1
|
Khanum A, Khan JA, Shahid A, Riyazuddin M, Siddiqui MA. Effect of a polyherbal Unani formulation on left ventricular diastolic dysfunction in hypertensive patients - a randomized single blind placebo controlled clinical trial. Drug Metab Pers Ther 2024; 39:137-144. [PMID: 39135328 DOI: 10.1515/dmpt-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/09/2024] [Indexed: 10/16/2024]
Abstract
OBJECTIVES Diastolic dysfunction represents an important pathophysiological intermediate between hypertension and heart failure. In the last two decades, the prevalence of heart failure patients having normal or near normal ejection fraction (EF) has increased to around 60 %. It thus poses a great morbidity and mortality risk to the population. In view of present scenario of high prevalence, lack of evidence-based therapy, and limited clinical trials, this study aimed to evaluate how a Unani formulation affects the improvement of the left ventricular diastolic function. METHODS This clinical trial was set up as a randomized, placebo-controlled study involving 35 participants, with 18 individuals in the test group and 17 in the control group. Test group received 3.5 g of a polyherbal Unani formulation in capsule form along with 35 mL of an extract of Borago officinalis L. (Arq-e-Gaozaban), divided into two doses after meals. Meanwhile, the control group received a placebo in the same manner over an eight-week period. Follow-ups were conducted every 15 days to assess both subjective and objective parameters in all participants. RESULTS The test formulation shows significant improvement in dyspnea and diastolic function from baseline to the end of trial (p<0.05), slight improvement in palpitations (p>0.05) and highly significant improvement in easy fatigability (p=0.001) as compared to the control. CONCLUSIONS The present study shows the effectiveness of the test drug in enhancing the diastolic function of left ventricle and alleviating other symptoms associated with ventricular diastolic dysfunction. Nevertheless, additional research with longer follow-up durations is necessary to clarify its efficacy and establish optimal treatment approaches for ventricular diastolic dysfunction in Unani medicine.
Collapse
Affiliation(s)
- Asia Khanum
- Department of Moalajat, Rehbar Ayurvedic & Unani Tibbi Medical College Hospital and Research Centre, Sangrur, Punjab, India
| | - Javed Ali Khan
- Department of Ilaj Bit-Tadbeer, Rehbar Ayurvedic & Unani Tibbi Medical College Hospital and Research Centre, Sangrur, Punjab, India
| | - Arisha Shahid
- Ayush Wellness Centre, Rashtrapati Bhawan, New Delhi, India
| | - Mohd Riyazuddin
- Department of Moalajat (Medicine), 80104 National Institute of Unani Medicine , Bengaluru, Karnataka, India
| | - Mansoor Ahmad Siddiqui
- Department of Moalajat (Medicine), 80104 National Institute of Unani Medicine , Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Sharma S, Rana AK, Rahmatkar SN, Patial V, Singh D. Protective effect of Nardostachys jatamansi extract against lithium-pilocarpine-induced spontaneous recurrent seizures and associated cardiac irregularities in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116280. [PMID: 36813245 DOI: 10.1016/j.jep.2023.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nardostachys jatamansi (D.Don) DC. is a perennial herbaceous medicinal plant widely used for the ethnomedical treatment of various ailments. The underground parts of the plants are used in traditional medicine to manage epilepsy and other cardiovascular conditions. AIM OF THE STUDY The present study was undertaken to investigate the efficacy of a characterized hydroalcoholic extract (NJET) of Nardostachys jatamansi in the lithium-pilocarpine rat model of spontaneous recurrent seizures (SRS) and associated cardiac irregularities. MATERIALS AND METHODS NJET was prepared by percolation using 80% ethanol. The dried NEJT was subjected to UHPLC-qTOF-MS/MS for chemical characterization. Molecular docking studies were performed using the characterized compounds to understand mTOR interactions. The animals showing SRS following lithium-pilocarpine administration were treated with NJET for 6 weeks. Afterward, seizure severity, cardiac parameters, serum biochemistry, and histopathological parameters were studied. The cardiac tissue was processed for specific protein and gene expression studies. RESULTS The UHPLC-qTOF-MS/MS characterized 13 compounds in NJET. The identified compounds subjected to molecular docking showed promising binding affinities toward mTOR. There was a dose-dependent decrease in the severity of SRS following the extract administration. A reduction in mean arterial pressure and serum biochemical markers (lactate dehydrogenase and creatine kinase) was also observed following NJET treatment in epileptic animals. Histopathological investigations revealed reduced degenerative changes and decreased fibrosis following the extract treatment. The cardiac mRNA level of Mtor, Rps6, Hif1a, and Tgfb3 was reduced in the extract-treated groups. Further, a similar reduction in the protein expression of p-mTOR and HIF-1α was also observed following NJET treatment in the cardiac tissue. CONCLUSIONS The results concluded that NJET treatment reduces lithium-pilocarpine-induced recurrent seizures and associated cardiac irregularities via downregulation of the mTOR signalling pathway.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Fang J, Li R, Zhang Y, Oduro PK, Li S, Leng L, Wang Z, Rao Y, Niu L, Wu HH, Wang Q. Aristolone in Nardostachys jatamansi DC. induces mesenteric vasodilation and ameliorates hypertension via activation of the K ATP channel and PDK1-Akt-eNOS pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154257. [PMID: 35738117 DOI: 10.1016/j.phymed.2022.154257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nardostachys jatamansi DC. is a common medicinal herb used to treat cardiovascular diseases, particularly hypertension. Previously, our lab characterized the chemical compounds of N. jatamansi. However, the bioactive compounds of N. jatamansi and their mechanisms of action on blood pressure and blood vessels are unknown. PURPOSE The vasorelaxant effects of the methanolic extract (MeOH ext.) of the roots and rhizomes of N. jatamansi, its main compounds, and their underlying mode of action, were investigated. METHODS The main compounds of N. jatamansi were isolated and identified using UHPLC-TOF MS. The antihypertensive effect of N. jatamansi extracts and (-)-aristolone were determined using spontaneously hypertensive rats. The extracts, fractions, and compounds were also evaluated for their vasorelaxant effects on U46619 contractile responses in isolated thoracic aortic and mesenteric arterial rings. The endothelial-dependent relaxation, as well as the regulatory pathways and targets of (-)-aristolone, were studied in-vitro and ex-vivo. Molecular docking and biophysical characterization (Surface plasmon resonance) studies were utilized to investigate the molecular interaction between (-)-aristolone and the target protein. RESULTS MeOH ext. (200 mg/kg) reduces the systolic and diastolic blood pressure in spontaneously hypertensive rats. MeOH ext. and its ethyl acetate fraction (EtOAc Fr.), but not the H2O fraction, had a significant relaxing effect on the thoracic aorta. (-)-aristolone and kanshone H from EtOAc Fr. induced vasorelaxation of the thoracic aorta and mesenteric artery. In human umbilical vein endothelial cells, (-)-aristolone treatment upregulated phosphorylation of Akt (T308) and eNOS. Molecular docking and surface plasmon resonance experiments revealed an interaction between (-)-aristolone and phosphoinositide-dependent protein kinase 1 (PDK1), an upstream protein kinase that phosphorylates Akt at T308. Treatment with PDK1 inhibitor PHT-427 and eNOS inhibitor L-NAME consistently inhibited (-)-aristolone-induced vasorelaxation. In addition, KATP channel inhibitor glibenclamide dramatically inhibited the vasorelaxant effects of (-)-aristolone and kanshone H in the endothelium-denuded thoracic aorta. Finally, (-)-aristolone lowers hypertensive rats' systolic and diastolic blood pressure. CONCLUSIONS The extracts of N. jatamansi promote vasorelaxation and alleviate hypertension. The essential chemicals responsible for producing vasorelaxation effects are (-)-aristolone and kanshone H, which activate the PDK1-Akt-eNOS-NO relaxing pathway and stimulate the opening of the KATP channel. These findings point to N. jatamansi and aristolone as possible antihypertensive agents.
Collapse
Affiliation(s)
- Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ran Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sa Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Zhimei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yao Rao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong-Hua Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China.
| |
Collapse
|
4
|
Wang M, Yang TT, Rao Y, Wang ZM, Dong X, Zhang LH, Han L, Zhang Y, Wang T, Zhu Y, Gao XM, Li TX, Wang HY, Xu YT, Wu HH. A review on traditional uses, phytochemistry, pharmacology, toxicology and the analytical methods of the genus Nardostachys. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114446. [PMID: 34339792 DOI: 10.1016/j.jep.2021.114446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Nardostachys (Caprifoliaceae) have been used for a long history in different cultural systems of medicine, including Chinese, Ayurvedic, Korean folk medicine and Islamic, for treatments of disorders in nervous, digestive, cardiovascular and integumentary systems. AIM OF THE REVIEW This review aims to provide comprehensive information on Nardostachys plants including botany update, traditional uses, data mining of uses in traditional Chinese medicine (TCM) and current Chinese medicinal patents, chemical constituents, pharmacological effects, toxicity and analytical method studies. MATERIALS AND METHODS Studies of the genus Nardostachys were collected via Google Scholar and Baidu Scholar, ScienceDirect, SciFinder, Wiley Online Library, ACS Publications, NLM/NCBI, Web of Science, CNKI, WANFANG DATA, EMBASE, Huabeing database and Traditional Chinese Medicine Resource Network and libraries. Some local books, PhD or MS's dissertations were also included. The literatures cited in this review covered the period from 1962 to March 2021. The Plant List and Kew Herbarium Catalogue databases were used to authenticate the scientific name. RESULTS Botany description of Nardostachys genus is updated. Analysis of the literatures indicates that Nardostachys species are valuable herbs with therapeutic potentials for various disorders. Data mining on ancient TCM prescriptions and current Chinese medicinal patents containing Nardostachys revealed its common compatibility with other herbs in China. Phytochemical studies identified terpenoids and phenolic compounds as the main constituents in the genus Nardostachys and sesquiterpenoids as the major bioactive components. Experimental studies demonstrated that crude extracts, major fractions and the main constituents from Nardostachys species mainly exhibited pharmacological activities on nervous, digestive, cardiovascular and skin systems. Further, in vivo and in vitro toxicological studies demonstrated that Nardostachys plants showed either no or low toxicities, except at high doses. Finally, methods of qualitative and quantitative analyses on chemical constituents of genus Nardostachys were summarized, including TLC/HPTLC, GC and HPLC/UPLC methods, combined with common detectors including PDA, DAD and MS. CONCLUSIONS This review summarizes the progress on phytochemistry, pharmacology, toxicology and analytical methods of the genus Nardostachys. Studies demonstrate traditional uses of the genus Nardostachys, and reveal novel bioactive effects for clinical uses. These achievements expand our knowledge on the genus Nardostachys and its clinical value.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Tian-Tian Yang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yao Rao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Zhi-Mei Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Xueqi Dong
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Li-Hua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Tian-Xiang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Hai-Ying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China
| | - Yan-Tong Xu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Hong-Hua Wu
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
5
|
Sharma R, Goyal A, Singh R, Khanduri S, Ota S, Goel S, Rana RK, Singhal R, Shahi VK, Srikanth N, Swasticharan L, Dhiman KS. Effect of Ayurveda intervention in the integrated management of essential hypertension- a retrospective observational study. J Ayurveda Integr Med 2021; 12:521-528. [PMID: 34362604 PMCID: PMC8377180 DOI: 10.1016/j.jaim.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A study titled 'Integration of AYUSH (Ayurveda) with National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke (NPCDCS)' implemented in India in three districts of three states, namely Bhilwara (Rajasthan), Gaya (Bihar), and Surendranagar (Gujarat) since 2015 for the management of various non-communicable diseases (NCDs) through integrated approach. OBJECTIVE(S) To evaluate the effect of Ayurveda medication, lifestyle modification, and Yoga in integration with standard care for the management of essential hypertension. MATERIAL AND METHODS A retrospective analysis of the demographic and clinical records available from NPCDCS-AYUSH Integration Project was done. The data of participants with Essential Hypertension (EHTN), aged between 30 and 60 years, who had completed six months integrated management as per the treatment protocol of the NPCDCS-AYUSH Integration project between July 2018 and March 2019 were taken and distributed in two groups based on their intervention. Those advised for lifestyle modification and Yoga in addition to standard care with any of the five medicines/combinations i.e. Amlodipine or Atenolol or Amlodipine + Atenolol or Losartan or Telmisartan were assigned Group I and those who were given Ayurveda medication, lifestyle modification and Yoga in addition to standard care were assigned to Group II. The change in blood pressure was analysed and dose reduction/discontinuation of conventional medications was also observed. RESULTS Data of 1938 participants who had completed treatment under the NPCDCS program was analysed. At the 6th month, systolic and diastolic blood pressure was significantly reduced (P < 0.01) in all categories of Group I and Group II from baseline. Further, the dose of conventional medicine was reduced in 33.1% of participants of Group I and in 30.4% participants of Group II when compared to 0 day while conventional medicines were discontinued in 15.1% of Group I and 36.7% of Group II participants. CONCLUSION Ayurveda medication along with lifestyle management and Yoga effectively controls systolic and diastolic blood pressure and further helps in reducing/discontinuation of dose of conventional medicines in EHTN participants.
Collapse
Affiliation(s)
- Ramavtar Sharma
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India.
| | - Arun Goyal
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Renu Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Shruti Khanduri
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sarada Ota
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Rakesh Kumar Rana
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Richa Singhal
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Vinod Kumar Shahi
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Narayanam Srikanth
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Leimapokpam Swasticharan
- Directorate General of Health Services, Ministry of Health and Family Welfare, New Delhi, 110011, India
| | - Kartar Singh Dhiman
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| |
Collapse
|
6
|
Effect of Nardostachys jatamansi DC. on Apoptosis, Inflammation and Oxidative Stress Induced by Doxorubicin in Wistar Rats. PLANTS 2020; 9:plants9111579. [PMID: 33203171 PMCID: PMC7734586 DOI: 10.3390/plants9111579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The study aimed to investigate the protective action of jatamansi (Nardostachys jatamansi DC.) against doxorubicin cardiotoxicity. Methanolic extract of jatamansi (MEJ) was prepared and standardized using HPTLC fingerprinting, GC-MS chemoprofiling, total phenolic content, and antioxidant activity in vitro. Further in vivo activity was evaluated using rodent model. Animals were divided into five groups (n = 6) namely control (CNT) (Normal saline), toxicant (TOX, without any treatment), MEJ at low dose (JAT1), MEJ at high dose (JAT2), and standard desferrioxamine (STD). All groups except control received doxorubicin 2.5 mg per Kg intra-peritoneally for 3 weeks in twice a week regimen. After 3 weeks, the blood samples and cardiac tissues were collected from all groups for biochemical and histopathological evaluation. Treatment with MEJ at both dose levels exhibited significant reduction (p < 0.001 vs. toxicant) of serum CK-MB (heart creatine kinase), LDH (Lactate dehydrogenase) & HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) levels, and tissue MDA (melondialdehyde) level; insignificant difference was observed (p > 0.05) in TNF-alpha (tumour necrosis factor), IL-6 (interleukine-6) levels and caspase activity as compared to TOX. Histopathological evaluation of cardiac tissues of different treatment groups further reinforced the findings of biochemical estimation. This study concludes that jatamansi can protect cardiac tissues from oxidative stress-induced cell injury and lipid peroxidation as well as against inflammatory and apoptotic effects on cardiac tissues.
Collapse
|