1
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Poblano J, Castillo-Tobías I, Berlanga L, Tamayo-Ordoñez MC, Del Carmen Rodríguez-Salazar M, Silva-Belmares SY, Aguayo-Morales H, Cobos-Puc LE. Drugs targeting APOE4 that regulate beta-amyloid aggregation in the brain: Therapeutic potential for Alzheimer's disease. Basic Clin Pharmacol Toxicol 2024; 135:237-249. [PMID: 39020526 DOI: 10.1111/bcpt.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce β-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aβ aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Joan Poblano
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ileana Castillo-Tobías
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Lia Berlanga
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | | | | | | | - Hilda Aguayo-Morales
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Luis E Cobos-Puc
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
3
|
Wu J, Liu Z, Yao M, Zhu Y, Peng B, Ni J. Clinical characteristics of cerebral amyloid angiopathy and risk factors of cerebral amyloid angiopathy related intracerebral hemorrhage. J Neurol 2024; 271:5025-5034. [PMID: 38796800 DOI: 10.1007/s00415-024-12451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES There is limited understanding of the differences between cerebral amyloid angiopathy (CAA) with and without intracerebral hemorrhage (ICH). This article aimed to describe the characteristics of CAA and identify the risk factors of CAA-ICH in a multicenter cohort. METHODS Patients consecutively enrolled in the national multicenter prospective Cerebral Small Vessel Disease Cohort Study who met the Boston diagnostic criteria for CAA or CAA-related inflammation were included in this study. The demographic characteristics and clinical data were collected. The clinical and radiographic differences between CAA with and without ICH were compared to identify the risk factors for CAA-ICH. RESULTS A total of 219 CAA patients were included, with an average age of 67.12 ± 9.93. Of all patients, 26.0% were CAA with ICH. Univariate analysis showed that CAA-ICH is associated with carrying more APOE ε2 allele, less lobar cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), lower Fazekas scale, a tendency of gait disorder, and acute onset (P < 0.05). The generalized linear mixed model yielded statistically significant associations between CAA with ICH and carrying the APOE ε2 allele, cSS, the lower number of lobar CMBs, and the lower Fazekas scale (P < 0.05). CONCLUSION It is meaningful to classify CAA with and without ICH, as there may be different mechanisms between the two. CAA with ICH has a susceptibility to carrying APOE ε2, cSS, and a relatively small number of CMBs. Fewer CMBs do not mean lower susceptibility to ICH in CAA. Larger prospective cohort studies are necessary to further clarify these conclusions.
Collapse
Affiliation(s)
- Juanjuan Wu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziyue Liu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yicheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bin Peng
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Ataei B, Hokmabadi M, Asadi S, Asadifard E, Aghaei Zarch SM, Najafi S, Bagheri-Mohammadi S. A review of the advances, insights, and prospects of gene therapy for Alzheimer's disease: A novel target for therapeutic medicine. Gene 2024; 912:148368. [PMID: 38485038 DOI: 10.1016/j.gene.2024.148368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are still an important issue for scientists because it is difficult to cure with the available molecular medications and conventional treatments. Due to the complex nature of the brain structures and heterogeneous morphological and physiological properties of neuronal cells, interventions for cerebral-related disorders using surgical approaches, and classical and ongoing treatments remain hard for physicians. Furthermore, the development of newly designed medications attempts to target AD are not successful in improving AD, because abnormalities of tau protein, aggregation of amyloid β (Aβ) peptide, inflammatory responses, etc lead to advanced neurodegeneration processes that conventional treatments cannot stop them. In recent years, novel diagnostic strategies and therapeutic approaches have been developed to identify and cure early pathological events of AD. Accordingly, many gene-based therapies have been developed and introduce the therapeutic potential to prevent and cure AD. On the other hand, genetic investigations and postmortem assessments have detected a large number of factors associated with AD pathology. Also, genetically diverse animal models of AD help us to detect and prioritize novel resilience mechanisms. Hence, gene therapy can be considered an effective and powerful tool to identify and treat human diseases. Ultimately, gene study and gene-based therapy with a critical role in the detection and cure of various human disorders will have a fundamental role in our lives forever. This scientific review paper discusses the present status of different therapeutic strategies, particularly gene-based therapy in treating AD, along with its challenges.
Collapse
Affiliation(s)
- Bahar Ataei
- Department of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, Iran
| | - Mahsa Hokmabadi
- Department of Molecular Diagnosis, Armin Pathobiology and Medical Genetics Laboratory, Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elnaz Asadifard
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Ghosh S, Tamilselvi S, Williams C, Jayaweera SW, Iashchishyn IA, Šulskis D, Gilthorpe JD, Olofsson A, Smirnovas V, Svedružić ŽM, Morozova-Roche LA. ApoE Isoforms Inhibit Amyloid Aggregation of Proinflammatory Protein S100A9. Int J Mol Sci 2024; 25:2114. [PMID: 38396791 PMCID: PMC10889306 DOI: 10.3390/ijms25042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-β (Aβ) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.
Collapse
Affiliation(s)
- Shamasree Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Shanmugam Tamilselvi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Chloe Williams
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Sanduni W. Jayaweera
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden; (S.W.J.); (A.O.)
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| | - Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (D.Š.); (V.S.)
| | - Jonathan D. Gilthorpe
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, SE-90187 Umeå, Sweden; (S.W.J.); (A.O.)
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania; (D.Š.); (V.S.)
| | | | - Ludmilla A. Morozova-Roche
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; (S.G.); (S.T.); (I.A.I.)
| |
Collapse
|
6
|
Lotsios NS, Arvanitis N, Charonitakis AG, Mpekoulis G, Frakolaki E, Vassilaki N, Sideris DC, Vassilacopoulou D. Expression of Human L-Dopa Decarboxylase (DDC) under Conditions of Oxidative Stress. Curr Issues Mol Biol 2023; 45:10179-10192. [PMID: 38132481 PMCID: PMC10742706 DOI: 10.3390/cimb45120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a large number of studies, little is known about the biological significance of the enzyme under physiological and pathological conditions. Here, we investigated the relationship between DDC expression and oxidative stress in human neural and non-neural cells. Oxidative stress was induced by treatment with H2O2. Our data indicated that mRNA and protein expression of DDC was enhanced or remained stable under conditions of ROS induction, despite degradation of total RNA and increased cytotoxicity and apoptosis. Moreover, DDC silencing caused an increase in the H2O2-induced cytotoxicity. The current study suggests that DDC is involved in the mechanisms of oxidative stress.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - Nikolaos Arvanitis
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - Alexandros G. Charonitakis
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (G.M.); (N.V.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (G.M.); (N.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute (HPI), 11521 Athens, Greece; (G.M.); (N.V.)
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (N.S.L.); (N.A.); (A.G.C.); (D.C.S.)
| |
Collapse
|