1
|
Huo H, Bao H. Comparative study on the anti-tumor effect of steroids derived from different organisms in H22 tumor-bearing mice and analysis of their mechanisms. Eur J Pharmacol 2024; 963:176269. [PMID: 38096966 DOI: 10.1016/j.ejphar.2023.176269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
This study aimed to comparatively investigate the anti-tumor mechanisms of steroids including ergosterol, β-sitosterol, cholesterol, and fucosterol. The model of H22 tumor-bearing mice was constructed based on histopathological data and biochemical parameters, while serums were subjected to metabolomics analysis to study the potential anti-tumor mechanisms. The results indicated that the four steroids exhibited different degrees of anti-tumor effects on H22 mice. The tumor inhibition rates were 63.25% for ergosterol, 56.41% for β-sitosterol, 61.54% for cholesterol, and 72.65% for fucosterol. Metabolomic analyses revealed that 87, 71, and 129 differential metabolites were identified in ergosterol, cholesterol, and fucosterol treatment groups, respectively. The fucosterol treatment group had the highest number of differential metabolites. At the same time, it mainly inhibited purine and amino acid metabolism to exert anti-tumor effects. Ergosterol enhanced immunity and affected pyruvate metabolism, and cholesterol inhibited purine metabolism. The chemical structure difference among ergosterol, cholesterol, and fucosterol is mainly at the number and position of sterol double bonds and the number and length of side chain carbons. Therefore, there is a structure-activity relationship between the structure of steroid compounds and their efficacy. This study provides a key foundation for the exploitation of the anti-tumor effects of steroids derived from different organisms.
Collapse
Affiliation(s)
- Huimin Huo
- College of Traditional Chinese Materia Medica & Key Research Laboratory for the Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Haiying Bao
- College of Traditional Chinese Materia Medica & Key Research Laboratory for the Development and Utilization of Fungi Traditional Chinese Medicine Resources, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Edible Fungi Resources and Utilization, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
2
|
Yang W, Gage H, Jackson D, Raats M. The effectiveness and cost-effectiveness of plant sterol or stanol-enriched functional foods as a primary prevention strategy for people with cardiovascular disease risk in England: a modeling study. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2018; 19:909-922. [PMID: 29110223 PMCID: PMC6105215 DOI: 10.1007/s10198-017-0934-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
This study appraises the effectiveness and cost-effectiveness of consumption of plant sterol-enriched margarine-type spreads for the prevention of cardiovascular disease (CVD) in people with hypercholesterolemia in England, compared to a normal diet. A nested Markov model was employed using the perspective of the British National Health Service (NHS). Effectiveness outcomes were the 10-year CVD risk of individuals with mild (4-6 mmol/l) and high (above 6 mmol/l) cholesterol by gender and age groups (45-54, 55-64, 65-74, 75-85 years); CVD events avoided and QALY gains over 20 years. This study found that daily consumption of enriched spread reduces CVD risks more for men and older age groups. Assuming 50% compliance, 69 CVD events per 10,000 men and 40 CVD events per 10,000 women would be saved over 20 years. If the NHS pays the excess cost of enriched spreads, for the high-cholesterol group, the probability of enriched spreads being cost-effective is 100% for men aged over 64 years and women over 74, at £20,000/QALY threshold. Probabilities of cost-effectiveness are lower at younger ages, with mildly elevated cholesterol and over a 10-year time horizon. If consumers bear the full cost of enriched spreads, NHS savings arise from reduced CVD events.
Collapse
Affiliation(s)
- Wei Yang
- Department of Global Health and Social Medicine, King’s College London, London, WC2R 2LS UK
| | - Heather Gage
- School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Daniel Jackson
- School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Monique Raats
- School of Psychology, Faculty of Health and Medical Sciences, Food, Consumer Behaviour and Health Research Centre, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
3
|
Yoo EG. Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 2016; 21:7-14. [PMID: 27104173 PMCID: PMC4835564 DOI: 10.6065/apem.2016.21.1.7] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
Sitosterolemia is an autosomal recessive disorder characterized by increased plant sterol levels, xanthomas, and accelerated atherosclerosis. Although it was originally reported in patients with normolipemic xanthomas, severe hypercholesterolemia have been reported in patients with sitosterolemia, especially in children. Sitosterolemia is caused by increased intestinal absorption and decreased biliary excretion of sterols resulting from biallelic mutations in either ABCG5 or ABCG8, which encode the sterol efflux transporter ABCG5 and ABCG8. Patients with sitosterolemia show extreme phenotypic heterogeneity, ranging from almost asymptomatic individuals to those with severe hypercholesterolemia leading to accelerated atherosclerosis and premature cardiac death. Hematologic manifestations include hemolytic anemia with stomatocytosis, macrothrombocytopenia, splenomegaly, and abnormal bleeding. The mainstay of therapy includes dietary restriction of both cholesterol and plant sterols and the sterol absorption inhibitor, ezetimibe. Foods rich in plant sterols include vegetable oils, wheat germs, nuts, seeds, avocado, shortening, margarine and chocolate. Hypercholesterolemia in patients with sitosterolemia is dramatically responsive to low cholesterol diet and bile acid sequestrants. Plant sterol assay should be performed in patients with normocholesterolemic xanthomas, hypercholesterolemia with unexpectedly good response to dietary modifications or to cholesterol absorption inhibitors, or hypercholesterolemia with poor response to statins, or those with unexplained hemolytic anemia and macrothrombocytopenia. Because prognosis can be improved by proper management, it is important to find these patients out and diagnose correctly. This review article aimed to summarize recent publications on sitosterolemia, and to suggest clinical indications for plant sterol assay.
Collapse
Affiliation(s)
- Eun-Gyong Yoo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
4
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
5
|
Becker DJ, French B, Morris PB, Silvent E, Gordon RY. Phytosterols, red yeast rice, and lifestyle changes instead of statins: a randomized, double-blinded, placebo-controlled trial. Am Heart J 2013; 166:187-96. [PMID: 23816039 DOI: 10.1016/j.ahj.2013.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/26/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Many patients who refuse or cannot tolerate statin drugs choose alternative therapies for lipid lowering. OBJECTIVES This study aimed to determine the lipid-lowering effects of phytosterol tablets and lifestyle change (LC) on top of red yeast rice (RYR) therapy in patients with a history of statin refusal or statin-associated myalgias. DESIGN A total of 187 participants (mean low-density lipoprotein cholesterol [LDL-C], 154 mg/dL) took RYR 1800 mg twice daily and were randomized to phytosterol tablets 900 mg twice daily or placebo. Participants were also randomized to a 12-week LC program or usual care (UC). Primary end point was change in LDL-C at 12, 24, and 52 weeks. Secondary end points were effect on other lipoproteins, high-sensitivity C-reactive protein, weight, and development of myalgia. RESULTS Phytosterols did not significantly improve LDL-C at weeks 12 (P = .54), 24 (P = .67), or 52 (P = .76) compared with placebo. Compared with the UC group, the LC group had greater reductions in LDL-C at weeks 12 (-51 vs -42 mg/dL, P = .006) and 24 (-48 vs -40 mg/dL, P = .034) and was 2.3 times more likely to achieve an LDL-C <100 mg/dL (P = .004). The LC group lost more weight for 1 year (-2.3 vs -0.3 kg, P < .001). All participants took RYR and had significant decreases in LDL-C, total cholesterol, triglycerides, high-sensitivity C-reactive protein, and an increase in high-density lipoprotein cholesterol for 1 year when compared with baseline (P < .001). Four participants stopped supplements because of myalgia. CONCLUSIONS The addition of phytosterol tablets to RYR did not result in further lowering of LDL-C levels. Participants in an LC program lost significantly more weight and were more likely to achieve an LDL-C <100 mg/dL compared with UC.
Collapse
|
6
|
Mannu GS, Zaman MJS, Gupta A, Rehman HU, Myint PK. Evidence of lifestyle modification in the management of hypercholesterolemia. Curr Cardiol Rev 2013; 9:2-14. [PMID: 22998604 PMCID: PMC3584303 DOI: 10.2174/157340313805076313] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/26/2012] [Accepted: 10/13/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide. The growth of ageing populations in developing countries with progressively urbanized lifestyles are major contributors. The key risk factors for CHD such as hypercholesterolemia, diabetes mellitus, and obesity are likely to increase in the future. These risk factors are modifiable through lifestyle. OBJECTIVES To review current literature on the potential benefit of cholesterol lowering in CHD risk reduction with a particular focus on the evidence of non-pharmacological/lifestyle management of hypercholesterolemia. METHODS Medline/PubMed systematic search was conducted using a two-tier approach limited to all recent English language papers. Primary search was conducted using key words and phrases and all abstracts were subsequently screened and relevant papers were selected. The next tier of searching was conducted by (1) reviewing the citation lists of the selected papers and (2) by using PubMed weblink for related papers. Over 3600 reports were reviewed. RESULTS Target cholesterol levels set out in various guidelines could be achieved by lifestyle changes, including diet, weight reduction, and increased physical activity with the goal of reducing total cholesterol to <200 mg/dL and LDL-C<100 mg/dL. Various dietary constituents such as green tea, plant sterols, soy protein have important influences on total cholesterol. Medical intervention should be reserved for those patients who have not reached this goal after 3 months of non-pharmacological approach. CONCLUSION CHD remains as a leading cause of death worldwide and hypercholesterolemia is an important cause of CHD. Non-pharmacological methods provide initial as well as long-term measures to address this issue.
Collapse
Affiliation(s)
- G S Mannu
- Medicine and Biochemistry, C/o Level 2, MFE Offices, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, UK.
| | | | | | | | | |
Collapse
|
7
|
Dai FJ, Hsu WH, Huang JJ, Wu SC. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters. Food Chem Toxicol 2012; 53:384-91. [PMID: 23287313 DOI: 10.1016/j.fct.2012.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/08/2012] [Accepted: 12/19/2012] [Indexed: 11/26/2022]
Abstract
Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome.
Collapse
Affiliation(s)
- Fan-Jhen Dai
- Department of Food Science, College of Life Science, National Chiayi University, No. 300, Syue fu Road, Chiayi City 60004, Taiwan, ROC
| | | | | | | |
Collapse
|
8
|
Kim ST, Kim HB, Lee KH, Choi YR, Kim HJ, Shin IS, Gyoung YS, Joo SS. Steam-dried ginseng berry fermented with Lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5438-5445. [PMID: 22563735 DOI: 10.1021/jf300460g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study examined whether steam-dried ginseng berries fermented with Lactobacillus plantarum (FSGB) could improve the indices of type 2 diabetes mellitus (T2DM) in obese db/db mice. FSGB was shown to have an effect on body weight and blood glucose/serum parameters when administered at a dose of 0.5 g/kg. In the intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT), FSGB was clearly shown to improve insulin tolerance and glucose tolerance. Moreover, FSGB was shown to enhance immune activities by increasing the immune cell population, and glucose transpoter 1 (GLUT1) mRNA expression in L6 cells was up-regulated, suggesting that FSGB can increase glucose transport activity in target cells. These results indicate that steam- and dry-processed ginseng berries fermented with L. plantarum can be used to effectively control blood sugar metabolism via improving insulin and glucose tolerance and body weight gain in db/db mice.
Collapse
Affiliation(s)
- Seung Tae Kim
- Department of Marine Molecular Biotechnology, College of Life Science, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Patients suffering from familial hypercholesterolemia (FH) are characterized by increased plasma levels of low-density lipoprotein cholesterol (LDL-C) levels and are at increased risk for premature cardiovascular disease (CVD). Current guidelines emphasize the need to aggressively lower LDL-C in FH patients, and statins are the cornerstone in the current regimen. However, additional therapies are eagerly awaited, especially for those patients not tolerating statin therapy or not reaching the goals for therapy. Our understanding of LDL metabolism has improved over the last years and an increasing number of potential novel targets for therapy have been recently identified. Apart from novel targets, we have also been confronted with novel modalities of treatment, such as mRNA antisense therapy. Some of these emerging therapies have proven to be effective in lowering plasma LDL-C levels and are as such expected to have beneficial effects on CVD. Hopefully, they will enrich our armamentarium against the severe dyslipidemia observed in FH patients in the not too distant future.
Collapse
|