1
|
Ahmadkhani N, Benson JD, Eroglu A, Higgins AZ. High throughput method for simultaneous screening of membrane permeability and toxicity for discovery of new cryoprotective agents. Sci Rep 2025; 15:1862. [PMID: 39805972 PMCID: PMC11731021 DOI: 10.1038/s41598-025-85509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Cryoprotective agent (CPA) toxicity is the most limiting factor impeding cryopreservation of critically needed tissues and organs for transplantation and medical research. This limitation is in part due to the challenge of rapidly screening compounds to identify candidate molecules that are highly membrane permeable and non-toxic at high concentrations. Such a combination would facilitate rapid CPA permeation throughout the sample, enabling ice-free cryopreservation with minimal toxicity. This study presents a new method for rapidly assessing the cell membrane permeability and toxicity of candidate CPAs. The new method enables ~ 100 times faster permeability measurement than previous methods, while also allowing assessment of CPA toxicity using the same 96-well plate. We tested five commonly used CPAs and 22 less common ones at both 4 °C and room temperature, with 23 of them passing the screening process based on their favorable toxicity and permeability properties. Considering its advantages such as high throughput measurement of membrane permeability along with simultaneous toxicity assessment, the presented method holds promise as an effective initial screening tool to identify new CPAs for cryopreservation.
Collapse
Affiliation(s)
- Nima Ahmadkhani
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, USA
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia - Augusta University, Augusta, USA
| | - Adam Z Higgins
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, USA.
| |
Collapse
|
2
|
Ahmadkhani N, Benson JD, Eroglu A, Higgins AZ. High throughput method for simultaneous screening of membrane permeability and toxicity for discovery of new cryoprotective agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604685. [PMID: 39091780 PMCID: PMC11291039 DOI: 10.1101/2024.07.22.604685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Vitrification is the most promising method for cryopreservation of complex structures such as organs and tissue constructs. However, this method requires multimolar concentrations of cell-permeant cryoprotective agents (CPAs), which can be toxic at such elevated levels. The selection of CPAs for organ vitrification has been limited to a few chemicals; however, there are numerous chemicals with properties similar to commonly used CPAs. In this study, we developed a high-throughput method that significantly increases the speed of cell membrane permeability measurement, enabling ~100 times faster permeability measurement than previous methods. The method also allows assessment of CPA toxicity using the same 96-well plate. We tested five commonly used CPAs and 22 less common ones at both 4 °C and room temperature, with 23 of them passing the screening process based on their favorable toxicity and permeability properties. Considering its advantages such as high throughput measurement of membrane permeability along with simultaneous toxicity assessment, the presented method holds promise as an effective initial screening tool to identify new CPAs for cryopreservation.
Collapse
Affiliation(s)
- Nima Ahmadkhani
- School of Chemical, Biological and Environmental Engineering, Oregon State University
| | | | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia - Augusta University
| | - Adam Z. Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University
| |
Collapse
|
3
|
Zhang W, Liu X, Hu Y, Tan S. Incorporate delivery, warming and washing methods into efficient cryopreservation. Front Bioeng Biotechnol 2023; 11:1215591. [PMID: 37397963 PMCID: PMC10309563 DOI: 10.3389/fbioe.2023.1215591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
|
4
|
Cui M, Zhan T, Yang J, Dang H, Yang G, Han H, Liu L, Xu Y. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomater Sci Eng 2023; 9:1151-1163. [PMID: 36744931 DOI: 10.1021/acsbiomaterials.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryopreservation is currently a key step in translational medicine that could provide new ideas for clinical applications in reproductive medicine, regenerative medicine, and cell therapy. With the advantages of a low concentration of cryoprotectant, fast cooling rate, and easy operation, droplet-based printing for vitrification has received wide attention in the field of cryopreservation. This review summarizes the droplet generation, vitrification, and warming method. Droplet generation techniques such as inkjet printing, microvalve printing, and acoustic printing have been applied in the field of cryopreservation. Droplet vitrification includes direct contact with liquid nitrogen vitrification and droplet solid surface vitrification. The limitations of droplet vitrification (liquid nitrogen contamination, droplet evaporation, gas film inhibition of heat transfer, frosting) and solutions are discussed. Furthermore, a comparison of the external physical field warming method with the conventional water bath method revealed that better applications can be achieved in automated rapid warming of microdroplets. The combination of droplet vitrification technology and external physical field warming technology is expected to enable high-throughput and automated cryopreservation, which has a promising future in biomedicine and regenerative medicine.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Jiamin Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
5
|
Criswell T, Swart C, Stoudemire J, Brockbank KGM, Powell-Palm M, Stilwell R, Floren M. Freezing Biological Time: A Modern Perspective on Organ Preservation. Stem Cells Transl Med 2022; 12:17-25. [PMID: 36571240 PMCID: PMC9887086 DOI: 10.1093/stcltm/szac083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 12/27/2022] Open
Abstract
Transporting tissues and organs from the site of donation to the patient in need, while maintaining viability, is a limiting factor in transplantation medicine. One way in which the supply chain of organs for transplantation can be improved is to discover novel approaches and technologies that preserve the health of organs outside of the body. The dominant technologies that are currently in use in the supply chain for biological materials maintain tissue temperatures ranging from a controlled room temperature (+25 °C to +15 °C) to cryogenic (-120 °C to -196 °C) temperatures (reviewed in Criswell et al. Stem Cells Transl Med. 2022). However, there are many cells and tissues, as well as all major organs, that respond less robustly to preservation attempts, particularly when there is a need for transport over long distances that require more time. In this perspective article, we will highlight the current challenges and advances in biopreservation aimed at "freezing biological time," and discuss the future directions and requirements needed in the field.
Collapse
Affiliation(s)
- Tracy Criswell
- Corresponding author: Tracy Criswell, PhD, Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA. Tel: +1 336 713 1615.
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhan L, Han Z, Shao Q, Etheridge ML, Hays T, Bischof JC. Rapid joule heating improves vitrification based cryopreservation. Nat Commun 2022; 13:6017. [PMID: 36224179 PMCID: PMC9556611 DOI: 10.1038/s41467-022-33546-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023] Open
Abstract
Cryopreservation by vitrification has far-reaching implications. However, rewarming techniques that are rapid and scalable (both in throughput and biosystem size) for low concentrations of cryoprotective agent (CPA) for reduced toxicity are lacking, limiting the potential for translation. Here, we introduce a joule heating-based platform technology, whereby biosystems are rapidly rewarmed by contact with an electrical conductor that is fed a voltage pulse. We demonstrate successful cryopreservation of three model biosystems with thicknesses across three orders of magnitude, including adherent cells (~4 µm), Drosophila melanogaster embryos (~50 µm) and rat kidney slices (~1.2 mm) using low CPA concentrations (2-4 M). Using tunable voltage pulse widths from 10 µs to 100 ms, numerical simulation predicts that warming rates from 5 × 104 to 6 × 108 °C/min can be achieved. Altogether, our results present a general solution to the cryopreservation of a broad spectrum of cellular, organismal and tissue-based biosystems.
Collapse
Affiliation(s)
- Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA, USA.
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Hays
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Cao Y, Chang T, Fang C, Zhang Y, Liu H, Zhao G. Inhibition Effect of Ti 3C 2T x MXene on Ice Crystals Combined with Laser-Mediated Heating Facilitates High-Performance Cryopreservation. ACS NANO 2022; 16:8837-8850. [PMID: 35696325 DOI: 10.1021/acsnano.1c10221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phenomena of ice formation and growth are of great importance for climate science, regenerative medicine, cryobiology, and food science. Hence, how to control ice formation and growth remains a challenge in these fields and attracts great interest from widespread researchers. Herein, the ice regulation ability of the two-dimensional MXene Ti3C2Tx in both the cooling and thawing processes is explored. Molecularly speaking, the ice growth inhibition mechanism of Ti3C2Tx MXene is ascribed to the formation of hydrogen bonds between functional groups of -O-, -OH, and -F distributed on the surface of Ti3C2Tx and ice/water molecules, which was elucidated by the molecular dynamics simulation method. In the cooling process, Ti3C2Tx can decrease the supercooling degree and inhibit the sharp edge morphology of ice crystals. Moreover, taking advantage of the outstanding photothermal conversion property of Ti3C2Tx, rapid ice melting can be achieved, thus reducing the phenomena of devitrification and ice recrystallization. Based on the ice restriction performance of Ti3C2Tx mentioned above, Ti3C2Tx is applied for cryopreservation of stem-cell-laden hydrogel constructs. The results show that Ti3C2Tx can reduce cryodamage to stem cells induced by ice injury in both the cooling and thawing processes and finally increase the cell viability from 38.4% to 80.9%. In addition, Ti3C2Tx also shows synergetic antibacterial activity under laser irradiation, thus realizing sterile cryopreservation of stem cells. Overall, this work explores the ice inhibition performance of Ti3C2Tx, elucidates the physical mechanism, and further achieves application of Ti3C2Tx in the field of cell cryopreservation.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tie Chang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Chao Fang
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yuanyuan Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Huilan Liu
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Gang Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|