1
|
Naghinejad M, Parvizpour S, Khaniani MS, Mehri M, Derakhshan SM, Amirfiroozy A. The known structural variations in hearing loss and their diagnostic approaches: a comprehensive review. Mol Biol Rep 2025; 52:131. [PMID: 39821465 DOI: 10.1007/s11033-025-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Hearing loss (HL) is the most common sensory disorder, characterized by a wide range of causes, including both environmental and genetic factors. While single-nucleotide variants (SNVs) and small insertions/deletions have been extensively studied, the role of structural variations (SVs) in hearing impairment has gained increasing recognition. This review article aims to provide a comprehensive overview of the importance of SVs in HL, by exploring the SVs associated with HL and their underlying pathogenic mechanisms. Additionally, diagnostic methods of SVs have been briefly evaluated and compared in general. Three major mechanisms by which SVs can lead to HL are gene disruption, gene dosage imbalance, and position effect. Furthermore, to facilitate the detection of SVs in HL, this review presents a table highlighting the key genes and genomic regions implicated in SVs and their diagnostic approaches associated with HL patients. In the next step, indications for the use of SV diagnostic techniques are compiled in another table in this article, which will help experts in choosing the most appropriate technique. At last, the comprehensive review presented here underscores the significant role of SVs in HL. Further research is required to fully elucidate the spectrum of SVs in HL and optimize the clinical use of SV detection methods in routine diagnostic procedures.
Collapse
Affiliation(s)
- Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Mehri
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mehawej C, Maalouf JE, Abdelkhalik M, Mahfouz P, Chouery E, Megarbane A. CNV Analysis through Exome Sequencing Reveals a Large Duplication Involved in Sex Reversal, Neurodevelopmental Delay, Epilepsy and Optic Atrophy. Genes (Basel) 2024; 15:901. [PMID: 39062680 PMCID: PMC11275410 DOI: 10.3390/genes15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Duplications on the short arm of chromosome X, including the gene NR0B1, have been associated with gonadal dysgenesis and with male to female sex reversal. Additional clinical manifestations can be observed in the affected patients, depending on the duplicated genomic region. Here we report one of the largest duplications on chromosome X, in a Lebanese patient, and we provide the first comprehensive review of duplications in this genomic region. CASE PRESENTATION A 2-year-old female patient born to non-consanguineous Lebanese parents, with a family history of one miscarriage, is included in this study. The patient presents with sex reversal, dysmorphic features, optic atrophy, epilepsy, psychomotor and neurodevelopmental delay. Single nucleotide variants and copy number variants analysis were carried out on the patient through exome sequencing (ES). This showed an increased coverage of a genomic region of around 23.6 Mb on chromosome Xp22.31-p21.2 (g.7137718-30739112) in the patient, suggestive of a large duplication encompassing more than 60 genes, including the NR0B1 gene involved in sex reversal. A karyotype analysis confirmed sex reversal in the proband presenting with the duplication, and revealed a balanced translocation between the short arms of chromosomes X and 14:46, X, t(X;14) (p11;p11) in her/his mother. CONCLUSIONS This case highlights the added value of CNV analysis from ES data in the genetic diagnosis of patients. It also underscores the challenges encountered in announcing unsolicited incidental findings to the family.
Collapse
Affiliation(s)
- Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
| | - Joy El Maalouf
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Mohamad Abdelkhalik
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Peter Mahfouz
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (J.E.M.); (P.M.)
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.M.); (E.C.)
- Institut Jérôme Lejeune, 75015 Paris, France
| |
Collapse
|
3
|
Pyromali I, Richard L, Derouault P, Vallat JM, Ghorab K, Magdelaine C, Sturtz F, Favreau F, Lia AS. The First Large Deletion of ATL3 Identified in a Patient Presenting with a Sensory Polyneuropathy. Biomedicines 2023; 11:1565. [PMID: 37371660 DOI: 10.3390/biomedicines11061565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Hereditary sensory neuropathies (HSN) are a heterogenous group of sensory neuropathies. Mutations in ATL3 have been described in patients presenting with hereditary sensory neuropathy IF (HSN1F), a subtype of HSN. Herein, by analyzing targeted-NGS data of a patient presenting with sensory neuropathy symptoms using the CovCopCan bioinformatic tool, we discovered the presence of a deletion of around 3kb in ATL3 from Chr11:63,401,422 to Chr11:63,398,182. This deletion affects ATL3 exons 11 and 12 and could lead to the mutation c.(1036-861_1539+329del), p.(Ala346_Gln513del). In addition, an analysis of the breakpoints' sequences revealed the presence of Alu transposable elements at the position of the breakpoints, which pointed to a possible erroneous recombination event following a non-allelic-homologous-recombination mechanism in this area. Moreover, electronic microscopy analysis of the patient's nerve biopsy revealed a severe rarefaction of the myelinated fibers, a demyelinating-remyelinating process, and an abnormal aspect of the endoplasmic reticulum. These findings suggest that this structural variation could potentially be responsible for the HSN symptoms of the patient. Research of structural variations in ATL3 in numerous other patients presenting similar symptoms should be broadly investigated in order to improve patients' diagnoses.
Collapse
Affiliation(s)
- Ioanna Pyromali
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
| | - Laurence Richard
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Paco Derouault
- Service de Bioinformatique, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Jean-Michel Vallat
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Karima Ghorab
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Corinne Magdelaine
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Frédéric Favreau
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Anne-Sophie Lia
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Bioinformatique, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| |
Collapse
|
4
|
Yu K, Dou J, Huang W, Wang F, Wu Y. Expanding the genetic spectrum of tooth agenesis using whole-exome sequencing. Clin Genet 2022; 102:503-516. [PMID: 36071541 DOI: 10.1111/cge.14225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tooth agenesis is a high genetic heterogeneous disorder with more than eighty genes identified as associated molecular causes. The present study aimed to detect the possible pathogenic variants in a cohort of well-characterized probands with a clinical diagnosis of tooth agenesis. METHODS We performed whole-exome sequencing (WES) in 131 tooth agenesis patients with no previously identified molecular diagnosis. All the potential pathogenic variants were verified by Sanger sequencing in patients and their family members. Results Seventy-three patients were genetically diagnosed in 131 unrelated Chinese patients with tooth agenesis, providing a positive molecular diagnostic rate of 55.7%, including 53.8% (49/91) in the non-syndromic tooth agenesis (NSTA) group, and 60.0% (24/40) in syndromic tooth agenesis (STA) group. A total of 75 variants from 13 different genes were identified, including 33 novel variants, and WNT10A and EDA are the most common causative genes associated with non-syndromic and syndromic tooth agenesis, respectively. CONCLUSIONS This study further extends the variant spectrum and clinical profiles of tooth agenesis, which has a positive significance for clinical practice, genetic diagnosis, prenatal counseling and future treatment.
Collapse
Affiliation(s)
- Kang Yu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jiaqi Dou
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wei Huang
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Pyromali I, Benslimane N, Favreau F, Goizet C, Lazaro L, Vitry M, Derouault P, Sturtz F, Magdelaine C, Lia AS. From Negative to Positive Diagnosis: Structural Variation Could Be the Second Mutation You Are Looking for in a Recessive Autosomal Gene. J Pers Med 2022; 12:jpm12020212. [PMID: 35207700 PMCID: PMC8878780 DOI: 10.3390/jpm12020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) allows the detection of plentiful mutations increasing the rate of patients getting a positive diagnosis. However, while single-nucleotide variants (SNVs) or small indels can be easily detected, structural variations (SVs) such as copy number variants (CNVs) are often not researched. In Charcot–Marie–Tooth disease (CMT), the most common hereditary peripheral neuropathy, the PMP22-duplication was the first variation detected. Since then, more than 90 other genes have been associated with CMT, with point mutations or small indels mostly described. Herein, we present a personalized approach we performed to obtain a positive diagnosis of a patient suffering from demyelinating CMT. His NGS data were aligned to the human reference sequence but also studied using the CovCopCan software, designed to detect large CNVs. This approach allowed the detection of only one mutation in SH3TC2, the frequent p.Arg954*, while SH3TC2 is known to be responsible for autosomal recessive demyelinating CMT forms. Interestingly, by modifying the standard CovCopCan use, we detected the second mutation of this patient corresponding to a 922 bp deletion in SH3TC2 (Chr5:148,390,609-Chr5:148,389,687), including only one exon (exon 14). This highlights that SVs, different from PMP22 duplication, can be responsible for peripheral neuropathy and should be searched systematically. This approach could also be employed to improve the diagnosis of all inherited diseases.
Collapse
Affiliation(s)
- Ioanna Pyromali
- Faculty of Medicine, MMNP (Maintenance Myélinique et Neuropathies Périphériques), University of Limoges, EA6309, F-87000 Limoges, France; (I.P.); (N.B.); (F.F.); (F.S.); (C.M.)
| | - Nesrine Benslimane
- Faculty of Medicine, MMNP (Maintenance Myélinique et Neuropathies Périphériques), University of Limoges, EA6309, F-87000 Limoges, France; (I.P.); (N.B.); (F.F.); (F.S.); (C.M.)
| | - Frédéric Favreau
- Faculty of Medicine, MMNP (Maintenance Myélinique et Neuropathies Périphériques), University of Limoges, EA6309, F-87000 Limoges, France; (I.P.); (N.B.); (F.F.); (F.S.); (C.M.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France;
| | - Cyril Goizet
- Centre Hospitalo-Universitaire (CHU) Bordeaux-GH Pellegrin Tripode, Service de Génétique Médicale, F-33076 Bordeaux, France;
| | - Leila Lazaro
- Centre Hospitalier (CH) de la Côte Basque, F-64100 Bayonne, France;
| | - Martine Vitry
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France;
| | - Paco Derouault
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Bioinformatique, F-87000 Limoges, France;
| | - Franck Sturtz
- Faculty of Medicine, MMNP (Maintenance Myélinique et Neuropathies Périphériques), University of Limoges, EA6309, F-87000 Limoges, France; (I.P.); (N.B.); (F.F.); (F.S.); (C.M.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France;
| | - Corinne Magdelaine
- Faculty of Medicine, MMNP (Maintenance Myélinique et Neuropathies Périphériques), University of Limoges, EA6309, F-87000 Limoges, France; (I.P.); (N.B.); (F.F.); (F.S.); (C.M.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France;
| | - Anne-Sophie Lia
- Faculty of Medicine, MMNP (Maintenance Myélinique et Neuropathies Périphériques), University of Limoges, EA6309, F-87000 Limoges, France; (I.P.); (N.B.); (F.F.); (F.S.); (C.M.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France;
- Centre Hospitalo-Universitaire (CHU) Limoges, Service de Bioinformatique, F-87000 Limoges, France;
- Correspondence: ; Tel.: +33-555-435-938
| |
Collapse
|
6
|
Bagaria J, Bagyinszky E, An SSA. Genetics of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) and Role of Sacsin in Neurodegeneration. Int J Mol Sci 2022; 23:552. [PMID: 35008978 PMCID: PMC8745260 DOI: 10.3390/ijms23010552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that was originally discovered in the population from the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region in Quebec. Although the disease progression of ARSACS may start in early childhood, cases with later onset have also been observed. Spasticity and ataxia could be common phenotypes, and retinal optic nerve hypermyelination is detected in the majority of patients. Other symptoms, such as pes cavus, ataxia and limb deformities, are also frequently observed in affected individuals. More than 200 mutations have been discovered in the SACS gene around the world. Besides French Canadians, SACS genetics have been extensively studied in Tunisia or Japan. Recently, emerging studies discovered SACS mutations in several other countries. SACS mutations could be associated with pathogenicity either in the homozygous or compound heterozygous stages. Sacsin has been confirmed to be involved in chaperon activities, controlling the microtubule balance or cell migration. Additionally, sacsin may also play a crucial role in regulating the mitochondrial functions. Through these mechanisms, it may share common mechanisms with other neurodegenerative diseases. Further studies are needed to define the exact functions of sacsin. This review introduces the genetic mutations discovered in the SACS gene and discusses its pathomechanisms and its possible involvement in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
7
|
Cheng HL, Shao YR, Dong Y, Dong HL, Yang L, Ma Y, Shen Y, Wu ZY. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener 2021; 10:40. [PMID: 34663476 PMCID: PMC8522248 DOI: 10.1186/s40035-021-00264-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Background Although many causative genes have been uncovered in recent years, genetic diagnosis is still missing for approximately 50% of autosomal recessive cerebellar ataxia (ARCA) patients. Few studies have been performed to determine the genetic spectrum and clinical profile of ARCA patients in the Chinese population. Methods Fifty-four Chinese index patients with unexplained autosomal recessive or sporadic ataxia were investigated by whole-exome sequencing (WES) and copy number variation (CNV) calling with ExomeDepth. Likely causal CNV predictions were validated by CNVseq. Results Thirty-eight mutations including 29 novel ones were identified in 25 out of the 54 patients, providing a 46.3% positive molecular diagnostic rate. Ten different genes were involved, of which four most common genes were SACS, SYNE1, ADCK3 and SETX, which accounted for 76.0% (19/25) of the positive cases. The de novo microdeletion in SACS was reported for the first time in China and the uniparental disomy of ADCK3 was reported for the first time worldwide. Clinical features of the patients carrying SACS, SYNE1 and ADCK3 mutations were summarized. Conclusions Our results expand the genetic spectrum and clinical profiles of ARCA patients, demonstrate the high efficiency and reliability of WES combined with CNV analysis in the diagnosis of suspected ARCA, and emphasize the importance of complete bioinformatics analysis of WES data for accurate diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00264-z.
Collapse
Affiliation(s)
- Hao-Ling Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ya-Ru Shao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying Shen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200000, China.
| |
Collapse
|
8
|
Pyromali I, Perani A, Nizou A, Benslimane N, Derouault P, Bourthoumieu S, Fradin M, Sole G, Duval F, Gomes C, Favreau F, Sturtz F, Magdelaine C, Lia AS. New structural variations responsible for Charcot-Marie-Tooth disease: The first two large KIF5A deletions detected by CovCopCan software. Comput Struct Biotechnol J 2021; 19:4265-4272. [PMID: 34429846 PMCID: PMC8355829 DOI: 10.1016/j.csbj.2021.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/01/2023] Open
Abstract
Next-generation sequencing (NGS) allows the detection of mutations in inherited genetic diseases, like the Charcot-Marie-Tooth disease (CMT) which is the most common hereditary peripheral neuropathy. The majority of mutations detected by NGS are single nucleotide variants (SNVs) or small indels, while structural variants (SVs) are often underdiagnosed. PMP22 was the first gene described as being involved in CMT via a SV of duplication type. To date, more than 90 genes are known to be involved in CMT, with mainly SNVs and short indels described. Herein targeted NGS and the CovCopCan bioinformatic tool were used in two unrelated families, both presenting with typical CMT symptoms with pyramidal involvement. We have discovered two large SVs in KIF5A, a gene known to cause axonal forms of CMT (CMT2) in which no SVs have yet been described. In the first family, the patient presented with a large deletion of 12 kb in KIF5A from Chr12:57,956,278 to Chr12:57,968,335 including exons 2–15, that could lead to mutation c.(130-943_c.1717-533del), p.(Gly44_Leu572del). In the second family, two cases presented with a large deletion of 3 kb in KIF5A from Chr12:57,974,133 to Chr12:57,977,210 including exons 24–28, that could lead to mutation c.(2539-605_*36 + 211del), p.(Leu847_Ser1032delins33). In addition, bioinformatic sequence analysis revealed that a NAHR (Non-Allelic-Homologous-Recombination) mechanism, such as those in the PMP22 duplication, could be responsible for one of the KIF5A SVs and could potentially be present in a number of other patients. This study reveals that large KIF5A deletions can cause CMT2 and highlights the importance of analyzing not only the SNVs but also the SVs during diagnosis of neuropathies.
Collapse
Key Words
- ALS, Amyotrophic Lateral Sclerosis
- CMT, Charcot-Marie-Tooth
- CMT2, Charcot-Marie-Tooth type 2
- CNV, Copy Number Variants
- Charcot-Marie-Tooth
- CovCopCan
- DSMA, Distal-Spinal-Muscular-Atrophy
- HSP10, Hereditary-Spastic-Paraplegia-type-10
- KIF5A
- NAHR, Non-Allelic Homologous Recombination
- NEIMY, Neonatal-Intractable-MYoclonus
- NGS
- NGS, Next Generation Sequencing
- SNV, Single Nucleotide Variant
- SV, Structural Variant
- Structural variations
Collapse
Affiliation(s)
| | - Alexandre Perani
- CHU Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | | | | | - Paco Derouault
- CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| | - Sylvie Bourthoumieu
- CHU Limoges, Service de Cytogénétique, Génétique Médicale et Biologie de la Reproduction, F-87000 Limoges, France
| | - Mélanie Fradin
- CHU Rennes, CLAD Ouest, Service de Génétique, F-35203 Rennes, France
| | - Guilhem Sole
- CHU Bordeaux (Groupe Hospitalier Pellegrin), Service de Neurologie et Centre de Référence des Maladies Neuromusculaires AOC, F-33000 Bordeaux, France
| | - Fanny Duval
- CHU Bordeaux (Groupe Hospitalier Pellegrin), Service de Neurologie et Centre de Référence des Maladies Neuromusculaires AOC, F-33000 Bordeaux, France
| | - Constantin Gomes
- Hôpital Pontchaillou, Département de Neurophysiologie, F-35200 Rennes, France
| | - Frédéric Favreau
- Univ. Limoges, MMNP, EA6309, F-87000 Limoges, France.,CHU Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Franck Sturtz
- Univ. Limoges, MMNP, EA6309, F-87000 Limoges, France.,CHU Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Corinne Magdelaine
- Univ. Limoges, MMNP, EA6309, F-87000 Limoges, France.,CHU Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Univ. Limoges, MMNP, EA6309, F-87000 Limoges, France.,CHU Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France.,CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| |
Collapse
|
9
|
Miressi F, Benslimane N, Favreau F, Rassat M, Richard L, Bourthoumieu S, Laroche C, Magy L, Magdelaine C, Sturtz F, Lia AS, Faye PA. GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons. Biomedicines 2021; 9:biomedicines9080945. [PMID: 34440148 PMCID: PMC8393985 DOI: 10.3390/biomedicines9080945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth (CMT) disease, the most frequent hereditary peripheral neuropathy in humans. Previous studies reported the prevalent GDAP1 expression in neural tissues and cells, from animal models. Here, we described the first GDAP1 functional study on human induced-pluripotent stem cells (hiPSCs)-derived motor neurons, obtained from normal subjects and from a CMT2H patient, carrying the GDAP1 homozygous c.581C>G (p.Ser194*) mutation. At mRNA level, we observed that, in normal subjects, GDAP1 is mainly expressed in motor neurons, while it is drastically reduced in the patient’s cells containing a premature termination codon (PTC), probably degraded by the nonsense-mediated mRNA decay (NMD) system. Morphological and functional investigations revealed in the CMT patient’s motor neurons a decrease of cell viability associated to lipid dysfunction and oxidative stress development. Mitochondrion is a key organelle in oxidative stress generation, but it is also mainly involved in energetic metabolism. Thus, in the CMT patient’s motor neurons, mitochondrial cristae defects were observed, even if no deficit in ATP production emerged. This cellular model of hiPSCs-derived motor neurons underlines the role of mitochondrion and oxidative stress in CMT disease and paves the way for new treatment evaluation.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- Correspondence:
| | - Nesrine Benslimane
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Marion Rassat
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
| | - Laurence Richard
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Sylvie Bourthoumieu
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France
| | - Cécile Laroche
- CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France;
- CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France
| | - Laurent Magy
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
- CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; (N.B.); (F.F.); (M.R.); (L.R.); (S.B.); (L.M.); (C.M.); (F.S.); (A.-S.L.); (P.-A.F.)
- CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
| |
Collapse
|