1
|
Zhang Y, Lin X, Xia T, Chen H, Huang F, Wei C, Qiu G. Effects of intensive chlorine disinfection on nitrogen and phosphorus removal in WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170273. [PMID: 38280590 DOI: 10.1016/j.scitotenv.2024.170273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The increased use of disinfection since the pandemic has led to increased effective chlorine concentration in municipal wastewater. Whereas, the specific impacts of active chlorine on nitrogen and phosphorus removal, the mediating communities, and the related metabolic activities in wastewater treatment plants (WWTPs) lack systematic investigation. We systematically analyzed the influences of chlorine disinfection on nitrogen and phosphorus removal activities using activated sludge from five full-scale WWTPs. Results showed that at an active chlorine concentration of 1.0 mg/g-SS, the nitrogen and phosphorus removal systems were not significantly affected. Major effects were observed at 5.0 mg/g-SS, where the nitrogen and phosphorus removal efficiency decreased by 38.9 % and 44.1 %, respectively. At an active chlorine concentration of 10.0 mg/g-SS, the nitrification, denitrification, phosphorus release and uptake activities decreased by 15.1 %, 69.5-95.9 %, 49.6 % and 100 %, respectively. The proportion of dead cells increased by 6.1 folds. Reverse transcriptional quantitative polymerase chain reaction (RT-qPCR) analysis showed remarkable inhibitions on transcriptions of the nitrite oxidoreductase gene (nxrB), the nitrite reductase genes (nirS and nirK), and the nitrite reductase genes (narG). The nitrogen and phosphorus removal activities completely disappeared with an active chlorine concentration of 25.0 mg/g-SS. Results also showed distinct sensitivities of different functional bacteria in the activated sludge. Even different species within the same functional group differ in their susceptibility. This study provides a reference for the understanding of the threshold active chlorine concentration values which may potentially affect biological nitrogen and phosphorus removal in full-scale WWTPs, which are expected to be beneficial for decision-making in WWTPs to counteract the potential impacts of increased active chlorine concentrations in the influent wastewater.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Tang Xia
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
2
|
Hu Y, Liu X, Liu F, Xie J, Zhu Q, Tan S. Trehalose in Biomedical Cryopreservation-Properties, Mechanisms, Delivery Methods, Applications, Benefits, and Problems. ACS Biomater Sci Eng 2023; 9:1190-1204. [PMID: 36779397 DOI: 10.1021/acsbiomaterials.2c01225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cells and tissues are the foundation of translational medicine. At present, one of the main technological obstacles is their preservation for long-term usage while maintaining adequate viability and function. Optimized storage techniques must be developed to make them safer to use in the clinic. Cryopreservation is the most common long-term preservation method to maintain the vitality and function of cells and tissues. But, the formation of ice crystals in cells and tissues is considered to be the main mechanism that could harm cells and tissues during freezing and thawing. To reduce the formation of ice crystals, cryoprotective agents (CPAs) must be added to the cells and tissues to achieve the cryoprotective effect. However, conventional cryopreservation of cells and tissues often needs to use toxic organic solvents as CPAs. As a result, cryopreserved cells and tissues may need to go through a time-consuming washing process to remove CPAs for further applications in translational medicine, and multiple valuable cells are potentially lost or killed. Currently, trehalose has been researched as a nontoxic CPA due to its cryoprotective ability and stability during cryopreservation. Nevertheless, trehalose is a nonpermeable CPA, and the lack of an effective intracellular trehalose delivery method has become the main obstacle to its use in cryopreservation. This article illustrated the properties, mechanisms, delivery methods, and applications of trehalose, summarized the benefits and limits of trehalose, and summed up the findings and research direction of trehalose in biomedical cryopreservation.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
3
|
Huang S, Xue S, Zhang Q, Chen J, Zhu W, Chang Q. Autophagy Induced by Trehalose Alleviates Apoptosis of Human Aortic Endothelial Cells After Cryopreservation. Biopreserv Biobank 2021; 20:384-391. [PMID: 34468197 DOI: 10.1089/bio.2021.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cryoprotectants are crucial factors in cell cryopreservation. Trehalose (Tre), a nontoxic, nonreducing, and natural disaccharide, has the potential to protect cells as a cryoprotectant. As an inducer of autophagy, Tre can influence the development of many diseases and may also have an effect on cell cryopreservation through this mechanism. In this study, human aortic endothelial cells were preserved in different cryopreservation fluids with or without dimethyl sulfoxide and Tre was added. Subsequently, the expression of the main autophagy-related genes LC3, BECN, and P62, cell death and apoptosis, and the proliferation rate were measured in different groups after cryopreservation. Our data showed that Tre can improve the expression of the autophagy-related genes LC3 and BECN and reduce the expression of P62. Dead/alive staining and flow cytometry showed that cell death and cell apoptosis were reduced during cryopreservation with Tre. In addition, the cell proliferation rate after thawing was increased in the Tre group when compared with others. These results all indicated that there might be a connection between Tre-triggered autophagy and the protective role of Tre in cell cryopreservation. Furthermore, strategies to regulate autophagy to reduce apoptosis in this process should be investigated in future research.
Collapse
Affiliation(s)
- Siyang Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junyu Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Characterization and internalization of nanodiamond–trehalose conjugates into mammalian fibroblast cells of naked mole rat. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Vasudevan B, Chang Q, Wang B, Huang S, Sui Y, Zhu W, Fan Q, Song Y. Effect of intracellular uptake of nanoparticle-encapsulated trehalose on the hemocompatibility of allogeneic valves in the VS83 vitrification protocol. Nanobiomedicine (Rij) 2020; 7:1849543520983173. [PMID: 33447299 PMCID: PMC7780325 DOI: 10.1177/1849543520983173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Trehalose is a disaccharide molecule consisting of two molecules of glucose. Industrially, trehalose is derived from corn starch and utilized as a drug. This study aims to examine whether the integration of nanoparticle-encapsulated trehalose to the Ice-Free Cryopreservation (IFC) method for preserving heart valves has better cell viability, benefits to protect the extracellular matrix (ECM), and reduce immune response after storage. For the experiment to be carried out, we obtained materials, and the procedures were carried out in the following manner. The initial step was the preparation of hydroxyapatite nanoparticles, followed by precipitation to acquire Apatite colloidal suspensions. Animals were obtained, and their tissue isolation and grouping were done ethically. All samples were then divided into four groups, Control group, Conventional Frozen Cryopreservation (CFC) group, IFC group, and IFC + T (IFC with the addition of 0.2 M nanoparticle-encapsulated Trehalose) group. Histological analysis was carried out via H&E staining, ECM components were stained with Modified Weigert staining, and the Gomori Ammonia method was used to stain reticular fibers. Alamar Blue assay was utilized to assess cell viability. Hemocompatibility was evaluated, and samples were processed for immunohistochemistry (TNFα and IL-10). Hemocompatibility was quantified using Terminal Complement Complex (TCC) and Neutrophil elastase (NE) as an indicator. The results of the H&E staining revealed less formation of extracellular ice crystals and intracellular vacuoles in the IFC + T group compared with all other groups. The CFC group's cell viability showed better viability than the IFC group, but the highest viability was exhibited in the IFC + T group (70.96 ± 2.53, P < 0.0001, n = 6). In immunohistochemistry, TNFα levels were lowest in both IFC and IFC + T group, and IL-10 expression had significantly reduced in IFC and IFC + T group. The results suggested that the nanoparticle encapsulated trehalose did not show significant hemocompatibility issues on the cryopreserved heart valves.
Collapse
Affiliation(s)
| | - Qing Chang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Bin Wang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Siyang Huang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yulong Sui
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Qing Fan
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yisheng Song
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Liu B, Zhang Q, Zhao Y, Ren L, Yuan X. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. J Mater Chem B 2019; 7:5695-5703. [DOI: 10.1039/c9tb01089k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine- and trehalose-modified ε-polylysine (ε-PL) demonstrated a high synergistic function with trehalose for RBC cryopreservation.
Collapse
Affiliation(s)
- Bo Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Qifa Zhang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|