1
|
Wu C, Wong AR, Chen Q, Yang S, Chen M, Sun X, Zhou L, Liu Y, Yang AWH, Bi J, Hung A, Li H, Zhao X. Identification of inhibitors from a functional food-based plant Perillae Folium against hyperuricemia via metabolomics profiling, network pharmacology and all-atom molecular dynamics simulations. Front Endocrinol (Lausanne) 2024; 15:1320092. [PMID: 38435751 PMCID: PMC10905266 DOI: 10.3389/fendo.2024.1320092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Hyperuricemia (HUA) is a metabolic disorder caused by purine metabolism dysfunction in which the increasing purine levels can be partially attributed to seafood consumption. Perillae Folium (PF), a widely used plant in functional food, has been historically used to mitigate seafood-induced diseases. However, its efficacy against HUA and the underlying mechanism remain unclear. Methods A network pharmacology analysis was performed to identify candidate targets and potential mechanisms involved in PF treating HUA. The candidate targets were determined based on TCMSP, SwissTargetPrediction, Open Targets Platform, GeneCards, Comparative Toxicogenomics Database, and DrugBank. The potential mechanisms were predicted via Gene Ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses. Molecular docking in AutoDock Vina and PyRx were performed to predict the binding affinity and pose between herbal compounds and HUA-related targets. A chemical structure analysis of PF compounds was performed using OSIRIS DataWarrior and ClassyFire. We then conducted virtual pharmacokinetic and toxicity screening to filter potential inhibitors. We further performed verifications of these inhibitors' roles in HUA through molecular dynamics (MD) simulations, text-mining, and untargeted metabolomics analysis. Results We obtained 8200 predicted binding results between 328 herbal compounds and 25 potential targets, and xanthine dehydrogenase (XDH) exhibited the highest average binding affinity. We screened out five promising ligands (scutellarein, benzyl alpha-D-mannopyranoside, elemol, diisobutyl phthalate, and (3R)-hydroxy-beta-ionone) and performed MD simulations up to 50 ns for XDH complexed to them. The scutellarein-XDH complex exhibited the most satisfactory stability. Furthermore, the text-mining study provided laboratory evidence of scutellarein's function. The metabolomics approach identified 543 compounds and confirmed the presence of scutellarein. Extending MD simulations to 200 ns further indicated the sustained impact of scutellarein on XDH structure. Conclusion Our study provides a computational and biomedical basis for PF treating HUA and fully elucidates scutellarein's great potential as an XDH inhibitor at the molecular level, holding promise for future drug design and development.
Collapse
Affiliation(s)
- Chuanghai Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ann Rann Wong
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Qinghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuxuan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Jianlu Bi
- Endocrinology Department, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Hong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Barbier RH, McCrea EM, Lee KY, Strope JD, Risdon EN, Price DK, Chau CH, Figg WD. Abiraterone induces SLCO1B3 expression in prostate cancer via microRNA-579-3p. Sci Rep 2021; 11:10765. [PMID: 34031488 PMCID: PMC8144422 DOI: 10.1038/s41598-021-90143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding mechanisms of resistance to abiraterone, one of the primary drugs approved for the treatment of castration resistant prostate cancer, remains a priority. The organic anion polypeptide 1B3 (OATP1B3, encoded by SLCO1B3) transporter has been shown to transport androgens into prostate cancer cells. In this study we observed and investigated the mechanism of induction of SLCO1B3 by abiraterone. Prostate cancer cells (22Rv1, LNCaP, and VCAP) were treated with anti-androgens and assessed for SLCO1B3 expression by qPCR analysis. Abiraterone treatment increased SLCO1B3 expression in 22Rv1 cells in vitro and in the 22Rv1 xenograft model in vivo. MicroRNA profiling of abiraterone-treated 22Rv1 cells was performed using a NanoString nCounter miRNA panel followed by miRNA target prediction. TargetScan and miRanda prediction tools identified hsa-miR-579-3p as binding to the 3'-untranslated region (3'UTR) of the SLCO1B3. Using dual luciferase reporter assays, we verified that hsa-miR-579-3p indeed binds to the SLCO1B3 3'UTR and significantly inhibited SLCO1B3 reporter activity. Treatment with abiraterone significantly downregulated hsa-miR-579-3p, indicating its potential role in upregulating SLCO1B3 expression. In this study, we demonstrated a novel miRNA-mediated mechanism of abiraterone-induced SLCO1B3 expression, a transporter that is also responsible for driving androgen deprivation therapy resistance. Understanding mechanisms of abiraterone resistance mediated via differential miRNA expression will assist in the identification of potential miRNA biomarkers of treatment resistance and the development of future therapeutics.
Collapse
Affiliation(s)
- Roberto H Barbier
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Edel M McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Kristi Y Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Emily N Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, MD, 20892, USA.
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Mehralitabar H, Ghasemi AS, Gholizadeh J. Abiraterone and D4, 3-keto Abiraterone binding to CYP17A1, a structural comparison study by molecular dynamic simulation. Steroids 2021; 167:108799. [PMID: 33465380 DOI: 10.1016/j.steroids.2021.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
The importance of computer-aided drug design and development is clear nowadays. These approaches smooth the way of designing some efficient candidates based on drugs in use. At this place, we studied the mechanism of D4-abiraterone (D4A), the active metabolite of Abiraterone (Abi), binding to CYP17A1 compared with Abi. The molecular dynamics simulation results reveal that the metabolite, which lacks the key 3β-OH group, has a varied H-bond forming pattern. The critical H-bond between 3β-OH of Abi with Asn_202 turns to 3 Keto-O of D4A with Arg_239 in the substrate-binding site. This interaction causes a remarkable distance of 0.63 nm between D4A nitrogen and Fe in heme, which reduces its 17,20 lyase selectivity. The D4A keto moiety presents an immense number of H-bond with surrounding solvent molecules compared with the Abi hydroxyl group. As a result, D4A develops a weaker H-bond network with the enzyme. Otherwise, the heterocyclic nature of inhibitors helps for noticeable van der Waals interaction formation with CYP17A1. However, Abi stabilized position in the binding site helps more van der Waals interactions deposition than D4A. These results convinced the importance of the conserved H-bond for acquiring the proper position by the substrate or inhibitor in the binding site.
Collapse
Affiliation(s)
- Havva Mehralitabar
- Chemistry Department, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - A S Ghasemi
- Chemistry Department, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
| | - Jahed Gholizadeh
- Chemistry Department, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
4
|
Xiao F, Song X, Tian P, Gan M, Verkhivker GM, Hu G. Comparative Dynamics and Functional Mechanisms of the CYP17A1 Tunnels Regulated by Ligand Binding. J Chem Inf Model 2020; 60:3632-3647. [PMID: 32530640 DOI: 10.1021/acs.jcim.0c00447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important member of cytochrome P450 (CYP) enzymes, CYP17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones, making it an attractive therapeutic target. The emerging structural information about CYP17A1 and the growing number of inhibitors for these enzymes call for a systematic strategy to delineate and classify mechanisms of ligand transport through tunnels that control catalytic activity. In this work, we applied an integrated computational strategy to different CYP17A1 systems with a panel of ligands to systematically study at the atomic level the mechanism of ligand-binding and tunneling dynamics. Atomistic simulations and binding free energy computations identify the dynamics of dominant tunnels and characterize energetic properties of critical residues responsible for ligand binding. The common transporting pathways including S, 3, and 2c tunnels were identified in CYP17A1 binding systems, while the 2c tunnel is a newly formed pathway upon ligand binding. We employed and integrated several computational approaches including the analysis of functional motions and sequence conservation, atomistic modeling of dynamic residue interaction networks, and perturbation response scanning analysis to dissect ligand tunneling mechanisms. The results revealed the hinge-binding and sliding motions as main functional modes of the tunnel dynamic, and a group of mediating residues as key regulators of tunnel conformational dynamics and allosteric communications. We have also examined and quantified the mutational effects on the tunnel composition, conformational dynamics, and long-range allosteric behavior. The results of this investigation are fully consistent with the experimental data, providing novel rationale to the experiments and offering valuable insights into the relationships between the structure and function of the channel networks and a robust atomistic model of activation mechanisms and allosteric interactions in CYP enzymes.
Collapse
Affiliation(s)
- Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xingyu Song
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Peiyi Tian
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Mi Gan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University Pharmacy School, 9401 Jeronimo Rd, Irvine, California 92618, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Sharma V, Wakode S. Investigating the role of N-terminal domain in phosphodiesterase 4B-inhibition by molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:4270-4278. [PMID: 32552529 DOI: 10.1080/07391102.2020.1780154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phosphodiesterase 4B (PDE4B) is a potential therapeutic target for the inflammatory respiratory diseases such as congestive obstructive pulmonary disease (COPD) and asthma. The sequence identity of ∼88% with its isoform PDE4D is the key barrier in developing selective PDE4B inhibitors which may help to overcome associated side effects. Despite high sequence identity, both isoforms differ in few residues present in N-terminal (UCR2) and C-terminal (CR3) involved in catalytic site formation. Previously, we designed and tested specific PDE4B inhibitors considering N-terminal residues as a part of the catalytic cavity. In continuation, current work thoroughly presents an MD simulation-based analysis of N-terminal residues and their role in ligand binding. The various parameters viz. root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF), principal component analysis (PCA), dynamical cross-correlation matrix (DCCM) analysis, secondary structure analysis and residue interaction mapping were investigated to establish rational. Results showed that UCR2 reduced RMSF values for the metal binding pocket (31.5 ± 11 to 13.12 ± 6 Å2) and the substrate-binding pocket (38.8 ± 32 to 17.3 ± 11 Å2). UCR2 enhanced anti-correlated motion at the active site region that led to the improved ligand-binding affinity of PDE4B from -24.57 ± 3 to -35.54 ± 2 kcal/mol. Further, the atomic-level analysis indicated that T-π and π-π interactions between inhibitors and residues are vital forces that regulate inhibitor association to PDE4B with high affinity. In conclusion, UCR2, the N-terminal domain, embraces the dynamics of PDE4B active site and stabilizes PDE4B inhibitor interactions. Therefore the N-terminal domain needs to be considered while designing next-generation, selective PDE4B-inhibitors as potential anti-inflammatory drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| |
Collapse
|
6
|
Latysheva AS, Zolottsev VA, Veselovsky AV, Scherbakov KA, Morozevich GE, Pokrovsky VS, Novikov RA, Timofeev VP, Tkachev YV, Misharin AY. New steroidal oxazolines, benzoxazoles and benzimidazoles related to abiraterone and galeterone. Steroids 2020; 153:108534. [PMID: 31678134 DOI: 10.1016/j.steroids.2019.108534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Seven new oxazoline, benzoxazole and benzimidazole derivatives were synthesized from 3β-acetoxyandrosta-5,16-dien-17-carboxylic, 3β-acetoxyandrost-5-en-17β-carboxylic and 3β-acetoxypregn-5-en-21-oic acids. Docking to active site of human 17α-hydroxylase/17,20-lyase revealed that all oxazolines, as well as benzoxazoles and benzimidazoles comprising Δ16 could form stable complexes with enzyme, in which steroid moiety is positioned similarly to that of abiraterone and galeterone, and nitrogen atom coordinates heme iron, while 16,17-saturated benzoxazoles and benzimidazoles could only bind in a position where heterocycle is located nearly parallel to heme plane. Modeling of the interaction of new benzoxazole and benzimidazole derivatives with androgen receptor revealed the destabilization of helix 12, constituting activation function 2 (AF2) site, by mentioned compounds, similar to one induced by known antagonist galeterone. The synthesized compounds inhibited growth of prostate carcinoma LNCaP and PC-3 cells at 96 h incubation; the potency of 2'-(3β-hydroxyandrosta-5,16-dien-17-yl)-4',5'-dihydro-1',3'-oxazole and 2'-(3β-hydroxyandrosta-5,16-dien-17-yl)-benzimidazole was superior and could inspire further investigations of these compounds as potential anti-cancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Vadim S Pokrovsky
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia; N.N. Blokhin Cancer Research Center, Moscow, Russia; RUDN University, Moscow, Russia.
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | | | | |
Collapse
|
7
|
Gumede NJ, Nxumalo W, Bisetty K, Escuder Gilabert L, Medina-Hernandez MJ, Sagrado S. Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. Bioorg Chem 2019; 94:103462. [PMID: 31818479 DOI: 10.1016/j.bioorg.2019.103462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
The development and advancement of prostate cancer (PCa) into stage 4, where it metastasize, is a major problem mostly in elder males. The growth of PCa cells is stirred up by androgens and androgen receptor (AR). Therefore, therapeutic strategies such as blocking androgens synthesis and inhibiting AR binding have been explored in recent years. However, recently approved drugs (or in clinical phase) failed in improving the expected survival rates for this metastatic-castration resistant prostate cancer (mCRPC) patients. The selective CYP17A1 inhibition of 17,20-lyase route has emerged as a novel strategy. Such inhibition blocks the production of androgens everywhere they are found in the body. In this work, a three dimensional-quantitative structure activity relationship (3D-QSAR) pharmacophore model is developed on a diverse set of non-steroidal inhibitors of CYP17A1 enzyme. Highly active compounds are selected to define a six-point pharmacophore hypothesis with a unique geometrical arrangement fitting the following description: two hydrogen bond acceptors (A), two hydrogen bond donors (D) and two aromatic rings (R). The QSAR model showed adequate predictive statistics. The 3D-QSAR model is further used for database virtual screening of potential inhibitory hit structures. Density functional theory (DFT) optimization provides the electronic properties explaining the reactivity of the hits. Docking simulations discovers hydrogen bonding and hydrophobic interactions as responsible for the binding affinities of hits to the CYP17A1 Protein Data Bank structure. 13 hits from the database search (including five derivatives) are then synthesized in the laboratory as different scaffolds. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in vitro experiments reveals three new chemical entities (NCEs) with half maximal inhibitory concentration (IC50) values against the lyase route at mid-micromolar range with favorable selectivity to the lyase over the hydroxylase route (one of them with null hydroxylase inhibition). Thus, prospective computational design has enabled the design of potential lead lyase-selective inhibitors for further studies.
Collapse
Affiliation(s)
- N J Gumede
- Department of Chemistry, Mangosuthu University of Technology, PO Box 12363, Jacobs 4026, South Africa.
| | - W Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - K Bisetty
- Department of Chemistry, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - L Escuder Gilabert
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| | - M J Medina-Hernandez
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Panada JU, Faletrov YV, Frolova NS, Shkumatov VM. [Synthesis and evaluation of N-alkynylaminosteroids as potential CYP450 17A1 inhibitors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:324-330. [PMID: 31436174 DOI: 10.18097/pbmc20196504324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four isomeric dehydroepiandrosterone- and pregnenolone-based N-alkynylaminosteroids were synthesized and tested in vitro for inhibition of heterologously expressed CYP17A1. The highest inhibitory activity was observed when the optimal number of side chain atoms was met. The conjugate based on pregnenolone containing an N-propynyl moiety was found to interefere with enzymatic activity most effectively and consistently in the micromolar range.
Collapse
Affiliation(s)
- J U Panada
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - Y V Faletrov
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - N S Frolova
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - V M Shkumatov
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| |
Collapse
|
9
|
Zhou D, Sun Y, Jia Y, Liu D, Wang J, Chen X, Zhang Y, Ma X. Bioinformatics and functional analyses of key genes in smoking-associated lung adenocarcinoma. Oncol Lett 2019; 18:3613-3622. [PMID: 31516576 PMCID: PMC6732981 DOI: 10.3892/ol.2019.10733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Smoking is one of the most important factors associated with the development of lung cancer. However, the signaling pathways and driver genes in smoking-associated lung adenocarcinoma remain unknown. The present study analyzed 433 samples of smoking-associated lung adenocarcinoma and 75 samples of non-smoking lung adenocarcinoma from the Cancer Genome Atlas database. Gene Ontology (GO) analysis was performed using the Database for Annotation, Visualization and Integrated Discovery and the ggplot2 R/Bioconductor package. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using the R packages RSQLite and org.Hs.eg.db. Multivariate Cox regression analysis was performed to screen factors associated with patient survival. Kaplan-Meier and receiver operating characteristic curves were used to analyze the potential clinical significance of the identified biomarkers as molecular prognostic markers for the five-year overall survival time. A total of 373 differentially expressed genes (DEGs; |log2-fold change|≥2.0 and P<0.01) were identified, of which 71 were downregulated and 302 were upregulated. These DEGs were associated with 28 significant GO functions and 11 significant KEGG pathways (false discovery rate <0.05). Two hundred thirty-eight proteins were associated with the 373 differentially expressed genes, and a protein-protein interaction network was constructed. Multivariate regression analysis revealed that 7 mRNAs, cytochrome P450 family 17 subfamily A member 1, PKHD1 like 1, retinoid isomerohydrolase RPE65, neurotensin receptor 1, fetuin B, insulin-like growth factor binding protein 1 and glucose-6-phosphatase catalytic subunit, significantly distinguished between non-smoking and smoking-associated adenocarcinomas. Kaplan-Meier analysis demonstrated that patients in the 7 mRNAs-high-risk group had a significantly worse prognosis than those of the low-risk group. The data obtained in the current study suggested that these genes may serve as potential novel prognostic biomarkers of smoking-associated lung adenocarcinoma.
Collapse
Affiliation(s)
- Dajie Zhou
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China.,Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yilin Sun
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Duanrui Liu
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jing Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaowei Chen
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yujie Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
10
|
Song D, Zhang J, Wang Y, Hu J, Xu S, Xu Y, Shen H, Wen X, Sun Z. Comparative study of the binding mode between cytochrome P450 17A1 and prostate cancer drugs in the absence of haem iron. J Biomol Struct Dyn 2019; 37:4161-4170. [PMID: 30431391 DOI: 10.1080/07391102.2018.1540360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
According to the X-ray crystal structures of CYP17A1 (including its complexes with inhibitors), it is shown that a hydrogen bond exists between CYP17A1 and its inhibitors (such as abiraterone and TOK-001). Previous short MD simulations (50 ns) suggested that the binding of abiraterone to CYP17A1 is stronger than that of TOK-001. In this work, by carrying out long atomistic MD simulations (200 ns) of CYP17A1 and its complexes with abiraterone and TOK-001, we observed a binding mode between CYP17A1 and abiraterone, which is different from the binding mode between CYP17A1 and TOK-001. In the case of abiraterone binding, the unfilled volume in the active site cavity increases the freedom of movement of abiraterone within CYP17A1, leading to the collective motions of the helices G and B' as well as the breaking of hydrogen bond existing between the 3β-OH group of abiraterone and N202 of CYP17A1. However, the unfilled volume in the active site cavity can be occupied by the benzimidazole ring of TOK-001, restraining the motion of TOK-001. By pulling the two inhibitors (abiraterone and TOK-001) out of the binding pocket in CYP17A1, we discovered that abiraterone and TOK-001 were moved from their binding sites to the surface of protein similarly through the channels formed by the helices G and B'. In addition, based on the free energy calculations, one can see that it is energetically favorable for the two inhibitors (abiraterone and TOK-001) to enter into the binding pocket in CYP17A1.
Collapse
Affiliation(s)
- Dalong Song
- Guizhou University , Guiyang , Guizhou Province , PR China.,Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Jihua Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University , Guiyang , Guizhou Province , PR China
| | - Yuanlin Wang
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Yuangao Xu
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| | - Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University , Guiyang , Guizhou Province , PR China
| | - Xiaopeng Wen
- Guizhou University , Guiyang , Guizhou Province , PR China
| | - Zhaolin Sun
- Department of Urology, Guizhou Provincial People's Hospital , Guiyang , Guizhou Province , PR China
| |
Collapse
|
11
|
Larsen M, Hansen CH, Rasmussen TB, Islin J, Styrishave B, Olsen L, Jørgensen FS. Structure-based optimisation of non-steroidal cytochrome P450 17A1 inhibitors. Chem Commun (Camb) 2017; 53:3118-3121. [DOI: 10.1039/c6cc08680b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new non-steroidal inhibitors for cytochrome P450 17A1 were identified by structure-based optimisation.
Collapse
Affiliation(s)
- Morten Larsen
- Department of Drug Design and Pharmacology
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Cecilie H. Hansen
- Department of Pharmacy
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | | | - Julie Islin
- Department of Pharmacy
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Bjarne Styrishave
- Department of Pharmacy
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | - Lars Olsen
- Department of Drug Design and Pharmacology
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | | |
Collapse
|
12
|
Wang F, Huang J, Zhu Z, Ma X, Cao L, Zhang Y, Chen W, Dong Y. Transcriptome Analysis of WHV/c-myc Transgenic Mice Implicates Cytochrome P450 Enzyme 17A1 as a Promising Biomarker for Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2016; 9:739-49. [PMID: 27339169 DOI: 10.1158/1940-6207.capr-16-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022]
Abstract
Early detection of hepatocellular carcinoma (HCC) is critical for successful treatment and favorable prognosis. To identify novel HCC biomarkers, we used the WHV/c-myc transgenic (Tg) mice, an animal model of hepatocarcinogenesis. By analyzing their gene expression profiling, we investigated differentially expressed genes in livers of wild-type and Tg mice. The cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), a hepatic P450 enzyme, was revealed to be overexpressed in the liver tissues of Tg mice at both preneoplastic and neoplastic stages. Mouse-to-human validation demonstrated that CYP17A1 mRNA and protein were also significantly increased in human HCC tissues compared with paired nontumor tissues (P = 0.00041 and 0.00011, respectively). Immunohistochemical studies showed that CYP17A1 was overexpressed in 67% (58 of 87) of HCC, and strong staining of CYP17A1 was observed in well-differentiated HCCs. Consistent with this, the median serum levels of CYP17A1 were also significantly higher in patients with HCC (140.2 ng/mL, n = 776) compared with healthy controls (31.4 ng/mL, n = 366) and to those with hepatitis B virus (57.5 ng/mL, n = 160), cirrhosis (46.1 ng/mL, n = 147), lung cancer (27.4 ng/mL, n = 109), and prostate cancer (42.1 ng/mL, n = 130; all P < 0.001). Notably, the elevations were seen in most AFP-negative HCC cases. Altogether, through mouse-to-human search and validation, we found that CYP17A1 is overexpressed in HCCs and it has great potentiality as a noninvasive marker for HCC detection. These results provide a rationale for the future development and clinical application of CYP17A1 measurement to diagnose HCC more precisely. Cancer Prev Res; 9(9); 739-49. ©2016 AACR.
Collapse
Affiliation(s)
- Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Jian Huang
- Department of Oncology, The 1st. Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhu Zhu
- Department of Oncology, The 1st. Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiao Ma
- Key Laboratory of Pu-erh Tea Science of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Li Cao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yongzhi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Wei Chen
- College of Biological big data, Yunan Agricultural University, Kunming, Yunnan Province, China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan Province, China. College of Biological big data, Yunan Agricultural University, Kunming, Yunnan Province, China.
| |
Collapse
|