1
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
2
|
Li X, Liu K, Fang H, Liu Z, Tang Y, Dai P. Electrodynamic interaction between tumor treating fields and microtubule electrophysiological activities. APL Bioeng 2024; 8:026118. [PMID: 38841689 PMCID: PMC11151432 DOI: 10.1063/5.0197900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Tumor treating fields (TTFields) are a type of sinusoidal alternating current electric field that has proven effective in inhibiting the reproduction of dividing tumor cells. Despite their recognized impact, the precise biophysical mechanisms underlying the unique effects of TTFields remain unknown. Many of the previous studies predominantly attribute the inhibitory effects of TTFields to mitotic disruption, with intracellular microtubules identified as crucial targets. However, this conceptual framework lacks substantiation at the mesoscopic level. This study addresses the existing gap by constructing force models for tubulin and other key subcellular structures involved in microtubule electrophysiological activities under TTFields exposure. The primary objective is to explore whether the electric force or torque exerted by TTFields significantly influences the normal structure and activities of microtubules. Initially, we examine the potential effect on the dynamic stability of microtubule structures by calculating the electric field torque on the tubulin dimer orientation. Furthermore, given the importance of electrostatics in microtubule-associated activities, such as chromosome segregation and substance transport of kinesin during mitosis, we investigate the interaction between TTFields and these electrostatic processes. Our data show that the electrodynamic effects of TTFields are most likely too weak to disrupt normal microtubule electrophysiological activities significantly. Consequently, we posit that the observed cytoskeleton destruction in mitosis is more likely attributable to non-mechanical mechanisms.
Collapse
Affiliation(s)
- Xing Li
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing 210016, Jiang Su, China
| | - Kaida Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing 210016, Jiang Su, China
| | - Haohan Fang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing 210016, Jiang Su, China
| | - Zirong Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing 210016, Jiang Su, China
| | - Yuchen Tang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing 210016, Jiang Su, China
| | - Ping Dai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
3
|
Průša J, Cifra M. Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field. Data Brief 2024; 52:109765. [PMID: 38370023 PMCID: PMC10873870 DOI: 10.1016/j.dib.2023.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 02/20/2024] Open
Abstract
We present trajectories from non-equilibrium (in electric field) molecular dynamics (MD) simulations of a kinesin motor domain on tubulin heterodimers with two tubulin heterodimers forming neighbouring microtubule protofilaments. The trajectories are for no field (long equilibrium simulation), for four different electric field orientations (X, -X, Y, -Y) and for the X electric field at four different field strengths. We also provide a trajectory for larger simulation box. Our data enable to analyze the electric field effects on kinesin, which ultimately leads to kinesin detachment. This data set was used to understand the effect of electric field orientation and field strength on the kinetics and energetics of the electro-detachment of kinesin [1].
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czechia
| | | |
Collapse
|
4
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
5
|
Průša J, Cifra M. Electro-detachment of kinesin motor domain from microtubule in silico. Comput Struct Biotechnol J 2023; 21:1349-1361. [PMID: 36814722 PMCID: PMC9939557 DOI: 10.1016/j.csbj.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the β-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
Collapse
|
6
|
Průša J, Ayoub AT, Cifra M. Molecular dynamics simulation dataset of a microtubule ring in electric field. Data Brief 2021; 38:107337. [PMID: 34522732 PMCID: PMC8427215 DOI: 10.1016/j.dib.2021.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
We present molecular dynamics (MD) trajectories of a single ring of B-lattice microtubule ring consisting of 13 tubulin heterodimers. The data contain trajectories of this molecular system ran under various conditions (two temperature values, three ionic strength values, three values of electric field (including no field), and four electric field orientations). Our data enable us to analyze the effects of the electric field on microtubule under a variety of conditions. This data set was a basis of our in silico discovery, which demonstrates that the electric field can open microtubule lattice [1].
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18251, Czech Republic
| | - Ahmed T Ayoub
- Biomolecular Simulation Center, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11777, Egypt
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18251, Czech Republic
| |
Collapse
|
7
|
Hough CM, Purschke DN, Bell C, Kalra AP, Oliva PJ, Huang C, Tuszynski JA, Warkentin BJ, Hegmann FA. Disassembly of microtubules by intense terahertz pulses. BIOMEDICAL OPTICS EXPRESS 2021; 12:5812-5828. [PMID: 34692217 PMCID: PMC8515977 DOI: 10.1364/boe.433240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The biological effects of terahertz (THz) radiation have been observed across multiple levels of biological organization, however the sub-cellular mechanisms underlying the phenotypic changes remain to be elucidated. Filamentous protein complexes such as microtubules are essential cytoskeletal structures that regulate diverse biological functions, and these may be an important target for THz interactions underlying THz-induced effects observed at the cellular or tissue level. Here, we show disassembly of microtubules within minutes of exposure to extended trains of intense, picosecond-duration THz pulses. Further, the rate of disassembly depends on THz intensity and spectral content. As inhibition of microtubule dynamics is a mechanism of clinically-utilized anti-cancer agents, disruption of microtubule networks may indicate a potential therapeutic mechanism of intense THz pulses.
Collapse
Affiliation(s)
- Cameron M. Hough
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Purschke
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Clayton Bell
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Aarat P. Kalra
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Currently with the Department of Chemistry, Frick Chemistry Laboratory, Princeton University, Princeton, NJ 08540, USA
| | - Patricia J. Oliva
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chenxi Huang
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jack A. Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Brad J. Warkentin
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frank A. Hegmann
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|