1
|
Kumar R, Gullapalli RR. Evaluating combined effects of chronic, low-dose exposures of cadmium (CLEC) and hyperglycemia on insulin signaling dysfunction in a hepatocellular model. Toxicology 2024; 508:153929. [PMID: 39191366 PMCID: PMC11573001 DOI: 10.1016/j.tox.2024.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The pathophysiological effects of chronic heavy metal exposures on human health remains uncertain. In this study, we developed a novel chronic, low-dose exposure of Cadmium (CLEC) model using the hepatocellular cell lines, HepG2 and HUH7. We modulated cell culture conditions to mimic human normoglycemic (5.6 mM) and hyperglycemic (15 mM) states with concomitant cadmium (Cd) exposures for 24 weeks. CLEC cells undergo non-trivial alterations in glucose signaling and metabolic characteristics within our model. We observe elevated baseline reactive oxygen species (ROS) production and decreased 2-NBDG uptake indicative of glucose metabolic dysfunction. Additionally, induction of metallothionein (MT) expression, increased activation of Akt signaling (via phosphorylation) and reduced IRS-2 protein expression are observed in CLEC cells. Cell line specific changes are observed with HepG2 showing a much higher MT gene induction compared to HUH7 cell line which impacts glucose metabolic dysfunction. Hyperglycemic culture conditions (representing type II diabetes) significantly modulate CLEC effects on cells. In conclusion, pathophysiologically relevant models of chronic heavy metal exposures are urgently needed to gain an in-depth, mechanistic understanding of the long-term impacts of toxic metals (e.g., Cd) on human metabolic health.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pathology, United States; Department of Chemical and Biological Engineering, Room 333A, MSC08-4640, University of New Mexico, Albuquerque, NM 87131, United States; Center for Metals in Biology and Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Rama R Gullapalli
- Department of Pathology, United States; Department of Chemical and Biological Engineering, Room 333A, MSC08-4640, University of New Mexico, Albuquerque, NM 87131, United States; Center for Metals in Biology and Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
2
|
Tshoni UA, Mbonane TP, Rathebe PC. The Role of Trace Metals in the Development and Progression of Prostate Cancer. Int J Mol Sci 2024; 25:10725. [PMID: 39409053 PMCID: PMC11476615 DOI: 10.3390/ijms251910725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Over the years, prostate cancer (PCa) research has been of great interest, and trace metals have attracted a lot of attention due to their association with prostate cancer development and progression. PCa has a complex etiology, with genetic, environmental, and lifestyle factors being implicated. Trace metals such as zinc (Zn), mercury (Hg), selenium (Se), lead (Pb), cadmium (Cd), manganese (Mn), arsenic (As), and nickel (Ni) have garnered much attention in recent years, suspected of having direct links to the modulation of cancer risk and progression through their impacts on prostate cancer omics (genomics, epigenetics, proteomics, and transcriptomics). This has led to them being the subject of extensive research in this regard. In this review, we explored the influence of trace metals and offered a comprehensive analysis of the current knowledge on how trace metals affect the biology of prostate cancer at a molecular level by integrating findings from the recent literature to help suggest possible directions for future research.
Collapse
Affiliation(s)
| | | | - Phoka C. Rathebe
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa; (U.A.T.); (T.P.M.)
| |
Collapse
|
3
|
Mishra S, Paul R, Rani V, Ghosh DK, Jain BP. Cadmium toxicity on endoplasmic reticulum functioning. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:107-117. [PMID: 39309612 PMCID: PMC11411147 DOI: 10.62347/ouds3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Cadmium (Cd) is a heavy metal pollutant widely distributed in the environment due to industrial activities, mining, and agricultural practices. Cadmium-induced Toxicity exerts profound effects on ER functioning through multiple mechanisms, leading to cellular dysfunction and pathological consequences. Cadmium disrupts protein folding and activates the unfolded protein response (UPR). Cd exposure leads to the accumulation of misfolded proteins, triggering UPR pathways mediated by critical ER transmembrane sensors: IRE1, PERK, and ATF6. The subsequent UPR aims to restore ER homeostasis but can also induce apoptosis under severe stress conditions. Cd disrupts ER calcium homeostasis by inhibiting the SERCA pump, further exacerbating ER stress. The generation of reactive oxygen species (ROS also plays a critical role in Cd toxicity, damaging ER-resident proteins and amplifying UPR activation). Cadmium also affects the lipid metabolism. This review examines the mechanisms by which Cd toxicity impairs ER functioning, disruption of protein folding and quality control mechanisms, and dysregulation of calcium signaling and lipid metabolism. The subsequent cellular consequences, including oxidative stress, apoptosis, and inflammation, are discussed in the context of Cd-induced pathogenesis of diseases such as Cancer and neurodegenerative and cardiovascular disorders. Finally, potential therapeutic strategies must be explored to mitigate the adverse effects of Cd on ER functioning and human health.
Collapse
Affiliation(s)
- Shivani Mishra
- Gene Expression and Signaling Lab., Department of Zoology, Mahatma Gandhi Central UniversityMotihari, Bihar 845401, India
| | - Ramakrushna Paul
- Gene Expression and Signaling Lab., Department of Zoology, Mahatma Gandhi Central UniversityMotihari, Bihar 845401, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information TechnologyNoida, UP 201309, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab., Department of Zoology, Mahatma Gandhi Central UniversityMotihari, Bihar 845401, India
| |
Collapse
|
4
|
Khoshakhlagh AH, Mohammadzadeh M, Gruszecka-Kosowska A. The preventive and carcinogenic effect of metals on cancer: a systematic review. BMC Public Health 2024; 24:2079. [PMID: 39090615 PMCID: PMC11293075 DOI: 10.1186/s12889-024-19585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Many studies have investigated the role of metals in various types of malignancies. Considering the wide range of studies conducted in this field and the achievement of different results, the presented systematic review was performed to obtain the results of investigations on the prevention and occurrence of various types of cancer associated with metal exposures. METHODS In this review, research was conducted in the three databases: Scopus, PubMed, and Web of Science without historical restrictions until May 31, 2024. Animal studies, books, review articles, conference papers, and letters to the editors were omitted. The special checklist of Joanna Briggs Institute (JBI) was used for the quality assessment of the articles. Finally, the findings were classified according to the effect of the metal as preventive or carcinogenic. RESULTS The total number of retrieved articles was 4695, and 71 eligible results were used for further investigation. In most studies, the concentration of toxic metals such as lead (Pb), chromium (Cr (VI)), arsenic (As), cadmium (Cd), and nickel (Ni) in the biological and clinical samples of cancer patients was higher than that of healthy people. In addition, the presence of essential elements, such as selenium (Se), zinc (Zn), iron (Fe), and manganese (Mn) in tolerable low concentrations was revealed to have anti-cancer properties, while exposure to high concentrations has detrimental health effects. CONCLUSIONS Metals have carcinogenic effects at high levels of exposure. Taking preventive measures, implementing timely screening, and reducing the emission of metal-associated pollutants can play an effective role in reducing cancer rates around the world.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Agnieszka Gruszecka-Kosowska
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection, Al. A. Mickiewicza 30, Krakow, 30-059, Poland
| |
Collapse
|
5
|
Urzì Brancati V, Aliquò F, Freni J, Pantano A, Galipò E, Puzzolo D, Minutoli L, Marini HR, Campo GM, D’Ascola A. The Effects of Seleno-Methionine in Cadmium-Challenged Human Primary Chondrocytes. Pharmaceuticals (Basel) 2024; 17:936. [PMID: 39065786 PMCID: PMC11280455 DOI: 10.3390/ph17070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) is a potentially toxic element able to interfere with cellular functions and lead to disease or even death. Cd accumulation has been demonstrated in cartilage, where it can induce damage in joints. The aim of this study was to evaluate the effect of CdCl2 on primary cultures of human chondrocytes and the possible protective effect of seleno-methionine (Se-Met). Human primary articular chondrocytes were cultured and treated as follows: control groups, cells challenged with 7.5 μM and 10 μM CdCl2 alone, and cells pretreated with 10 and 20 μM Se-Met and then challenged with 7.5 μM and 10 μM CdCl2. Twenty-four hours after incubation, cell viability, histological evaluation with hematoxylin-eosin stain, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed. Furthermore, reverse transcription-PCR was carried out to evaluate mRNA levels of BAX, BAK1, CASP-3, and CASP-9. After CdCl2 challenge at both doses, a reduced cell viability and an overexpression of BAX, BAK1, CASP-3, and CASP-9 genes, as well as a high number of TUNEL-positive cells, were demonstrated, all parameters becoming higher as the dose of CdCl2 was increased. The pretreatment with Se-Met lowered the expression of all considered genes, improved cell viability and morphological changes, and reduced the number of TUNEL-positive cells. It was concluded that Se-Met plays a protective role against CdCl2-induced structural and functional changes in chondrocytes in vitro, as it improved cell viability and showed a positive role in the context of the apoptotic pathways. It is therefore suggested that a translational, multifaceted approach, with plant-based diets, bioactive functional foods, nutraceuticals, micronutrients, and drugs, is possibly advisable in situations of environmental pollution caused by potentially toxic elements.
Collapse
Affiliation(s)
- Valentina Urzì Brancati
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - Alice Pantano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Erika Galipò
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (F.A.); (J.F.); (D.P.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| | - Angela D’Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (V.U.B.); (A.P.); (E.G.); (H.R.M.); (G.M.C.); (A.D.)
| |
Collapse
|
6
|
Milošević N, Milanović M, Sazdanić Velikić D, Sudji J, Jovičić-Bata J, Španović M, Ševo M, Lukić Šarkanović M, Torović L, Bijelović S, Milić N. Biomonitoring Study of Toxic Metal(loid)s: Levels in Lung Adenocarcinoma Patients. TOXICS 2024; 12:490. [PMID: 39058142 PMCID: PMC11281202 DOI: 10.3390/toxics12070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide. The aim of this study was to investigate heavy metal(loid)s (Cd, Pb, Hg, Cr, Mn, Mo, Ni, and As) in lung cancer patients in order to elucidate their role as lung cancer environmental risk factors. Sixty-three patients of both sexes with adenocarcinoma stage IIIB or IV were enrolled in this research. The heavy metal(loid) urine concentrations were measured using ICP-MS. Arsenic was quantified above 10 μg/L in 44.44% of the samples. Nickel urinary concentrations above the ToxGuide reference levels were found in 50.79% of the samples, while lead was quantified in 9.52% of the urine samples. The urinary chromium levels were above the mean ToxGuide levels in 41.27% of the patients and were significantly higher in men in comparison with women (p = 0.035). The chromium urinary concentrations were positively associated with the CRP serum levels (p = 0.037). Cadmium was quantified in 61.90% of the samples with levels significantly higher in females than in males (p = 0.023), which was associated with smoking habits. Mercury was measured above the limit of quantification in 63.49% of the samples and was not associated with amalgam dental fillings. However, the Hg urinary concentrations were correlated positively with the ALT (p = 0.02), AST (p < 0.001), and GGT (p < 0.001) serum levels. In 46.03% of the samples, the Mo concentrations were above 32 μg/L, the mean value for healthy adults according to the ToxGuide, and 9.52% of the patients had Mn levels higher than 8 μg/L, the reference value for healthy adults based on ToxGuide data. The obtained results are preliminary, and further studies are needed to have a deeper insight into metal(loid) exposure's association with lung cancer development, progression, and survival prediction.
Collapse
Affiliation(s)
- Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Danica Sazdanić Velikić
- Institute for Pulmonary Diseases of Vojvodina, Clinic for Pulmonary Oncology, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia;
| | - Jan Sudji
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Jelena Jovičić-Bata
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Milorad Španović
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Mirjana Ševo
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- IMC Banja Luka-Center of Radiotherapy, Part of Affidea Group, 78000 Banja Luka, Bosnia and Herzegovina
| | - Mirka Lukić Šarkanović
- Clinical Center of Vojvodina, Clinic for Anesthesiology, Intensive Therapy and Pain Therapy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Sanja Bijelović
- Institute of Public Health of Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| |
Collapse
|
7
|
Lee PC, Lin MW, Liao HC, Lin CY, Liao PH. Applying machine learning to construct an association model for lung cancer and environmental hormone high-risk factors and nursing assessment reconstruction. J Nurs Scholarsh 2024. [PMID: 38837653 DOI: 10.1111/jnu.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION To utilize machine learning techniques to develop an association model linking lung cancer and environmental hormones to enhance the understanding of potential lung cancer risk factors and refine current nursing assessments for lung cancer. DESIGN This study is exploratory in nature. In Stage 1, data were sourced from a biological database, and machine learning methods, including logistic regression and neural-like networks, were employed to construct an association model. Results indicate significant associations between lung cancer and blood cadmium, urine cadmium, urine cadmium/creatinine, and di(2-ethylhexyl) phthalate. In Stage 2, 128 lung adenocarcinoma patients were recruited through convenience sampling, and the model was validated using a questionnaire assessing daily living habits and exposure to environmental hormones. RESULTS Analysis reveals correlations between the living habits of patients with lung adenocarcinoma and exposure to blood cadmium, urine cadmium, urine cadmium/creatinine, polyaromatic hydrocarbons, diethyl phthalate, and di(2-ethylhexyl) phthalate. CONCLUSIONS According to the World Health Organization's global statistics, lung cancer claims approximately 1.8 million lives annually, with more than 50% of patients having no history of smoking or non-traditional risk factors. Environmental hormones have garnered significant attention in recent years in pathogen exploration. However, current nursing assessments for lung cancer risk have not incorporated environmental hormone-related factors. This study proposes reconstructing existing lung cancer nursing assessments with a comprehensive evaluation of lung cancer risks. CLINICAL RELEVANCE The findings underscore the importance of future studies advocating for public screening of environmental hormone toxins to increase the sample size and validate the model externally. The developed association model lays the groundwork for advancing cancer risk nursing assessments.
Collapse
Affiliation(s)
- Pin-Chieh Lee
- Department of Nursing, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Mong-Wei Lin
- Department of Surgery, Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chi Liao
- College of Medicine, Department of Traumatology, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Chan-Yi Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hung Liao
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
8
|
Romashin D, Rusanov A, Tolstova T, Varshaver A, Netrusov A, Kozhin P, Luzgina N. Loss of mutant p53 in HaCaT keratinocytes promotes cadmium-induced keratin 17 expression and cell death. Biochem Biophys Res Commun 2024; 709:149834. [PMID: 38547608 DOI: 10.1016/j.bbrc.2024.149834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 μM or higher, whereas wild-type cells displayed cell death at a concentration of 30 μM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 μM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 μM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.
Collapse
Affiliation(s)
- Daniil Romashin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia.
| | - Tatiana Tolstova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexandra Varshaver
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Netrusov
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| | - Peter Kozhin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| |
Collapse
|
9
|
Ali Hussein M, Kamalakkannan A, Valinezhad K, Kannan J, Paleati N, Saad R, Kajdacsy-Balla A, Munirathinam G. The dynamic face of cadmium-induced Carcinogenesis: Mechanisms, emerging trends, and future directions. Curr Res Toxicol 2024; 6:100166. [PMID: 38706786 PMCID: PMC11068539 DOI: 10.1016/j.crtox.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Cadmium (Cd) is a malleable element with odorless, tasteless characteristics that occurs naturally in the earth's crust, underground water, and soil. The most common reasons for the anthropological release of Cd to the environment include industrial metal mining, smelting, battery manufacturing, fertilizer production, and cigarette smoking. Cadmium-containing products may enter the environment as soluble salts, vapor, or particle forms that accumulate in food, soil, water, and air. Several epidemiological studies have highlighted the association between Cd exposure and adverse health outcomes, especially renal toxicity, and the impact of Cd exposure on the development and progression of carcinogenesis. Also highlighted is the evidence for early-life and even maternal exposure to Cd leading to devastating health outcomes, especially the risk of cancer development in adulthood. Several mechanisms have been proposed to explain how Cd mediates carcinogenic transformation, including epigenetic alteration, DNA methylation, histone posttranslational modification, dysregulated non-coding RNA, DNA damage in the form of DNA mutation, strand breaks, and chromosomal abnormalities with double-strand break representing the most common DNA form of damage. Cd induces an indirect genotoxic effect by reducing p53's DNA binding activity, eventually impairing DNA repair, inducing downregulation in the expression of DNA repair genes, which might result in carcinogenic transformation, enhancing lipid peroxidation or evasion of antioxidant interference such as catalase, superoxide dismutase, and glutathione. Moreover, Cd mediates apoptosis evasion, autophagy activation, and survival mechanisms. In this review, we decipher the role of Cd mediating carcinogenic transformation in different models and highlight the interaction between various mechanisms. We also discuss diagnostic markers, therapeutic interventions, and future perspectives.
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt, 57357 Cairo, Egypt
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Abishek Kamalakkannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Kamyab Valinezhad
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Jhishnuraj Kannan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | - Nikhila Paleati
- Department of Psychology and Neuroscience, College of Undergraduate Studies, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rama Saad
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - André Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
10
|
Hu M, Xu J, Shi L, Shi L, Yang H, Wang Y. The p38 MAPK/snail signaling axis participates in cadmium-induced lung cancer cell migration and invasiveness. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24042-24050. [PMID: 38436850 DOI: 10.1007/s11356-024-32746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
To determine that p38 MAPK activation contributes to the migration and invasion of lung cancer cells caused by cadmium (Cd). A549 lung cancer cell migration and invasion were assessed using a transwell plate system, and the role of p38 was determined by knocking down p38 activity with two different inhibitors of p38. The activity of p38 was measured by western blot analysis using phospho-specific p38 antibodies and normalized to blots using antibodies directed to total p38 proteins. Snail transcripts were measured using qRT-PCR. The inhibition of p38 blocked Cd-induced migration and invasion, which correlated with an increased activation of p38 as a function of dose and time. Furthermore, Cd-induced activation of p38 MAPK controlled the increase of snail mRNA expression. The p38 MAPK/snail signaling axis was involved in Cd-induced lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Mengke Hu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China.
| |
Collapse
|
11
|
Romashin D, Arzumanian V, Poverennaya E, Varshaver A, Luzgina N, Rusanov A. Evaluation of Cd-induced cytotoxicity in primary human keratinocytes. Hum Exp Toxicol 2024; 43:9603271231224458. [PMID: 38174414 DOI: 10.1177/09603271231224458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An increasing number of studies have investigated the effects of Cd on human health. Cd-induced dermatotoxicity is an important field of research, but numerous studies have focused on the effects of Cd on the human skin. Moreover, most studies have been performed using HaCaT cells but not primary keratinocytes. In this study, we provide the results describing the cytotoxic effects of Cd exposure on primary human epidermal keratinocytes obtained from different donors. The subtoxic concentration of cadmium chloride was determined via MTT assay, and transcriptomic analysis of the cells exposed to this concentration (25 µM) was performed. As in HaCaT cells, Cd exposure resulted in increased ROS levels, cell cycle arrest, and induction of apoptosis. In addition, we report that exposure to Cd affects zinc and copper homeostasis, induces metallothionein expression, and activates various signaling pathways, including Nrf2, NF-kB, TRAIL, and PI3K. Cd induces the secretion of various cytokines (IL-1, IL-6, IL-10, and PGE2) and upregulates the expression of several cytokeratins, such as KRT6B, KRT6C, KRT16, and KRT17. The results provide a better understanding of the mechanisms of cadmium-induced cytotoxicity and its effect on human epidermal skin cells.
Collapse
|
12
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
13
|
Chou LC, Tsai CC. Assessing the Effectiveness of Fermented Banana Peel Extracts for the Biosorption and Removal of Cadmium to Mitigate Inflammation and Oxidative Stress. Foods 2023; 12:2632. [PMID: 37444370 DOI: 10.3390/foods12132632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This study identified 11 lactic acid bacteria (LAB) strains that exhibited tolerance to heavy metal cadmium concentrations above 50 ppm for 48 h. Among these strains, T126-1 and T40-1 displayed the highest tolerance, enduring cadmium concentrations up to 500 ppm while still inhibiting bacterial growth by 50%. Moreover, the fermentation of banana peel using LAB significantly enhanced the clearance rate of cadmium (p < 0.05) compared to nonfermented banana peel. Additionally, the LAB-fermented banana peel exhibited higher 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and reduced power values. Strain T40-1 exhibited a significant improvement in its ability to chelate ferrous ions (p < 0.05). Regarding antibiotic resistance, both the T40-1 and TH3 strains demonstrated high resistance with a third-level inhibition rate against ampicillin and tetracycline. Cell viability tests revealed that incubation with the T40-1 and TH3 strains for a duration of 24 h did not result in any cellular damage. Moreover, these LAB strains effectively mitigated oxidative stress markers, such as reactive oxygen species (ROS), glutathione (GSH), and lactate dehydrogenase (LDH), caused by 2 ppm cadmium on cells. Furthermore, the LAB strains were able to reduce the inflammatory response, as evidenced by a decrease in interleukin-8 (IL-8) levels (p < 0.05). The use of Fourier transform infrared (FT-IR) spectroscopy analysis provided valuable insight into the interaction between metal ions and the organic functional groups present on the cell wall of fermented banana peel. In summary, this study highlights the potential of the LAB strains T40-1 and TH3 in terms of their tolerance to the cadmium, ability to enhance cadmium clearance rates, and their beneficial effects on oxidative stress, inflammation, and cell viability.
Collapse
Affiliation(s)
- Lan-Chun Chou
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| | - Cheng-Chih Tsai
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
14
|
Nagaraju R, Kalahasthi R, Balachandar R, Bagepally BS. Cadmium exposure and DNA damage (genotoxicity): a systematic review and meta-analysis. Crit Rev Toxicol 2023; 52:786-798. [PMID: 36802997 DOI: 10.1080/10408444.2023.2173557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Existing literature suggests an association between chronic cadmium (Cd) exposure and the induction of DNA damage and genotoxicity. However, observations from individual studies are inconsistent and conflicting. Therefore current systematic review aimed to pool evidence from existing literature to synthesize quantitative and qualitative corroboration on the association between markers of genotoxicity and occupational Cd exposed population. Studies that evaluated markers of DNA damage among occupationally Cd-exposed and unexposed workers were selected after a systematic literature search. The DNA damage markers included were chromosomal aberrations (chromosomal, chromatid, sister chromatid exchange), Micronucleus (MN) frequency in mono and binucleated cells (MN with condensed chromatin, lobed nucleus, nuclear buds, mitotic index, nucleoplasmatic bridges, pyknosis, and karyorrhexis), comet assay (tail intensity, tail length, tail moment, and olive tail moment), and oxidative DNA damage (8-hydroxy-deoxyguanosine). Mean differences or standardized mean differences were pooled using a random-effects model. The Cochran-Q test and I2 statistic were used to monitor heterogeneity among included studies. Twenty-nine studies with 3080 occupationally Cd-exposed and 1807 unexposed workers were included in the review. Cd among the exposed group was higher in blood [4.77 μg/L (-4.94-14.48)] and urine samples [standardized mean difference 0.47 (0.10-0.85)] than in the exposed group. The Cd exposure is positively associated with higher levels of DNA damage characterized by increased frequency of MN [7.35 (-0.32-15.02)], sister chromatid exchange [20.30 (4.34-36.26)], chromosomal aberrations, and oxidative DNA damage (comet assay and 8OHdG [0.41 (0.20-0.63)]) compared to the unexposed. However, with considerable between-study heterogeneity. Chronic Cd exposure is associated with augmented DNA damage. However, more extensive longitudinal studies with adequate sample sizes are necessary to assist the current observations and promote comprehension of the Cd's role in inducing DNA damage.Prospero Registration ID: CRD42022348874.
Collapse
Affiliation(s)
- Raju Nagaraju
- Department of Biochemistry, Regional Occupational Health Centre (Southern), ICMR-National Institute of Occupational Health, Bengaluru, India
| | - Ravibabu Kalahasthi
- Department of Biochemistry, Regional Occupational Health Centre (Southern), ICMR-National Institute of Occupational Health, Bengaluru, India
| | - Rakesh Balachandar
- Department of Clinical Epidemiology, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | | |
Collapse
|
15
|
Chwalba A, Orłowska J, Słota M, Jeziorska M, Filipecka K, Bellanti F, Dobrakowski M, Kasperczyk A, Zalejska-Fiolka J, Kasperczyk S. Effect of Cadmium on Oxidative Stress Indices and Vitamin D Concentrations in Children. J Clin Med 2023; 12:jcm12041572. [PMID: 36836105 PMCID: PMC9959653 DOI: 10.3390/jcm12041572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Heavy metal poisoning can have serious health consequences, including damage to the brain, kidneys, and other organs. Cadmium is a toxic heavy metal that can accumulate in the body over time and the exposure to this element has been linked to a variety of adverse health effects. Cadmium toxicity can lead to an imbalance in the cellular redox state and be a source of oxidative stress. On the molecular level, cadmium ions negatively affect cellular metabolism, including the disruption of energy production, protein synthesis, and DNA damage. The study has been carried out on a group of 140 school-age children (8 to 14 years old) inhabiting the industrialized areas of Upper Silesia. The study population was divided into two sub-groups based on the median concentration of cadmium in blood (0.27 µg/L): Low-CdB and High-CdB. Measured traits comprised blood cadmium levels (CdB) as well as a blood count and selected oxidative stress markers. This research study aimed to demonstrate a correlation between the impact of exposure to elevated cadmium concentrations in a population of children and certain markers of oxidative stress, and 25-OH vitamin D3 concentration. A negative correlation has been found between cadmium concentration and 25-OH vitamin D3 level, protein sulfhydryl groups content in blood serum, glutathione reductase activity, and lipofuscin and malondialdehyde levels in erythrocytes. The concentration of 25-OH vitamin D3 in the High-CdB group was decreased by 23%. The oxidative stress indices can be considered a valuable indicator of early Cd-toxicity effects to be included in the routinely-applied cadmium exposure monitoring parameters, allowing the evaluation of stress intensity to the cell metabolism.
Collapse
Affiliation(s)
- Artur Chwalba
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Joanna Orłowska
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332 Bukowno, Poland
| | - Marta Jeziorska
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Kinga Filipecka
- Centrum Medyczne MED-KOZ & MEDIKO Dąbrowski ul., Lipowa 2, 43-340 Kozy, Poland
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
- Correspondence:
| |
Collapse
|
16
|
Szukalska M, Frączyk T, Florek E, Pączek L. Concentrations of Transition Metal Ions in Rat Lungs after Tobacco Smoke Exposure and Treatment with His-Leu Dipeptide. Molecules 2023; 28:628. [PMID: 36677686 PMCID: PMC9862342 DOI: 10.3390/molecules28020628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tobacco smoking is deleterious to the lungs because it exposes them to many toxic substances. These include transition metal ions, such as cadmium. However, there is a lack of information about the influence of endogenous metal-binding peptides, such as His-Leu (HL), on the lung distribution of transition metals in smokers. To address this, we administered HL subcutaneously to rats exposed to tobacco smoke for six weeks, then we measured the concentrations of transition metal ions in the lungs. We found that exposure to tobacco smoke elevates the concentrations of Cd(II) and Cu(II). Administration of the HL peptide, whose elevation is a consequence of angiotensin receptor blocker anti-hypertension therapy, increases the concentration of Fe in the lungs of rats exposed to smoke. These findings suggest that smoking is a risk factor for patients receiving angiotensin receptor blockers to treat hypertension.
Collapse
Affiliation(s)
- Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Leszek Pączek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
17
|
Karunasinghe N. Zinc in Prostate Health and Disease: A Mini Review. Biomedicines 2022; 10:biomedicines10123206. [PMID: 36551962 PMCID: PMC9775643 DOI: 10.3390/biomedicines10123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction-With the high global prevalence of prostate cancer and associated mortalities, it is important to enhance current clinical practices for better prostate cancer outcomes. The current review is towards understanding the value of Zn towards this mission. Method-General information on Zn in biology and multiple aspects of Zn involvement in prostate health and disease were referred to in PubMed. Results-The most influential feature of Zn towards prostate health is its ability to retain sufficient citrate levels for a healthy prostate. Zn deficiencies were recorded in serum, hair, and prostate tissue of men with prostate cancer compared to non-cancer controls. Zn gut absorption, albumin binding, and storage compete with various factors. There are multiple associations of Zn cellular influx and efflux transporters, Zn finger proteins, matrix metalloproteinases, and Zn signaling with prostate cancer outcomes. Such Zn marker variations associated with prostate cancer recorded from biological matrices may improve algorithms for prostate cancer screening, prognosis, and management when coupled with standard clinical practices. Discussion-The influence of Zn in prostatic health and disease is multidimensional, therefore more personalized Zn requirements may be beneficial. Several opportunities exist to utilize and improve understanding of Zn associations with prostate health and disease.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Chen XX, Xu YM, Lau ATY. Metabolic effects of long-term cadmium exposure: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89874-89888. [PMID: 36367641 DOI: 10.1007/s11356-022-23620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Cadmium (Cd) is a toxic non-essential heavy metal. Chronic low Cd exposure (CLCE) has been associated with distinct pathologies in many organ systems, including liver and kidney damage, osteoporosis, carcinogenicity, or reproductive toxicity. Currently, about 10% of the global population is at risk of CLCE. It is urgent to find robust and effective biomarkers for early diagnosis of Cd exposure and treatment. Metabolomics is a high-throughput method based on mass spectrometry to study the dynamic changes in a series of endogenous small molecular metabolites (typically < 1000 Da) of tissues, cells, or biofluids. It can reflect the rich and complex biochemical changes in the body after exposure to heavy metals, which may be useful in screening biomarkers to monitor exposure to environmental pollutants and/or predict disease risk. Therefore, this review focuses on the changes in metabolic profiles of humans and rodents under long-term Cd exposure from the perspective of metabolomics. Furthermore, the relationship between the disturbance of metabolic pathways and the toxic mechanism of Cd is discussed. All these information will facilitate the development of reliable metabolic biomarkers for early detection and diagnosis of Cd-related diseases.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
19
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
20
|
Aalami AH, Hoseinzadeh M, Hosseini Manesh P, Jiryai Sharahi A, Kargar Aliabadi E. Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Mol Biol Rep 2022; 49:12227-12238. [PMID: 36269534 DOI: 10.1007/s11033-022-07897-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Heavy metal exposure has soared due to the twentieth century's industrial activity. The most common heavy metals that lead to human poisoning are mercury, cadmium, and arsenic. Acute or chronic poisoning may develop following exposure to water, air, or food, so the bioaccumulation of these heavy metals causes harmful consequences in various human tissues and organs. Heavy metals interfere with biological functions such as growth, proliferation, differentiation, damage repair, and apoptosis. The mechanisms of action for these metals to cause toxicity are similar, including forming reactive oxygen species (ROS), weakening antioxidant defenses, enzyme inactivation, and oxidative stress. Heavy metal exposure is mainly associated with skin, liver, prostate, lung, urinary bladder, thyroid, and kidney cancers, as well as causing gastrointestinal malignancies. Several microRNAs (miRNAs or miRs) have been involved in various human cancers due to the dysregulation of miRNA function. Recent investigations have confirmed that microRNA dysregulation plays a role in the carcinogenesis of many tissues. This review presents the data concerning arsenic, cadmium, and mercury metals and their contamination sources, human exposure, toxicity, and inducing malignant transformations such as carcinogenicity in in-vitro or in-vivo specimens or dysregulated expression of microRNAs.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, P.O. Box: 91871-47578, Mashhad, Iran.
| | - Mohammadsaleh Hoseinzadeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parsa Hosseini Manesh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Jiryai Sharahi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ehsan Kargar Aliabadi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Environmental Exposure to Metals, Parameters of Oxidative Stress in Blood and Prostate Cancer: Results from Two Cohorts. Antioxidants (Basel) 2022; 11:antiox11102044. [PMID: 36290767 PMCID: PMC9598453 DOI: 10.3390/antiox11102044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
We studied the potential role of exposure to various metal(oid)s (As, Cd, Cr, Hg, Ni, and Pb) in prostate cancer. Two cohorts were established: the Croatian cohort, consisting of 62 cases and 30 controls, and the Serbian cohort, consisting of 41 cases and 61 controls. Blood/serum samples were collected. Levels of investigated metal(oid)s, various parameters of oxidative stress, and prostate-specific antigen (PSA) were determined in collected samples. A comparison of the measured parameters between 103 prostate cancer patients and 91 control men from both Croatian and Serbian cohorts showed significantly higher blood Hg, SOD, and GPx levels and significantly lower serum SH levels in prostate cancer patients than in controls. Correlation analyses revealed the significant relationship between certain parameters of oxidative stress and the concentrations of the measured metal(loid)s, pointing to the possible role of metal(oid)-induced oxidative stress imbalance. Furthermore, a significant inverse relationship was found between the blood Pb and the serum PSA in prostate cancer patients, but when the model was adjusted for the impacts of remaining parameters, no significant association between the serum PSA and the measured parameters was found. The results of the overall study indicate a substantial contribution of the measured metal(loid)s to the imbalance of the oxidant/antioxidant system. Although somewhat conflicting, the results of the present study point to the possible role of investigated metal(oid)s in prostate cancer, especially for Hg, since the obtained relationship was observed for both cohorts, followed by the disturbances in oxidative stress status, which were found to be correlated with Hg levels. Nevertheless, further studies in larger cohorts are warranted to explain and confirm the obtained results.
Collapse
|
22
|
Tariba Lovaković B, Jagić K, Dvoršćak M, Klinčić D. Trace elements in indoor dust-Children's health risk considering overall daily exposure. INDOOR AIR 2022; 32:e13104. [PMID: 36168220 DOI: 10.1111/ina.13104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Indoor dust presents an important source of daily exposure to toxic elements. The present study reports for the first time the levels of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Se, Sr, Tl, V, and Zn measured in dust samples collected from 10 kindergartens and 21 cars from Zagreb, Croatia. Based on the obtained data, we assessed the health risks from overall daily exposure to trace elements for children aged 2-6 years taking into account three pathways of dust intake-ingestion, dermal absorption, and inhalation. The median concentration of most elements was significantly higher in dust obtained from cars compared to kindergartens, especially in the cases of Co (11.62 vs. 3.60 mg kg-1 ), Cr (73.55 vs. 39.89 mg kg-1 ), Cu (186.33 vs. 26.01 mg kg-1 ), Mo (8.599 vs. 0.559 mg kg-1 ), Ni (37.05 vs. 17.38 mg kg-1 ), and Sn (9.238 vs. 1.159 mg kg-1 ). Oral intake was identified as the most important exposure pathway, except for Cr, Ni, and Sb where dermal contact was the main route of exposure. Health risk assessment indicated that no adverse effects are expected from overall exposure to trace elements. Although the cases of high exposure to toxic elements are not common in areas with no significant environmental pollutants, due to the health threat they may present even at low levels, their status should be carefully monitored.
Collapse
Affiliation(s)
| | - Karla Jagić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marija Dvoršćak
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Darija Klinčić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
23
|
Adebiyi O, Adigun K, David-Odewumi P, Akindele U, Olayemi F. Gallic and ascorbic acids supplementation alleviate cognitive deficits and neuropathological damage exerted by cadmium chloride in Wistar rats. Sci Rep 2022; 12:14426. [PMID: 36002551 PMCID: PMC9402671 DOI: 10.1038/s41598-022-18432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that interferes with DNA repair mechanisms via generation of reactive oxygen species. The potentials of polyphenols and antioxidants as effective protective agents following heavy metal-induced neurotoxicity are emerging. We therefore explored the neuroprotective potentials of gallic and ascorbic acids in CdCl2-induced neurotoxicity. Seventy-two Wistar rats were divided into six groups. Group A received distilled water, B: 3 mg/kg CdCl2, C: 3 mg/kg CdCl2 + 20 mg/kg gallic acid (GA), D: 3 mg/kg CdCl2 + 10 mg/kg ascorbic acid (AA), E: 20 mg/kg GA and F: 10 mg/kg AA orally for 21 days. Depression, anxiety, locomotion, learning and memory were assessed using a battery of tests. Neuronal structure and myelin expression were assessed with histological staining and immunofluorescence. The Morris Water Maze test revealed significant increase in escape latency in CdCl2 group relative to rats concurrently treated with GA or AA. Similarly, time spent in the target quadrant was reduced significantly in CdCl2 group relative to other groups. Concomitant administration of gallic acid led to significant reduction in the durations of immobility and freezing that were elevated in CdCl2 group during forced swim and open field tests respectively. Furthermore, GA and AA restored myelin integrity and neuronal loss observed in the CdCl2 group. We conclude that gallic and ascorbic acids enhance learning and memory, decrease anxiety and depressive-like behavior in CdCl2-induced neurotoxicity with accompanying myelin-protective ability.
Collapse
Affiliation(s)
- Olamide Adebiyi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria.
| | - Kabirat Adigun
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Praise David-Odewumi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uthman Akindele
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Funsho Olayemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
24
|
Liu T, Li B, Zhou X, Chen H. A Study on the Time-Effect and Dose-Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods 2022; 11:foods11091340. [PMID: 35564063 PMCID: PMC9100615 DOI: 10.3390/foods11091340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate the protective effect of Opuntia dillenii (Ker-Gaw) Haw. polysaccharide (ODP) against cadmium-induced liver injury. Cadmium chloride (CdCl2) was used to construct a mice evaluation model, and the indicators chosen included general signs, liver index, biochemical indicators, blood indicators, and pathological changes. A dose of 200 mg/kg ODP was applied to the mice exposed to cadmium for different lengths of time (7, 14, 21, 28, and 35 days). The results showed that CdCl2 intervention led to slow weight growth (reduced by 13−20%); liver enlargement; significantly increased aspartate aminotransferase (AST, 45.6−52.0%), alanine aminotransferase (ALT, 26.6−31.3%), and alkaline phosphatase (ALP, 38.2−43.1%) levels; and significantly decreased hemoglobin (HGB, 13.1−15.2%), mean corpuscular hemoglobin (MCH, 16.5−19.3%), and mean corpuscular hemoglobin concentrations (MCHC, 8.0−12.7%) (p < 0.01). In addition, it led to pathological features such as liver cell swelling, nuclear exposure, central venous congestion, apoptosis, and inflammatory cell infiltration. The onset of ODP anti-cadmium-induced liver injury occurred within 7 days after administration, and the efficacy reached the highest level after continuous administration for 14 days, a trend that could continue until 35 days. Different doses (50, 100, 200, 400, and 600 mg/kg) of ODP have a certain degree of protective effect on cadmium-induced liver injury, showing a good dose−effect relationship. After 28 days of administration of a 200 mg/kg dose, all pathological indicators were close to normal values. These findings indicated that ODP had positive activity against cadmium-induced liver injury and excellent potential for use as a health food or therapeutic drug.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Bianli Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
- Correspondence: ; Tel.: +86-851-8669-0018; Fax: +86-851-8669-0018
| |
Collapse
|
25
|
Highly efficient Cd(II) removal using macromolecular dithiocarbamate/slag-based geopolymer composite microspheres (SGM-MDTC). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042416. [PMID: 35206604 PMCID: PMC8878469 DOI: 10.3390/ijerph19042416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3β-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.
Collapse
|
27
|
Wang L, Bu T, Wu X, Gao S, Li X, De Jesus AB, Wong CKC, Chen H, Chung NPY, Sun F, Cheng CY. Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells 2022; 11:cells11040591. [PMID: 35203242 PMCID: PMC8869896 DOI: 10.3390/cells11040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence has shown that cell-cell interactions between testicular cells, in particular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis. The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplasmic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the seminiferous epithelium. These ultrastructures are present in both rodent and human testes, but the majority of studies found in the literature were done in rodent testes. As such, our discussion herein, unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus, manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance, using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and their mutants), including the use of specific activator(s) of the involved signaling proteins against pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these recent findings, highlighting the direction for future investigations by bringing the laboratory-based research through a translation path to clinical investigations.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xinyao Li
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | | | - Chris K. C. Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China;
| | - Hao Chen
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Nancy P. Y. Chung
- Department of Genetic Medicine, Cornell Medical College, New York, NY 10065, USA;
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Correspondence: (F.S.); (C.Y.C.)
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (F.S.); (C.Y.C.)
| |
Collapse
|