1
|
Takada M, Yagi N, Nakamura S, Shimada K, Itami J, Igaki H, Nakamura M, Nunomiya T, Endo S, Kajimoto T, Tanaka K, Aoyama K, Narita M, Nakamura T. Development of an online neutron beam monitoring system for accelerator-based boron neutron capture therapy in a hospital. Med Phys 2024. [PMID: 39437186 DOI: 10.1002/mp.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is a next-generation radiotherapy, utilizing both an external neutron beam and a10 B $^{10}{\rm B}$ -containing pharmaceutical. A compact accelerator for a high intensity neutron source was installed to conduct BNCT in a hospital. The dose administered to a patient was evaluated by measuring the proton beam current. PURPOSE Neutron intensity should be monitored in real-time by measuring the neutrons emitted from the target during BNCT irradiation. This is crucial due to potential neutron target degradation. Online neutron beam monitoring systems are required for reliable measurements of the administered neutron dose. An online neutron beam monitoring system was developed to monitor neutron intensity irradiating on the patient at the National Cancer Center Hospital (NCCH). METHODS The neutron detector comprised a back-illuminated thin Si diode of 40-μ m $\umu{\rm m}$ thickness and an ultrathin natural LiF neutron converter of 0.05-μ m $\umu{\rm m}$ thickness. The neutron detector was installed on the neutron target unit, regardless of whether a patient was present, without any additional modifications to the setup. The response functions for high photon dose rates of upto 100 Gy/h were measured. The pulse heights were measured using the neutron beam monitor during BNCT neutron irradiation. Neutron temporal response measured using the online beam monitor was acquired and compared with the proton beam current and the measurements at a patient position. From this measurement at the patient position, the neutron fluence rate irradiating on a patient was obtained. RESULTS The neutron events were separated from the photon events. The neutron counting rates increased rapidly with the starting of proton beam irradiation and dropped to zero upon its termination. During intermittent drops and recoveries in the proton beam, the neutron beam monitor for counting rates responded quickly, synchronizing with the beam current. A scatter plot of the neutron counting rate and proton beam current indicated a good linear correlation. A direct relationship between the online neutron beam monitor's neutron counting rates and those of the patient neutron detector showed a good correlation coefficient of 0.84. A ratio of the both neutron counting rates showed a standard deviation of 6%. The correlation coefficient and standard deviation were improved to 0.94 and 1.5%, by re-binning the neutron temporal response with longer acquisition period than 1 s. Using the online neutron beam monitor, the neutron fluence rate was obtained from the direct relationship within 1.5%. Therefore, real-time monitoring of neutron intensity was achieved within the acceptable level as per the International Commission on Radiation Units and Measurements report. CONCLUSIONS The online neutron beam monitoring system was developed to monitor the BNCT neutron beam intensity at NCCH. The temporal response of the neutron beam monitor was synchronized with the neutron counting rate at the patient position. Using the online neutron beam monitor, the neutron fluence rate irradiating on the patient can be monitored from the direct relationship. Fluctuation of the neutron beam intensity through BNCT irradiation and the degradation of the lithium target through the lifespan of the neutron target could be monitored using the neutron beam monitor.
Collapse
Affiliation(s)
- Masashi Takada
- Department of Applied Physics, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan
| | - Natsumi Yagi
- Department of Applied Physics, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan
| | | | - Kenzi Shimada
- Cancer Intelligence Care Systems, Inc., Koto-ku, Tokyo, Japan
| | - Jyun Itami
- National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
- Shin-Matsudo Accuracy Radiation Therapy Center, Shin-Matsudo Central General Hospital, Matsudo, Chiba, Japan
| | - Hiroshi Igaki
- National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Masaru Nakamura
- Cancer Intelligence Care Systems, Inc., Koto-ku, Tokyo, Japan
| | | | - Satoru Endo
- Quantum Energy Applications, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tsuyoshi Kajimoto
- Quantum Energy Applications, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenichi Tanaka
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, Shimogyo-ku, Kyoto, Japan
| | - Kei Aoyama
- Fuji Electric Co., Ltd., Hino, Tokyo, Japan
| | | | - Takashi Nakamura
- Fuji Electric Co., Ltd., Hino, Tokyo, Japan
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Shen S, Wang S, Zhou D, Wu X, Gao M, Wu J, Yang Y, Pan X, Wang N. A clinician's perspective on boron neutron capture therapy: promising advances, ongoing trials, and future outlook. Int J Radiat Biol 2024; 100:1126-1142. [PMID: 38986056 DOI: 10.1080/09553002.2024.2373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE This comprehensive review aims to provide a unique clinical perspective on the latest advances and ongoing boron neutron capture therapy (BNCT) trials for various cancers. METHODS We critically analyzed clinical data from BNCT trials for head and neck cancer, glioblastoma, melanoma, meningioma, breast cancer, and liver tumors. We investigated differences in tumor responses and normal tissue toxicities among trials and discussed potential contributing factors. We also identified the limitations of early BNCT trials and proposed strategies to optimize future trial design. RESULTS BNCT has shown promising results in treating head and neck cancer, with high response rates and improved survival in patients with recurrent disease. In glioblastoma, BNCT combined with surgery and chemotherapy has demonstrated survival benefits compared to standard treatments. BNCT has also been successfully used for recurrent high-grade meningiomas and shows potential for melanomas, extramammary Paget's disease, and liver tumors. However, differences in tumor responses and toxicities were observed among trials, potentially attributable to variations in treatment protocols, patient characteristics, and evaluation methods. CONCLUSIONS BNCT is a promising targeted radiotherapy for various cancers. Further optimization and well-designed randomized controlled trials are needed to establish its efficacy and safety. Future studies should focus on standardizing treatment protocols and addressing limitations to guide clinical decision-making and research priorities.
Collapse
Affiliation(s)
- Shumin Shen
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanghu Wang
- Department of Radiotherapy, Anhui Chest Hospital, Hefei, China
| | - Dachen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiuwei Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Mingzhu Gao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jinjin Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yucai Yang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxi Pan
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Nianfei Wang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Suzuki S, Yagihashi T, Nitta K, Yamanaka M, Sato N, Gotoh S, Sugimoto S, Shiba S, Nagata H, Tanaka H. Evaluating optimal quality assurance and quality control conditions of activation measurements at the accelerator-based boron neutron capture therapy system employing a lithium target. Biomed Phys Eng Express 2024; 10:045028. [PMID: 38744248 DOI: 10.1088/2057-1976/ad4b1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Kazunori Nitta
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Naoki Sato
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Shinichi Gotoh
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Satoru Sugimoto
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
- Medical Data Mathematical Reasoning Team, Advanced Data Science Project, Information R&D and Strategy Headquarters, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Hironori Nagata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa 247-8533, Japan
| | - Hiroki Tanaka
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
4
|
Nakamura S, Takemori M, Nakaichi T, Shuto Y, Kashihara T, Iijima K, Chiba T, Nakayama H, Urago Y, Nishina S, Kobayashi Y, Kishida H, Imamichi S, Takahashi K, Masutani M, Okamoto H, Nishio T, Itami J, Igaki H. A method for delivering the required neutron fluence in an accelerator-based boron neutron capture therapy system employing a lithium target. Sci Rep 2024; 14:11253. [PMID: 38755333 PMCID: PMC11099010 DOI: 10.1038/s41598-024-62060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Mihiro Takemori
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tetsu Nakaichi
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasunori Shuto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Comprehensive Oncology, Nagasaki University Graduate School of Biomedical Sciences, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Technology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tairo Kashihara
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kotaro Iijima
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahito Chiba
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Hitashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Hiroki Nakayama
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuka Urago
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Hitashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Shuka Nishina
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-ku, Tokyo, 154-8525, Japan
| | - Yuta Kobayashi
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hironori Kishida
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shoji Imamichi
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mitsuko Masutani
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Hiroyuki Okamoto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Jun Itami
- Radiation Therapy, Shin-Matsudo Central General Hospital, 1-380 Shin-Matsudo, Matsudo City, Chiba, 270-0034, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Comprehensive Oncology, Nagasaki University Graduate School of Biomedical Sciences, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
5
|
Kurosaki H, Okazaki K, Takemori M, Tate E, Nakamura T. The Effects of Boron Neutron Capture Therapy on the Lungs in Recurrent Breast Cancer Treatment. Cureus 2024; 16:e57417. [PMID: 38694683 PMCID: PMC11061820 DOI: 10.7759/cureus.57417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 05/04/2024] Open
Abstract
Boron neutron capture therapy (BNCT) has predominantly been performed for brain tumors or head and neck cancers. Although BNCT is known to be applicable to breast cancer, it has only been performed in a few cases involving thoracic region irradiation with reactor-based BNCT systems. Thus, there are very few reports on the effects of BNCT on the thoracic region and no reports of BNCT for breast cancer with accelerator-based BNCT systems. This paper introduces the world's first clinical study employing an accelerator-based BNCT system targeting recurrent breast cancer after radiation therapy. We aim to assess the efficacy and safety of BNCT, focusing on the dose response in the thoracic region, especially concerning the potential for radiation pneumonitis. Preliminary findings from the first three cases indicate no evidence of radiation pneumonitis within three months post treatment. This study not only establishes a foundation for novel breast cancer treatment options but also contributes significantly to the field of BNCT in the thoracic region.
Collapse
Affiliation(s)
- Hiromasa Kurosaki
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Keita Okazaki
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Mihiro Takemori
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Etsuko Tate
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Tatsuya Nakamura
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| |
Collapse
|
6
|
Igaki H, Nakamura S, Yamazaki N, Kaneda T, Takemori M, Kashihara T, Murakami N, Namikawa K, Nakaichi T, Okamoto H, Iijima K, Chiba T, Nakayama H, Nagao A, Sakuramachi M, Takahashi K, Inaba K, Okuma K, Nakayama Y, Shimada K, Nakagama H, Itami J. Acral cutaneous malignant melanoma treated with linear accelerator-based boron neutron capture therapy system: a case report of first patient. Front Oncol 2023; 13:1272507. [PMID: 37901311 PMCID: PMC10613025 DOI: 10.3389/fonc.2023.1272507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
This study reports the first patient treatment for cutaneous malignant melanoma using a linear accelerator-based boron neutron capture therapy (BNCT) system. A single-center open-label phase I clinical trial had been conducted using the system since November 2019. A patient with a localized node-negative acral malignant melanoma and the largest diameter of the tumor ≤ 15 cm who refused primary surgery and chemotherapy was enrolled. After administering boronophenylalanine (BPA), a single treatment of BNCT with the maximum dose of 18 Gy-Eq delivered to the skin was performed. The safety and efficacy of the accelerator-based BNCT system for treating localized cutaneous malignant melanoma were evaluated. The first patient with cutaneous malignant melanoma in situ on the second finger of the left hand did not develop dose-limiting toxicity in the clinical trial. After BNCT, the treatment efficacy was gradually observed, and the patient achieved PR within 6 months and CR within 12 months. Moreover, during the follow-up period of 12 months after BNCT, the patient did not exhibit a recurrence without any treatment-related grade 2 or higher adverse events. Although grade 1 adverse events of dermatitis, dry skin, skin hyperpigmentation, edema, nausea, and aching pain were noted in the patient, those adverse events were relieved without any treatment. This case report shows that the accelerator-based BNCT may become a promising treatment modality for cutaneous malignant melanoma. We expect further clinical trials to reveal the efficacy and safety of the accelerator-based BNCT for cutaneous malignant melanoma.
Collapse
Affiliation(s)
- Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
- Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Tokyo, Japan
| | - Satoshi Nakamura
- Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Tokyo, Japan
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Tokyo, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Mihiro Takemori
- Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Tokyo, Japan
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Tokyo, Japan
| | - Tairo Kashihara
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
- Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Tokyo, Japan
| | - Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Radiation Oncology, Jutendo University School of Medicine, Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tetsu Nakaichi
- Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Tokyo, Japan
| | - Hiroyuki Okamoto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Tokyo, Japan
| | - Kotaro Iijima
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Tokyo, Japan
- Department of Radiation Oncology, Jutendo University School of Medicine, Tokyo, Japan
| | - Takahito Chiba
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Tokyo, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroki Nakayama
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Tokyo, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ayaka Nagao
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Madoka Sakuramachi
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Inaba
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kae Okuma
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Nakayama
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
- Shin-Matsudo Accuracy Radiation Therapy Center, Shin-Matsudo Central General Hospital, Chiba, Japan
| |
Collapse
|
7
|
Nakamura S, Imamichi S, Shimada K, Takemori M, Kanai Y, Iijima K, Chiba T, Nakayama H, Nakaichi T, Mikasa S, Urago Y, Kashihara T, Takahashi K, Nishio T, Okamoto H, Itami J, Ishiai M, Suzuki M, Igaki H, Masutani M. Relative biological effectiveness for epithermal neutron beam contaminated with fast neutrons in the linear accelerator-based boron neutron capture therapy system coupled to a solid-state lithium target. JOURNAL OF RADIATION RESEARCH 2023:7192974. [PMID: 37295954 PMCID: PMC10354855 DOI: 10.1093/jrr/rrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to quantify the relative biological effectiveness (RBE) for epithermal neutron beam contaminated with fast neutrons in the accelerator-based boron neutron capture therapy (BNCT) system coupled to a solid-state lithium target. The experiments were performed in National Cancer Center Hospital (NCCH), Tokyo, Japan. Neutron irradiation with the system provided by Cancer Intelligence Care Systems (CICS), Inc. was performed. X-ray irradiation, which was assigned as the reference group, was also performed using a medical linear accelerator (LINAC) equipped in NCCH. The four cell lines (SAS, SCCVII, U87-MG and NB1RGB) were utilized to quantify RBE value for the neutron beam. Before both of those irradiations, all cells were collected and dispensed into vials. The doses of 10% cell surviving fraction (SF) (D10) were calculated by LQ model fitting. All cell experiments were conducted in triplicate at least. Because the system provides not only neutrons, but gamma-rays, the contribution from the gamma-rays to the survival fraction were subtracted in this study. D10 value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was 4.26, 4.08, 5.81 and 2.72 Gy, respectively, while that acquired by the X-ray irradiation was 6.34, 7.21, 7.12 and 5.49 Gy, respectively. Comparison of both of the D10 values, RBE value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was calculated as 1.7, 2.2, 1.3 and 2.5, respectively, and the average RBE value was 1.9. This study investigated RBE of the epithermal neutron beam contaminated with fast neutrons in the accelerator-based BNCT system coupled to a solid-state lithium target.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Shoji Imamichi
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Kenzi Shimada
- Cancer Intelligence Care Systems, Inc. 3-5-7 Ariake, Koto-ku, Tokyo, 135-0063, Japan
| | - Mihiro Takemori
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Yui Kanai
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-5880, Japan
| | - Kotaro Iijima
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takahito Chiba
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Hiroki Nakayama
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Tetsu Nakaichi
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Mikasa
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuka Urago
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiological Science, Graduate School of Human Health Sciences, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Tairo Kashihara
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Hiroyuki Okamoto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masamichi Ishiai
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mitsuko Masutani
- Division of Boron Neutron Capture Therapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Central Radioisotope Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| |
Collapse
|
8
|
Sasaki A, Hu N, Matsubayashi N, Takata T, Sakurai Y, Suzuki M, Tanaka H. Development of optimization method for uniform dose distribution on superficial tumor in an accelerator-based boron neutron capture therapy system. JOURNAL OF RADIATION RESEARCH 2023; 64:602-611. [PMID: 37100599 PMCID: PMC10214997 DOI: 10.1093/jrr/rrad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Indexed: 05/27/2023]
Abstract
To treat superficial tumors using accelerator-based boron neutron capture therapy (ABBNCT), a technique was investigated, based on which, a single-neutron modulator was placed inside a collimator and was irradiated with thermal neutrons. In large tumors, the dose was reduced at their edges. The objective was to generate a uniform and therapeutic intensity dose distribution. In this study, we developed a method for optimizing the shape of the intensity modulator and irradiation time ratio to generate a uniform dose distribution to treat superficial tumors of various shapes. A computational tool was developed, which performed Monte Carlo simulations using 424 different source combinations. We determined the shape of the intensity modulator with the highest minimum tumor dose. The homogeneity index (HI), which evaluates uniformity, was also derived. To evaluate the efficacy of this method, the dose distribution of a tumor with a diameter of 100 mm and thickness of 10 mm was evaluated. Furthermore, irradiation experiments were conducted using an ABBNCT system. The thermal neutron flux distribution outcomes that have considerable impacts on the tumor's dose confirmed a good agreement between experiments and calculations. Moreover, the minimum tumor dose and HI improved by 20 and 36%, respectively, compared with the irradiation case wherein a single-neutron modulator was used. The proposed method improves the minimum tumor volume and uniformity. The results demonstrate the method's efficacy in ABBNCT for the treatment of superficial tumors.
Collapse
Affiliation(s)
- Akinori Sasaki
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura Campus, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Naonori Hu
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, Daigakumachi, Takatsuki, Osaka 569-0801, Japan
| | - Nishiki Matsubayashi
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura Campus, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Takushi Takata
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
9
|
Takemori M, Nakamura S, Sofue T, Ito M, Goka T, Miura Y, Iijima K, Chiba T, Nakayama H, Nakaichi T, Mikasa S, Takano Y, Kon M, Shuto Y, Urago Y, Nishitani M, Kashihara T, Takahashi K, Murakami N, Nishio T, Okamoto H, Chang W, Igaki H. Failure modes and effects analysis study for accelerator-based Boron Neutron Capture Therapy. Med Phys 2023; 50:424-439. [PMID: 36412161 DOI: 10.1002/mp.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Boron Neutron Capture Therapy (BNCT) has recently been used in clinical oncology thanks to recent developments of accelerator-based BNCT systems. Although there are some specific processes for BNCT, they have not yet been discussed in detail. PURPOSE The aim of this study is to provide comprehensive data on the risk of accelerator-based BNCT system to institutions planning to implement an accelerator-based BNCT system. METHODS In this study, failure mode and effects analysis (FMEA) was performed based on a treatment process map prepared for the accelerator-based BNCT system. A multidisciplinary team consisting of a medical doctor (MD), a registered nurse (RN), two medical physicists (MP), and three radiologic technologists (RT) identified the failure modes (FMs). Occurrence (O), severity (S), and detectability (D) were scored on a scale of 10, respectively. For each failure mode (FM), risk priority number (RPN) was calculated by multiplying the values of O, S, and D, and it was then categorized as high risk, very high risk, and other. Additionally, FMs were statistically compared in terms of countermeasures, associated occupations, and whether or not they were the patient-derived. RESULTS The identified FMs for BNCT were 165 in which 30 and 17 FMs were classified as high risk and very high risk, respectively. Additionally, 71 FMs were accelerator-based BNCT-specific FMs in which 18 and 5 FMs were classified as high risk and very high risk, respectively. The FMs for which countermeasures were "Education" or "Confirmation" were statistically significantly higher for S than the others (p = 0.019). As the number of BNCT facilities is expected to increase, staff education is even more important. Comparing patient-derived and other FMs, O tended to be higher in patient-derived FMs. This could be because the non-patient-derived FMs included events that could be controlled by software, whereas the patient-derived FMs were impossible to prevent and might also depend on the patient's condition. Alternatively, there were non-patient-derived FMs with higher D, which were difficult to detect mechanically and were classified as more than high risk. In O, significantly higher values (p = 0.096) were found for FMs from MD and RN associated with much patient intervention compared to FMs from MP and RT less patient intervention. Comparing conventional radiotherapy and accelerator-based BNCT, although there were events with comparable risk in same FMs, there were also events with different risk in same FMs. They could be related to differences in the physical characteristics of the two modalities. CONCLUSIONS This study is the first report for conducting a risk analysis for BNCT using FMEA. Thus, this study provides comprehensive data needed for quality assurance/quality control (QA/QC) in the treatment process for facilities considering the implementation of accelerator-based BNCT in the future. Because many BNCT-specific risks were discussed, it is important to understand the characteristics of BNCT and to take adequate measures in advance. If the effects of all FMs and countermeasures are discussed by multidisciplinary team, it will be possible to take countermeasures against individual FMs from many perspectives and provide BNCT more safely and effectively.
Collapse
Affiliation(s)
- Mihiro Takemori
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan.,Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chuo-ku, Tokyo, Japan
| | - Satoshi Nakamura
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chuo-ku, Tokyo, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Toshimitsu Sofue
- Department of Radiological Technology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Mikiko Ito
- Department of Nursing, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Tomonori Goka
- Department of Radiological Technology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yuki Miura
- Department of Radiological Technology, National Cancer Center Hospital East, Kashiwa-shi, Chiba, Japan
| | - Kotaro Iijima
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takahito Chiba
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Hiroki Nakayama
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Tetsu Nakaichi
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shohei Mikasa
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yuki Takano
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Mitsuhiro Kon
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Technology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasunori Shuto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Technology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yuka Urago
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Masato Nishitani
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Tairo Kashihara
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hiroyuki Okamoto
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Weishan Chang
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chuo-ku, Tokyo, Japan.,Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Kashihara T, Ogata D, Okuma K, Nakamura S, Nakayama H, Mori T, Takahashi A, Namikawa K, Takahashi A, Takahashi K, Kaneda T, Inaba K, Murakami N, Okamoto H, Nakayama Y, Yamazaki N, Igaki H. Clinical significance of local control of primary tumour in definitive radiotherapy for scalp angiosarcomas. Skin Res Technol 2023; 29:e13243. [PMID: 36404577 PMCID: PMC9838744 DOI: 10.1111/srt.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/05/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Scalp angiosarcoma is a rare and aggressive cancer. Definitive radiotherapy is a treatment option for localised scalp angiosarcoma patients. Although definitive surgical resection reportedly prolongs overall survival (OS), whether initial local treatment effect affects OS when definitive radiotherapy is administered is unclear. Therefore, this study analysed whether local recurrence within 6 months of irradiation correlates with OS and cancer-specific survival (CSS). Furthermore, how local control affects patients' quality of life was investigated. MATERIALS AND METHODS Thirty-one localised scalp angiosarcoma patients who had received definitive radiotherapy at our institution between October 2010 and July 2021 were analysed retrospectively. The most commonly used dose fractionation was 70 Gy in 35 fractions (83.9%). Local recurrence within 6 months of radiotherapy and other clinical factors were examined in univariate and subsequent multivariate analyses for correlation with OS and CSS. RESULTS The median follow-up period was 16 months (range, 6-45 months). Local recurrence was detected in 16 patients (51.6%), 12 of whom had recurrence within 6 months. In multivariate analyses, the presence of local recurrence within 6 months of radiotherapy was significantly associated with OS and CSS (p = 0.003, 0.0001, respectively). Ten of the 16 patients with local recurrence had severe symptoms such as bleeding, pain, difficulty opening the eye and malodour. CONCLUSIONS The initial local treatment effect was significantly associated with OS and CSS after definitive radiotherapy. Furthermore, local recurrence after radiotherapy resulted in a variety of symptoms, including bleeding and pain, which reduced the patient's quality of life.
Collapse
Affiliation(s)
- Tairo Kashihara
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Kae Okuma
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Satoshi Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Hiroki Nakayama
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Taisuke Mori
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Akira Takahashi
- Department of Dermatologic Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Ayaka Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Kana Takahashi
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Koji Inaba
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Hiroyuki Okamoto
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Yuko Nakayama
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku Tokyo, Japan
| |
Collapse
|
11
|
Nakaichi T, Nakamura S, Ito K, Takahashi K, Takemori M, Kashihara T, Kunito K, Murakami N, Iijima K, Chiba T, Nakayama H, Mikasa S, Nishio T, Okamoto H, Itami J, Kurihara H, Igaki H. Analyzing spatial distribution between 18F-fluorodeoxyglucose and 18F-boronophenylalanine positron emission tomography to investigate selection indicators for boron neutron capture therapy. EJNMMI Phys 2022; 9:89. [PMID: 36536190 PMCID: PMC9763526 DOI: 10.1186/s40658-022-00514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND 18F-FDG PET is often utilized to determine BNCT selection due to the limited availability of 18F-BPA PET, which is performed by synthesizing 18F into the boron drug used for BNCT, although the uptake mechanisms between those are different. Additionally, only a few non-spatial point parameters, such as maximum SUV (SUVmax), have reported a correlation between those in previous studies. This study aimed to investigate the spatial accumulation pattern between those PET images in tumors, which would be expected to either show higher uptake on 18F-BPA PET or be utilized in clinical, to verify whether 18F-FDG PET could be used as a selection indicator for BNCT. METHODS A total of 27 patients with 30 lesions (11 squamous cell carcinoma, 9 melanoma, and 10 rhabdomyosarcoma) who received 18F-FDG and 18F-BPA PET within 2 weeks were enrolled in this study. The ratio of metabolic tumor volumes (MTVs) to GTV, histogram indices (skewness/kurtosis), and the correlation of total lesion activity (TLA) and non-spatial point parameters (SUVmax, SUVpeak, SUVmin, maximum tumor-to-normal tissue ratio (Tmax/N), and Tmin/N) were evaluated. After local rigid registration between those images, distances of locations at SUVmax and the center of mass with MTVs on each image and similarity indices were also assessed along its coordinate. RESULTS In addition to SUVmax, SUVpeak, and Tmax/N, significant correlations were found in TLA. The mean distance in SUVmax was [Formula: see text] and significantly longer than that in the center of mass with MTVs. The ratio of MTVs to GTV, skewness, and kurtosis were not significantly different. However, the similarities of MTVs were considerably low. The similarity indices of Dice similarity coefficient, Jaccard coefficient, and mean distance to agreement for MTV40 were [Formula: see text], [Formula: see text], and [Formula: see text] cm, respectively. Furthermore, it was worse in MTV50. In addition, spatial accumulation patterns varied in cancer types. CONCLUSIONS Spatial accumulation patterns in tumors showed low similarity between 18F-FDG and 18F-BPA PET, although the various non-spatial point parameters were correlated. In addition, the spatial accumulation patterns were considerably different in cancer types. Therefore, the selection for BNCT using 18F-FDG PET should be compared carefully with using 18F-FBPA PET.
Collapse
Affiliation(s)
- Tetsu Nakaichi
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Satoshi Nakamura
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.136593.b0000 0004 0373 3971Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka 565-0871 Japan
| | - Kimiteru Ito
- grid.272242.30000 0001 2168 5385Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kana Takahashi
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Mihiro Takemori
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.265074.20000 0001 1090 2030Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo 116-8551 Japan
| | - Tairo Kashihara
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kouji Kunito
- Euro MediTech Co., Ltd., 2-20-4, Higashigotanda, Shinagawa-ku, Tokyo 141-0022 Japan
| | - Naoya Murakami
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kotaro Iijima
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Takahito Chiba
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.265074.20000 0001 1090 2030Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo 116-8551 Japan
| | - Hiroki Nakayama
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.265074.20000 0001 1090 2030Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo 116-8551 Japan
| | - Shohei Mikasa
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Teiji Nishio
- grid.136593.b0000 0004 0373 3971Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka 565-0871 Japan
| | - Hiroyuki Okamoto
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Jun Itami
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Hiroaki Kurihara
- grid.414944.80000 0004 0629 2905Department of Diagnostic Radiology, Kanagawa Cancer Center, 2-3-2 Nakano, Asahi-ku, Yokohama, Kanagawa 241-8515 Japan
| | - Hiroshi Igaki
- grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| |
Collapse
|
12
|
Sasaki A, Hu N, Takata T, Matsubayashi N, Sakurai Y, Suzuki M, Tanaka H. Intensity-modulated irradiation for superficial tumors by overlapping irradiation fields using intensity modulators in accelerator-based BNCT. JOURNAL OF RADIATION RESEARCH 2022; 63:866-873. [PMID: 36149023 PMCID: PMC9726706 DOI: 10.1093/jrr/rrac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Indexed: 05/12/2023]
Abstract
The distribution of the thermal neutron flux has a significant impact on the treatment efficacy. We developed an irradiation method of overlapping irradiation fields using intensity modulators for the treatment of superficial tumors with the aim of expanding the indications for accelerator-based boron neutron capture therapy (BNCT). The shape of the intensity modulator was determined and Monte Carlo simulations were carried out to determine the uniformity of the resulting thermal neutron flux distribution. The intensity modulators were then fabricated and irradiation tests were conducted, which resulted in the formation of a uniform thermal neutron flux distribution. Finally, an evaluation of the tumor dose distribution showed that when two irradiation fields overlapped, the minimum tumor dose was 27.4 Gy-eq, which was higher than the tumor control dose of 20 Gy-eq. Furthermore, it was found that the uniformity of the treatment was improved 47% as compared to the treatment that uses a single irradiation field. This clearly demonstrates the effectiveness of this technique and the possibility of expanding the indications to superficially located tumors.
Collapse
Affiliation(s)
- Akinori Sasaki
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Naonori Hu
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, Daigakumachi, Takatsuki, Osaka 569-0801, Japan
| | - Takushi Takata
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Nishiki Matsubayashi
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Corresponding author. Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan, Tel: +81-72-451-2468;
| |
Collapse
|
13
|
Matsumura A, Asano T, Hirose K, Igaki H, Kawabata S, Kumada H. Initiatives Toward Clinical Boron Neutron Capture Therapy in Japan. Cancer Biother Radiopharm 2022; 38:201-207. [PMID: 36374236 PMCID: PMC10122211 DOI: 10.1089/cbr.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has been performed at nuclear research reactors for many years. The development of accelerators for BNCT resulted in a paradigm shift from research to real clinical applications. In Japan, BNCT was approved as a clinical therapy covered by the National Health Insurance in 2020. In this article, the status of BNCT in Japan is briefly introduced.
Collapse
Affiliation(s)
- Akira Matsumura
- Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | | | - Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku Hospital, Fukushima, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy Medical Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Hiroaki Kumada
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Porra L, Wendland L, Seppälä T, Koivunoro H, Revitzer H, Tervonen J, Kankaanranta L, Anttonen A, Tenhunen M, Joensuu H. From Nuclear Reactor-Based to Proton Accelerator-Based Therapy: The Finnish Boron Neutron Capture Therapy Experience. Cancer Biother Radiopharm 2022; 38:184-191. [PMID: 36269660 DOI: 10.1089/cbr.2022.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The authors review the results of 249 patients treated with boron neutron capture therapy (BNCT) at the Helsinki University Hospital, Helsinki, Finland, from May 1999 to January 2012 with neutrons obtained from a nuclear reactor source (FiR 1) and using l-boronophenylalanine-fructose (l-BPA-F) as the boron delivery agent. They also describe a new hospital BNCT facility that hosts a proton accelerator-based neutron source for BNCT. Most of the patients treated with nuclear reactor-derived neutrons had either inoperable, locally recurrent head and neck cancer or malignant glioma. In general, l-BPA-F-mediated BNCT was relatively well tolerated with adverse events usually similar to those of conventional radiotherapy. Twenty-eight (96.6%) out of the evaluable 29 patients with head and neck cancer and treated within a clinical trial either responded to BNCT or had tumor growth stabilization for at least 5 months, suggesting efficacy of BNCT in the treatment of this patient population. The new accelerator-based BNCT facility houses a nuBeam neutron source that consists of an electrostatic Cockcroft-Walton-type proton accelerator and a lithium target that converts the proton beam to neutrons. The proton beam energy is 2.6 MeV operating with a current of 30 mA. Treatment planning is based on Monte Carlo simulation and the RayStation treatment planning system. Patient positioning is performed with a 6-axis robotic image-guided system, and in-room imaging is done with a rail-mounted computed tomography scanner. Under normal circumstances, the personnel can enter the treatment room almost immediately after shutting down the proton beam, which improves the unit capacity. ClinicalTrials.gov ID: NCT00114790.
Collapse
Affiliation(s)
- Liisa Porra
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lauri Wendland
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Seppälä
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Hannu Revitzer
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Tervonen
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Kankaanranta
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Anttonen
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mikko Tenhunen
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Kondo N. DNA damage and biological responses induced by Boron Neutron Capture Therapy (BNCT). Enzymes 2022; 51:65-78. [PMID: 36336409 DOI: 10.1016/bs.enz.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boron Neutron Capture Therapy (BNCT) is a tumor cell selective high LET (linear energy transfer) particle beam therapy. The patient is administrated a boron (10B) compound via intravenous injection or infusion, and when 10B is sufficiently accumulated in the tumor, neutron beams containing epithermal neutrons as the main component are irradiated. Epithermal neutrons lose energy in the body and become thermal neutrons. The captured 10B undergoes a (n, α) reaction with thermal neutrons, and the resulting α particles and 7Li nuclei have short ranges of 9-10μm and 4-5μm, respectively, and do not reach the surrounding cells in normal tissues. Therefore, these high LET-heavy charged particles can selectively kill cancer cells. The cell-killing effect of these heavy charged particles is thought to be triggered by DNA damage. It is known that DNA damage caused by heavy charged particles is more serious and difficult to repair than DNA damage caused by Low LET radiation such as X-rays and γ-rays. This review focuses on DNA damage, e.g., DNA strand breaks and DNA damage repair caused by BNCT and describes the resulting biological response.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| |
Collapse
|
16
|
Kondo N, Masutani M, Imamichi S, Matsumoto Y, Nakai K. Strategies for Preclinical Studies Evaluating the Biological Effects of an Accelerator-Based Boron Neutron Capture Therapy System. Cancer Biother Radiopharm 2022; 38:173-183. [PMID: 36154293 DOI: 10.1089/cbr.2022.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review discusses the strategies of preclinical studies intended for accelerator-based (AB)-boron neutron capture therapy (BNCT) clinical trials, which were presented at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy held from April 20 to 22, 2022. Clinical studies of BNCT have been conducted worldwide using reactor neutron sources, with most targeting malignant brain tumors, melanoma, or head and neck cancer. Recently, small accelerator-based neutron sources that can be installed in hospitals have been developed. AB-BNCT clinical trials for recurrent malignant glioma, head and neck cancers, high-grade meningioma, melanoma, and angiosarcoma have all been conducted in Japan. The necessary methods, equipment, and facilities for preclinical studies to evaluate the biological effects of AB-BNCT systems in terms of safety and efficacy are described, with reference to two examples from Japan. The first is the National Cancer Center, which is equipped with a vertical downward neutron beam, and the other is the University of Tsukuba, which has a horizontal neutron beam. The preclinical studies discussed include cell-based assays to evaluate cytotoxicity and genotoxicity, in vivo cytotoxicity and efficacy of BNCT, and radioactivation measurements.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Osaka, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine School of Medicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine School of Medicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kei Nakai
- Department of Radiation Oncology, Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|