1
|
Alkhalil SS, Almanaa TN, Altamimi RA, Abdalla M, El-Arabey AA. Interactions between microbiota and uterine corpus endometrial cancer: A bioinformatic investigation of potential immunotherapy. PLoS One 2024; 19:e0312590. [PMID: 39475915 PMCID: PMC11524446 DOI: 10.1371/journal.pone.0312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Microorganisms in the gut and other niches may contribute to carcinogenesis while also altering cancer immune surveillance and therapeutic response. However, determining the impact of genetic variations and interplay with intestinal microbes' environment is difficult and unanswered. Here, we examined the frequency of thirteen mutant genes that caused aberrant gut in thirty different types of cancer using The Cancer Genomic Atlas (TCGA) database. Substantially, our findings show that all these mutated genes are quite frequent in uterine corpus endometrial cancer (UCEC). Further, these mutant genes are implicated in the infiltration of different subset of immune cells within the Tumor Microenvironment (TME) of UCEC patients. The top-ranking mutant genes that promote immune cell invasion into the TME of UCEC patients were PGLYRP2, OLFM4, and TLR5. In this regard, we used the same deconvolution of the TCGA database to analyze the microbiome that have a strong association with immune cells invasion with TME of UCEC patients. Several bacteria and viruses have been linked to the invasion of immune cells, such as B cell memory and T cell regulatory (Tregs), into the TME of UCEC patients. As a result, our findings pave the way for future research into generating novel immunizations against bacteria or viruses as immunotherapy for UCEC patients.
Collapse
Affiliation(s)
- Samia S. Alkhalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raghad A. Altamimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jinan, China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Fang X, Tong W, Wu S, Zhu Z, Zhu J. The role of intratumoral microorganisms in the progression and immunotherapeutic efficacy of head and neck cancer. ONCOLOGIE 2024; 26:349-360. [DOI: 10.1515/oncologie-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The effectiveness of cancer immunization is largely dependent on the tumor’s microenvironment, especially the tumor immune microenvironment. Emerging studies say microbes exist in tumor cells and immune cells, suggesting that these microbes can affect the state of the immune microenvironment of the tumor. Our comprehensive review navigates the intricate nexus between intratumoral microorganisms and their role in tumor biology and immune modulation. Beginning with an exploration of the historical acknowledgment of microorganisms within tumors, the article underscores the evolution of the tumor microenvironment (TME) and its subsequent implications. Using findings from recent studies, we delve into the unique bacterial compositions across different tumor types and their influence on tumor growth, DNA damage, and immune regulation. Furthermore, we illuminate the potential therapeutic implications of targeting these intratumoral microorganisms, emphasizing their multifaceted roles from drug delivery agents to immunotherapy enhancers. As advancements in next-generation sequencing (NGS) technology redefine our understanding of the tumor microbiome, the article underscores the importance of discerning their precise role in tumor progression and tailoring therapeutic interventions. The review culminates by emphasizing ongoing challenges and the pressing need for further research to harness the potential of intratumoral microorganisms in cancer care.
Collapse
Affiliation(s)
- Xuzhe Fang
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Weihong Tong
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Sheng Wu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhengyong Zhu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Jin Zhu
- Department of Otorhinolaryngology and Head Neck Surgery, Affiliated Hangzhou First People’s Hospital , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
3
|
Zhao L, Cunningham CM, Andruska AM, Schimmel K, Ali MK, Kim D, Gu S, Chang JL, Spiekerkoetter E, Nicolls MR. Rat microbial biogeography and age-dependent lactic acid bacteria in healthy lungs. Lab Anim (NY) 2024; 53:43-55. [PMID: 38297075 PMCID: PMC10834367 DOI: 10.1038/s41684-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
The laboratory rat emerges as a useful tool for studying the interaction between the host and its microbiome. To advance principles relevant to the human microbiome, we systematically investigated and defined the multitissue microbial biogeography of healthy Fischer 344 rats across their lifespan. Microbial community profiling data were extracted and integrated with host transcriptomic data from the Sequencing Quality Control consortium. Unsupervised machine learning, correlation, taxonomic diversity and abundance analyses were performed to determine and characterize the rat microbial biogeography and identify four intertissue microbial heterogeneity patterns (P1-P4). We found that the 11 body habitats harbored a greater diversity of microbes than previously suspected. Lactic acid bacteria (LAB) abundance progressively declined in lungs from breastfed newborn to adolescence/adult, and was below detectable levels in elderly rats. Bioinformatics analyses indicate that the abundance of LAB may be modulated by the lung-immune axis. The presence and levels of LAB in lungs were further evaluated by PCR in two validation datasets. The lung, testes, thymus, kidney, adrenal and muscle niches were found to have age-dependent alterations in microbial abundance. The 357 microbial signatures were positively correlated with host genes in cell proliferation (P1), DNA damage repair (P2) and DNA transcription (P3). Our study established a link between the metabolic properties of LAB with lung microbiota maturation and development. Breastfeeding and environmental exposure influence microbiome composition and host health and longevity. The inferred rat microbial biogeography and pattern-specific microbial signatures could be useful for microbiome therapeutic approaches to human health and life quality enhancement.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA.
| | - Christine M Cunningham
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Adam M Andruska
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Md Khadem Ali
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Dongeon Kim
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Shenbiao Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Jason L Chang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Mark R Nicolls
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhao L, Cunningham CM, Andruska AM, Schimmel K, Ali MK, Kim D, Gu S, Chang JL, Spiekerkoetter E, Nicolls MR. Rat microbial biogeography and age-dependent lactic acid bacteria in healthy lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541527. [PMID: 37293045 PMCID: PMC10245737 DOI: 10.1101/2023.05.19.541527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The laboratory rat emerges as a useful tool for studying the interaction between the host and its microbiome. To advance principles relevant to the human microbiome, we systematically investigated and defined a multi-tissue full lifespan microbial biogeography for healthy Fischer 344 rats. Microbial community profiling data was extracted and integrated with host transcriptomic data from the Sequencing Quality Control (SEQC) consortium. Unsupervised machine learning, Spearman's correlation, taxonomic diversity, and abundance analyses were performed to determine and characterize the rat microbial biogeography and the identification of four inter-tissue microbial heterogeneity patterns (P1-P4). The 11 body habitats harbor a greater diversity of microbes than previously suspected. Lactic acid bacteria (LAB) abundances progressively declined in lungs from breastfeed newborn to adolescence/adult and was below detectable levels in elderly rats. LAB's presence and levels in lungs were further evaluated by PCR in the two validation datasets. The lung, testes, thymus, kidney, adrenal, and muscle niches were found to have age-dependent alterations in microbial abundance. P1 is dominated by lung samples. P2 contains the largest sample size and is enriched for environmental species. Liver and muscle samples were mostly classified into P3. Archaea species were exclusively enriched in P4. The 357 pattern-specific microbial signatures were positively correlated with host genes in cell migration and proliferation (P1), DNA damage repair and synaptic transmissions (P2), as well as DNA transcription and cell cycle in P3. Our study established a link between metabolic properties of LAB with lung microbiota maturation and development. Breastfeeding and environmental exposure influence microbiome composition and host health and longevity. The inferred rat microbial biogeography and pattern-specific microbial signatures would be useful for microbiome therapeutic approaches to human health and good quality of life.
Collapse
|