Fair S, Romero-Aguirregomezcorta J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology 2019; 137:15-22. [PMID: 31176491 DOI: 10.1016/j.theriogenology.2019.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artificial insemination (AI) is the single most important assisted reproductive technique devised to facilitate the genetic improvement of livestock. In the swine industry, it has broadly replaced natural service over the last number of decades which has been made possible by the high pregnancy rates and litter sizes obtainable with semen extended, up to, and sometimes beyond 5 d. Central to achieving good reproductive performance is the ability of boar studs to monitor semen quality, the basis of which has long been the assessment of sperm motility by subjective and, more recently, by more objective computerised systems. In this review, the literature on the relationship between sperm motility and kinematic parameters and field fertility is summarised. We discuss how this relationship is dependent on factors such as the viscosity of the media and the use of standard operating procedures. Emerging evidence is discussed regarding the importance of sperm rheotaxis and thigmotaxis as long-distance sperm guidance mechanisms, which enable motile functional spermatozoa to avoid the backflow of fluid, mucus and semen from the sow's uterus in the hours post AI, facilitating the establishment of sperm reservoirs in the oviducts. The literature on the use of microfluidics in studying sperm rheotaxis in vitro is also summarised, and we discuss how these systems, when combined with techniques such as lensless microscopy, have the potential to offer more physiological assessments of the swimming patterns of boar spermatozoa. Finally, possible future avenues of further investigation are proposed.
Collapse
Affiliation(s)
- S Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, P61 C996, Ireland.
| | - J Romero-Aguirregomezcorta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| |
Collapse
|
13
|
Namula Z, Tanihara F, Wittayarat M, Hirata M, Nguyen NT, Hirano T, Le QA, Nii M, Otoi T. Effects of Tris (hydroxymethyl) aminomethane on the quality of frozen-thawed boar spermatozoa. Acta Vet Hung 2019; 67:106-114. [PMID: 30922097 DOI: 10.1556/004.2019.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tris (hydroxymethyl) aminomethane (Tris) has been used as a pH regulator for buffering the pH of dilution extenders for boar semen, such as the Modena extender. The purpose of the present study was to assess the effects of Tris supplementation at different concentrations (0, 8, 24 and 72 μM) into the freezing extender on the quality and fertilising capacity of frozen-thawed boar spermatozoa. The results showed that the supplementation of 24 μM of Tris gave significantly higher percentages of sperm viability and plasma membrane integrity than those of the control group at any time point of assessment (0 h and 3 h post-thawing) (P < 0.05). However, there were no significant differences in the acrosome integrity parameter among the groups. Higher percentages of sperm motility were observed in the spermatozoa cryopreserved with 24 μM of Tris compared to the control groups when the samples were analysed 0 h after thawing (P < 0.05). However, an increase of the Tris concentration to 72 μM did not enhance the sperm motility parameters. The total numbers of fertilised oocytes and blastocysts obtained with spermatozoa frozen with 24 μM Tris were significantly higher than those of the control group without Tris (P < 0.05). In conclusion, the supplementation of 24 μM Tris into the freezing extender contributes to a better boar sperm quality and fertilising capacity after the process of freezing and thawing.
Collapse
Affiliation(s)
- Zhao Namula
- 1 College of Agricultural Science, Guangdong Ocean University, Guangdong, China
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| | - Fuminori Tanihara
- 1 College of Agricultural Science, Guangdong Ocean University, Guangdong, China
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| | - Manita Wittayarat
- 3 Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Maki Hirata
- 1 College of Agricultural Science, Guangdong Ocean University, Guangdong, China
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| | - Nhien Thi Nguyen
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| | - Takayuki Hirano
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| | - Quynh Anh Le
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| | - Masahiro Nii
- 4 Tokushima Prefectural Livestock Research Institute, Tokushima, Japan
| | - Takeshige Otoi
- 1 College of Agricultural Science, Guangdong Ocean University, Guangdong, China
- 2 Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima 779-3233, Japan
| |
Collapse
|