1
|
Erdogan T, Oguz Erdogan F. Probing some recent natural compounds from Phellinus baumii, Colletotrichum sp. and Ligustrum lucidum as heat shock protein 90 inhibitors. J Biomol Struct Dyn 2024; 42:5390-5401. [PMID: 37340683 DOI: 10.1080/07391102.2023.2226748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Heat shock protein 90 (HSP90) is one of the most attractive targets for research on cancer treatment, and nowadays, many studies carried out for the development of effective HSP90 inhibitors. In the current study, recently published ten natural compounds have been investigated using computer aided drug design (CADD) approach. The study consists of three parts; (1) density functional theory (DFT) calculations including geometry optimizations, vibrational analyses, and molecular electrostatic potential (MEP) map calculations, (2) molecular docking and molecular dynamics (MD) simulations, and (3) binding energy calculations. In DFT calculations, Becke three-parameter hybrid functional with Lee-Yang-Parr correlation functional (B3LYP) and 6-31 + G(d,p) basis set were used. After performing molecular docking calculations, top-scoring ligand-receptor complexes were subjected to MD simulations for 100 ns to investigate the stability of the ligand-receptor complexes and the interactions in more detail. Finally, in binding energy calculations molecular mechanics with Poisson-Boltzmann surface area (MM-PBSA) method was used. The results showed that five of the investigated ten natural compounds have higher binding affinity to HSP90α than that of reference drug Geldanamycin, and could be promising compounds for future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taner Erdogan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Fatma Oguz Erdogan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
2
|
Wang Y, Zhang Y, Li M, Gao X, Su D. An Efficient Strategy for Constructing Fluorescent Nanoprobes for Prolonged and Accurate Tumor Imaging. Anal Chem 2024; 96:2481-2490. [PMID: 38293931 DOI: 10.1021/acs.analchem.3c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Mingrui Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
3
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
4
|
Zhou X, Han Q, Zhou J, Liu C, Liu J. Reagentless Electrochemical Detection of Tumor Biomarker Based on Stable Confinement of Electrochemical Probe in Bipolar Silica Nanochannel Film. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101645. [PMID: 37242061 DOI: 10.3390/nano13101645] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The development of simple and probe-integrated aptamer sensors for the electrochemical detection of tumor biomarkers is of great significance for the diagnosis of tumors and evaluation of prognosis. In this work, a probe-integrated aptamer sensor is demonstrated based on the stable confinement of an electrochemical probe in a bipolar nanochannel film, which can realize the reagentless electrochemical detection of the tumor biomarker carcinoembryonic antigen (CEA). To realize the stable immobilization of a large amount of the cationic electrochemical probe methylene blue (MB), a two-layer silica nanochannel array (SNF) with asymmetric charge was grown on the supporting electrode from bipolar SNF (bp-SNF). The inner SNF is negatively charged (n-SNF), and the outer-layer SNF is positively charged (p-SNF). The dual electrostatic interaction including the electrostatic adsorption from n-SNF and the electrostatic repulsion from p-SNF achieve the stable confinement of MB in bp-SNF. The recognitive interface is fabricated by the covalent immobilization of the CEA aptamer on the outer surface of bp-SNF, followed by the blocking of non-specific binding sites. Owing to the stable and abundant immobilized probes and highly specific aptamer interface, the developed aptamer sensor enables the sensitive detection of CEA in the range of 1 pg/mL to 1 μg/mL with a low limit of detection (LOD, 0.22 pg/mL, S/N = 3). Owing to the high selectivity and stability of the developed biosensor, reagentless electrochemical detection of CEA in serum was realized.
Collapse
Affiliation(s)
- Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qianqian Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinming Zhou
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Mikrochim Acta 2023; 190:86. [PMID: 36757491 DOI: 10.1007/s00604-023-05663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
Some of the cancer biomarkers often lack specificity and sensitivity; thus, simultaneous detection of multiple biomarkers can make the diagnosis more accurate. Also, simple sensing system without utilization of extra reagents like mediator or substrate during detection event is desirable for point-of-care testing. To address this, mediator and substrate-free amperometric biosensor for simultaneous detection of cancer biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) have been demonstrated by designing two different redox-labelled detection probes. Colloidal nanoparticles of polyaniline-pectin conjugated with AFP antibody along with ferrocene and silver nanoparticles conjugated with CEA antibody along with anthraquinone were used as redox probes to bind with AFP and CEA during the detection event. Sensor constructed using carboxylic acid tethered polyaniline as immobilization matrix displayed 5 times wider linear range than conventional polyaniline for AFP and CEA detection by sandwich electrochemical assay. The detection limit was 30 pg mL-1 for AFP and 80 pg mL-1 for CEA. The biosensor displayed appropriate sensitivity, good specificity, and negligible cross-reactivity between the two targets. The proposed sensor was used to determine APF and CEA in human blood serum. The strategy demonstrated can be further extended for detection of panel of cancer biomarkers by designing appropriate redox probes.
Collapse
|
6
|
Domínguez-Aragón A, Zaragoza-Contreras EA, Figueroa-Miranda G, Offenhäusser A, Mayer D. Electrochemical Immunosensor Using Electroactive Carbon Nanohorns for Signal Amplification for the Rapid Detection of Carcinoembryonic Antigen. BIOSENSORS 2022; 13:bios13010063. [PMID: 36671898 PMCID: PMC9855668 DOI: 10.3390/bios13010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 05/31/2023]
Abstract
In this work, a novel sandwich-type electrochemical immunosensor was developed for the quantitative detection of the carcinoembryonic antigen, an important tumor marker in clinical tests. The capture antibodies were immobilized on the surface of a gold disk electrode, while detection antibodies were attached to redox-tagged single-walled carbon nanohorns/thionine/AuNPs. Both types of antibody immobilization were carried out through Au-S bonds using the novel photochemical immobilization technique that ensures control over the orientation of the antibodies. The electroactive SWCNH/Thi/AuNPs nanocomposite worked as a signal tag to carry out both the detection of carcinoembryonic antigen and the amplification of the detection signal. The current response was monitored by differential pulse voltammetry. A clear dependence of the thionine redox peak was observed as a function of the carcinoembryonic antigen concentration. A linear detection range from 0.001-200 ng/mL and a low detection limit of 0.1385 pg/mL were obtained for this immunoassay. The results showed that carbon nanohorns represent a promising matrix for signal amplification in sandwich-type electrochemical immune assays working as a conductive and binding matrix with easy and versatile modification routes to antibody and redox tag immobilization, which possesses great potential for clinical diagnostics of CEA and other biomarkers.
Collapse
Affiliation(s)
- Angélica Domínguez-Aragón
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
7
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Zhang X, Jiang K, Jiang S, Zhao F, Chen P, Huang P, Lin J. In Vivo Near-Infrared Fluorescence/Ratiometric Photoacoustic Duplex Imaging of Lung Cancer-Specific hNQO1. Anal Chem 2022; 94:13770-13776. [PMID: 36173742 DOI: 10.1021/acs.analchem.2c02153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpressing human NAD(P)H:quinone oxidoreductase 1 (hNQO1) in lung cancer tissues is deemed to be an attractive biomarker, which is directly connected to cancerous pathological processes. Monitoring of hNQO1 activity is crucial to early diagnosis and prognosis of lung cancer. In this study, an activatable hemi-cyanine dye-based probe (denoted as the LET-10 probe) was synthesized for near-infrared fluorescence (NIRF) and ratiometric photoacoustic (RPA) imaging of hNQO1. LET-10 can realize the NIRF and PA signal opening in the presence of hNQO1. Taking the octabutoxy naphthalocyanine in the LET-10 probe as a built-in reference signal, the LET-10 probe further demonstrated a double-signal self-calibration process for RPA imaging. Finally, the LET-10 probe was successfully applied for NIRF/RPA duplex imaging in the hNQO1-positive A549 lung cancer model, which suggests that the LET-10 probe is a promising tool for in vivo hNQO1 detection, especially for lung cancer diagnosis.
Collapse
Affiliation(s)
- Xinming Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Feng Zhao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Penghang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
9
|
A colorimetric biosensor based on peroxidase-like activity of CuO nanoparticles for simultaneous detection of microRNAs. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Filik H, Avan AA. Electrochemical and Electrochemiluminescence Dendrimer-based Nanostructured Immunosensors for Tumor Marker Detection: A Review. Curr Med Chem 2021; 28:3490-3513. [PMID: 33076797 DOI: 10.2174/0929867327666201019143647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023]
Abstract
The usage of dendrimers or cascade molecules in the biomedical area has recently attracted much attention worldwide. Furthermore, dendrimers are interesting in clinical and pre-clinical applications due to their unique characteristics. Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. In this review, the recent advances and developments (from 2009 up to 2019) in the field of electrochemical and electroluminescence immunosensors for detection of the cancer markers are presented. Moreover, this review covers the basic fabrication principles and types of electrochemical and electrochemiluminescence dendrimer-based immunosensors. In this review, we have categorized the current dendrimer based-electrochemical/ electroluminescence immunosensors into five groups: dendrimer/ magnetic particles, dendrimer/ferrocene, dendrimer/metal nanoparticles, thiol-containing dendrimer, and dendrimer/quantum dots based-immunosensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
13
|
|
14
|
Yang Z, Yuan L, Yang L, Peng S, Yang P, He X, Bao G. Association study between KCNQ1 and KCNQ1OT1 genetic polymorphisms and gastric cancer susceptibility and survival in a Chinese Han population: a case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:156. [PMID: 33569458 PMCID: PMC7867909 DOI: 10.21037/atm-20-8052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The present study analyzed gene polymorphisms in the potassium voltage-gated channel KQT-like subfamily member 1 (KCNQ1) and the long noncoding RNA, KCNQ1OT1, and their impacts on genetic susceptibility and survival in a Chinese Han population with gastric cancer (GC). Methods We designed a case-control study that included 681 patients with GC and 756 healthy controls. Three single-nucleotide polymorphisms (SNPs) in the KCNQ1 gene region and eight SNPs in the KCNQ1OT1 gene region were selected for further research. Results Among the 11 SNPs, we found no significant differences in the genotype and allele frequencies between GC patients and the healthy population. Hierarchical analysis by the log-additive model indicated that the KCNQ1 rs231348 CT genotype was significantly associated with an increased GC risk in individuals aged ≥55 years, regardless of gender. The KCNQ1OT1 rs231352 CC and rs7128926 AA genotypes increased the risk of GC in individuals with stage III/IV tumors larger than 5 cm in diameter. On evaluating the genotype polymorphism and survival analysis, we detected that the AA genotypes of the KCNQ1OT1 rs7128926 and rs7939976 polymorphisms presented a significant survival advantage over the GA/GG genotypes, especially in patients with the following characteristics: age >55, Helicobacter pylori infection, BMI >24, tumor in the non-cardia region with a diameter greater than 5 cm, clinical stage II, and postoperative adjuvant chemotherapy. Conclusions Our results suggest that the KCNQ1 rs231348 and KCNQ1OT1 rs231352 polymorphisms might be independent predictors of the risk of GC susceptibility depending on certain factors, such as the age of the individual and the tumor stage and diameter. Simultaneously, genotype polymorphism of the rs7128926 and rs7939976 loci of the KCNQ1OT1 gene independently predicted the recurrence-free survival (RFS) and overall survival (OS) of GC patients.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Lijuan Yuan
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Lin Yang
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Shujia Peng
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Ping Yang
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6905. [PMID: 33287186 PMCID: PMC7730465 DOI: 10.3390/s20236905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Prussian blue nanoparticles (PBNPs) have attracted increasing research interest in immunosensors, bioimaging, drug delivery, and application as therapeutic agents due to their large internal pore volume, tunable size, easy synthesis and surface modification, good thermal stability, and favorable biocompatibility. This review first outlines the effect of tumor markers using PBNPs-based immunosensors which have a sandwich-type architecture and competitive-type structure. Metal ion doped PBNPs which were used as T1-weight magnetic resonance and photoacoustic imaging agents to improve image quality and surface modified PBNPs which were used as drug carriers to decrease side effects via passive or active targeting to tumor sites are also summarized. Moreover, the PBNPs with high photothermal efficiency and excellent catalase-like activity were promising for photothermal therapy and O2 self-supplied photodynamic therapy of tumors. Hence, PBNPs-based multimodal imaging-guided combinational tumor therapies (such as chemo, photothermal, and photodynamic therapies) were finally reviewed. This review aims to inspire broad interest in the rational design and application of PBNPs for detecting and treating tumors in clinical research.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (X.G.); (Q.W.); (S.L.); (T.L.); (C.L.); (X.H.)
| | | | | | | | | |
Collapse
|
16
|
Su D, Chen X, Zhang Y, Gao X. Activatable imaging probes for cancer-linked NAD(P)H:quinone oxidoreductase-1 (NQO1): Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Chen X, Bian Y, Li M, Zhang Y, Gao X, Su D. Activatable Off-on Near-Infrared QCy7-based Fluorogenic Probes for Bioimaging. Chem Asian J 2020; 15:3983-3994. [PMID: 33034939 DOI: 10.1002/asia.202001057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Indexed: 01/26/2023]
Abstract
The activatable off-on near-infrared QCy7-based fluorogenic probes have emerged as powerful modalities for detecting and monitoring biological analytes and understanding their biological processes in cells and organisms. The use of biomarker-activated QCy7-based probes enables simple synthesis, minimum photo-damage to biological samples, and minimum background interference from biological systems. In this minireview, we aim to provide a rigorous but concise overview of activatable QCy7-based fluorogenic probes by reporting the significant progress made in recent years. The design strategies and the main applications of accurate detection and imaging of disease-related biomarkers (including ROS/RSS, enzymes, metal ions, and other related species) were reasonably analyzed and discussed. The potential challenges and prospects of activatable QCy7-based fluorogenic probes are also emphasized to further advance the development of new methods for biomarker detection and bioimaging.
Collapse
Affiliation(s)
- Xueqian Chen
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yongning Bian
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingrui Li
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yong Zhang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
18
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
19
|
Ma R, He Q. A Variant of Leptin Gene Decreases the Risk of Gastric Cancer in Chinese Individuals: Evidence from a Case-Control Study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:397-404. [PMID: 33061532 PMCID: PMC7519837 DOI: 10.2147/pgpm.s258672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Background A host of studies have explored the potential connection between leptin (LEP) G19A polymorphism and the risk of cancers, but the relationship between gastric cancer (GC) susceptibility and LEP G19A polymorphism was not revealed before. The aim of this study was to investigate this relationship in Chinese Han population. Methods Thus, this case–control study with 380 GC cases and 465 controls was designed to unearth the link between LEP G19A polymorphism and GC susceptibility. Genotyping was accomplished by a custom-made 48-Plex SNP scanTM kit. Relative LEP gene expression was detected by real-time reverse transcription-polymerase chain reaction. Results LEP G19A polymorphism was shown to relate with a decreased risk of GC. Subgroup analyses uncovered significant connections in the males, nondrinkers, and those at age <60 years. G19A polymorphism was also linked with tumor size and location and pathological type of GC. Last, LEP gene expression in gastric tissues was considerably less than in control tissues. Conclusion This study shows that G19A polymorphism of LEP gene is linked with a lower risk of GC in the tested Chinese Han individuals.
Collapse
Affiliation(s)
- Renjie Ma
- Department of Infectious Disease, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, People's Republic of China
| | - Qi He
- Department of Infectious Disease, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, People's Republic of China
| |
Collapse
|
20
|
Tandon S, George SM, McIntyre R, Kandasubramanian B. Polymeric immunosensors for tumor detection. Biomed Phys Eng Express 2020; 6:032001. [PMID: 33438645 DOI: 10.1088/2057-1976/ab8a75] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a broad-spectrum disease which is spread globally, having high mortality rates. This results from genetic, epigenetic and molecular abnormalities caused by various mutations. The main reason behind this critical problem lies in its diagnostics, the late detection of the disease is the root cause of all this. This can be managed well by the timely diagnosis of cancer by means of the tumor biomarkers present in the body fluids such as serum, blood, and urine. These tumor biomarkers are present in normal conditions as well, but their concentrations are altered in the presence of a malignant tumor. Prolonged studies have reported that immunosensors can be used to detect the minimal amount of biomarkers present in the sample and also provides point-of-care detection. The recent investigations demonstrated the use of polymers along with immunosensors for enhancing their selectivity and sensitivity towards the biomarkers and making them even more efficient. This review focuses on the variety of tumor biomarkers, different types of immunosensors and polymeric immunosensors using different polymers like polypyrrole, polyaniline, PHEMA, etc.
Collapse
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | | | | | | |
Collapse
|
21
|
Sha R, Badhulika S. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Mikrochim Acta 2020; 187:181. [PMID: 32076837 DOI: 10.1007/s00604-020-4152-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is commonly diagnosed via determination of biomarkers like CA125, Mucin 1, HE4, and prostasin that can be present in the blood. However, there is a substantial need for less expensive, simpler, and portable diagnostic tools, both for timely diagnosis and management of ovarian cancer. This review (with 101 refs.) discusses various kinds of nanomaterial-based biosensors for tumor markers. Following an introduction into the field, a first section covers different kinds of biomarkers for ovarian cancer including CA125 (MUC16), mucin 1 (MUC1), human epididymis protein 4 (HE4), and prostasin. This is followed by a short overview on conventional diagnostic approaches. A large section is then presented on biosensors for determination of ovarian cancer, with subsections on optical biosensors (fluorimetric, colorimetric, surface plasmon resonance, chemiluminescence, electrochemiluminescence), on electrochemical sensors, molecularly imprinted sensors, paper-based biosensors, microfluidic (lab-on-a-chip) assays, chemiresistive and field effect transistor-based sensors, and giant magnetoresistive sensors. Tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical abstract Schematic representation of the review covering the advancements in the fabrication of various nanomaterial based biosensors for diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Rinky Sha
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
22
|
Impact of PSCA gene polymorphisms in modulating gastric cancer risk in the Chinese population. Biosci Rep 2019; 39:BSR20181025. [PMID: 31416884 PMCID: PMC6722488 DOI: 10.1042/bsr20181025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 06/23/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Previous studies have identified the prostate stem cell antigen (PSCA) gene rs2294008 C > T and rs2976392 G > A polymorphisms to be associated with the risk of gastric cancer, the results of which are inconsistent. The present study aimed to evaluate the association between the two polymorphisms and the gastric cancer risk in the Chinese population. A hospital-based case-control study was conducted on 549 cases and 592 healthy controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to evaluate the association of the two polymorphisms on the gastric cancer risk. We found that both rs2294008 (CT vs. CC, OR = 1.55, 95% CI = 1.20-1.99, P<0.001 and CT+TT vs. CC, OR = 1.38, 95% CI = 1.09-1.74, P=0.008) and rs2976392 (GA vs. GG, OR = 1.61, 95% CI = 1.25-2.07, P<0.001 and GA+AA vs. GG, OR = 1.52, 95% CI = 1.20-1.92, P<0.001) were associated with an increased gastric cancer. In the combined analysis of the two polymorphisms, subjects with more than one risk genotype have a significantly increased risk of gastric cancer (OR = 1.38, 95% CI = 1.09-1.75, P=0.008) in comparison with those without any risk genotypes. In conclusion, our findings verified that the PSCA gene rs2294008 and rs2976392 polymorphisms were both significantly associated with an increased risk of gastric cancer in the Chinese population. Well-designed functional studies are to be warranted to confirm these findings.
Collapse
|
23
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
25
|
Gautam R, Kaur P, Sharma M. A comprehensive review on nature inspired computing algorithms for the diagnosis of chronic disorders in human beings. PROGRESS IN ARTIFICIAL INTELLIGENCE 2019. [DOI: 10.1007/s13748-019-00191-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Bozal‐Palabiyik B, Lettieri M, Uslu B, Marrazza G. Electrochemical Detection of Vascular Endothelial Growth Factor by Molecularly Imprinted Polymer. ELECTROANAL 2019. [DOI: 10.1002/elan.201900185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Burcin Bozal‐Palabiyik
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- University of Ankara, Faculty of PharmacyDepartment of Analytical Chemistry 06560 Ankara Turkey
| | - Mariagrazia Lettieri
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Bengi Uslu
- University of Ankara, Faculty of PharmacyDepartment of Analytical Chemistry 06560 Ankara Turkey
| | - Giovanna Marrazza
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
27
|
Figueroa CD, Molina L, Bhoola KD, Ehrenfeld P. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer. Biol Chem 2019; 399:937-957. [PMID: 29885274 DOI: 10.1515/hsz-2018-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Department of Science, Universidad San Sebastián, sede De la Patagonia, Puerto Montt, Chile
| | - Kanti D Bhoola
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Investigaciones del Sistema Nervioso (CISNe), Valdivia, Chile, e-mail:
| |
Collapse
|
28
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
29
|
Song Y, Fan H, Anderson MJ, Wright JG, Hua DH, Koehne J, Meyyappan M, Li J. Electrochemical Activity Assay for Protease Analysis Using Carbon Nanofiber Nanoelectrode Arrays. Anal Chem 2019; 91:3971-3979. [PMID: 30726059 PMCID: PMC6501207 DOI: 10.1021/acs.analchem.8b05189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a strong demand for bioanalytical techniques to rapidly detect protease activities with high sensitivity and high specificity. This study reports an activity-based electrochemical method toward this goal. Nanoelectrode arrays (NEAs) fabricated with embedded vertically aligned carbon nanofibers (VACNFs) are functionalized with specific peptide substrates containing a ferrocene (Fc) tag. The kinetic proteolysis curves are measured with continuously repeated ac voltammetry, from which the catalytic activity is derived as the inverse of the exponential decay time constant based on a heterogeneous Michaelis-Menten model. Comparison of three peptide substrates with different lengths reveals that the hexapeptide H2N-(CH2)4-CO-Pro-Leu-Arg-Phe-Gly-Ala-NH-CH2-Fc is the optimal probe for cathepsin B. The activity strongly depends on temperature and is the highest around the body temperature. With the optimized peptide substrate and measuring conditions, the limit of detection of cathepsin B activity and concentration can reach 2.49 × 10-4 s-1 and 0.32 nM, respectively. The peptide substrates show high specificity to the cognate proteases, with negligible cross-reactions among three cancer-related proteases cathepsin B, ADAM10, and ADAM17. This electrochemical method can be developed into multiplex chips for rapid profiling of protease activities in cancer diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Yang Song
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Huafang Fan
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Morgan J. Anderson
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jestin Gage Wright
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jessica Koehne
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - M. Meyyappan
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Jun Li
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
30
|
Electrochemical Biosensors as Potential Diagnostic Devices for Autoimmune Diseases. BIOSENSORS-BASEL 2019; 9:bios9010038. [PMID: 30836674 PMCID: PMC6468465 DOI: 10.3390/bios9010038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 01/19/2023]
Abstract
An important class of biosensors is immunosensors, affinity biosensors that are based on the specific interaction between antibodies and antigens. They are classified in four classes based on the type of employed transducer: electrochemical, optical, microgravimetric, and thermometric and depending on the type of recognition elements, antibodies, aptamers, microRNAs and recently peptides are integrating parts. Those analytical devices are able to detect peptides, antibodies and proteins in various sample matrices, without many steps of sample pretreatment. Their high sensitivity, low cost and the easy integration in point of care devices assuring portability are attracting features that justify the increasing interest in their development. The use of nanomaterials, simultaneous multianalyte detection and integration on platforms to form point-of-care devices are promising tools that can be used in clinical analysis for early diagnosis and therapy monitoring in several pathologies. Taking into account the growing incidence of autoimmune disease and the importance of early diagnosis, electrochemical biosensors could represent a viable alternative to currently used diagnosis methods. Some relevant examples of electrochemical assays for autoimmune disease diagnosis developed in the last several years based on antigens, antibodies and peptides as receptors were gathered and will be discussed further.
Collapse
|
31
|
Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zhang C, Zhang QZ, Zhang K, Li LY, Pluth MD, Yi L, Xi Z. Dual-biomarker-triggered fluorescence probes for differentiating cancer cells and revealing synergistic antioxidant effects under oxidative stress. Chem Sci 2019; 10:1945-1952. [PMID: 30931093 PMCID: PMC6399676 DOI: 10.1039/c8sc03781g] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) and human NAD(P)H:quinine oxidoreductase 1 (hNQO1) are potential cancer biomarkers and also vital participants in cellular redox homeostasis. Simultaneous detection of these two biomarkers would benefit the diagnostic precision of related cancers and could also help to investigate their crosstalk in response to oxidative stress. Despite this importance, fluorescent probes that can be activated by the dual action of H2S detection and hNQO1 activity have not been investigated. To this end, dual-biomarker-triggered fluorescent probes 1 and 2 were rationally constructed by installing two chemoselective triggering groups into one fluorophore. Probe 1 provides a small turn-on fluorescence response toward H2S but a much larger response to both H2S and hNQO1 in tandem. By contrast, fluorescence probe 2 is activated only in the presence of both H2S and hNQO1. Probe 2 exhibits a large fluorescence turn-on (>400 fold), high sensitivity, excellent selectivity as well as good biocompatibility, enabling the detection of both endogenous H2S and hNQO1 activity in living cells. Bioimaging results indicated that probe 2 could differentiate HT29 and HepG2 cancer cells from HCT116, FHC and HeLa cells owing to the existence of relatively high endogenous levels of both biomarkers. Expanded investigations using 2 revealed that cells could generate more endogenous H2S and hNQO1 upon exposure to exogenous hydrogen peroxide (H2O2), implying the synergistic antioxidant effects under conditions of cellular oxidative stress.
Collapse
Affiliation(s)
- Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology (BUCT) , 15 Beisanhuan East Road, Chaoyang District , Beijing 100029 , China .
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Michael D Pluth
- Materials Science Institute , Institute of Molecular Biology , Department of Chemistry and Biochemistry , University of Oregon , Eugene , OR 97403 , USA
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology (BUCT) , 15 Beisanhuan East Road, Chaoyang District , Beijing 100029 , China .
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry , National Pesticide Engineering Research Center (Tianjin) , Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , China .
| |
Collapse
|
33
|
Liu JX, Bao N, Luo X, Ding SN. Nonenzymatic Amperometric Aptamer Cytosensor for Ultrasensitive Detection of Circulating Tumor Cells and Dynamic Evaluation of Cell Surface N-Glycan Expression. ACS OMEGA 2018; 3:8595-8604. [PMID: 31458989 PMCID: PMC6644493 DOI: 10.1021/acsomega.8b01072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 05/26/2023]
Abstract
Dynamic assessment of glycan expression on the cell surface and accurate determination of circulating tumor cells are increasingly imperative for cancer diagnosis and therapeutics. Herein, a unique and versatile nonenzymatic sandwich-structured electrochemical cytosensor was developed. The cytosensor was constructed based on a cell-specific aptamer, the lectin-functionalized porous core-shell palladium gold nanoparticles (Pd@Au NPs). To establish the cytosensor, amine-modified-SYL3C aptamer was first attached to the surface of aminated Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2-NH2 NPs) through cross-linked reaction via glutaraldehyde. Besides, in terms of noncovalent assembly of concanavalin A on Pd@Au NPs, a lectin-functionalized nanoprobe was established. This nanoprobe had the capabilities of both the specific carbohydrate recognition and the current signal amplification in view of the Pd@Au NPs as the electrocatalyst for the reduction of hydrogen peroxide (H2O2). Herein, we used MCF-7 cells as a model target, and the constructed cytosensor showed a low detection limit (down to three cells), a wide linear detection ranging from 100 to 1 × 106 cells mL-1. The established method sensitively realized the detection of the amount of cell and exact evaluation of glycan expression on cell surface, demonstrating great application prospects.
Collapse
Affiliation(s)
- Jin-Xia Liu
- Jiangsu
Province Hi-Tech Key Laboratory for Bio-medical Research, School of
Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Ning Bao
- School
of Public Health, Nantong University, 226019 Nantong, Jiangsu, China
| | - Xiliang Luo
- Key
Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education,
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shou-Nian Ding
- Jiangsu
Province Hi-Tech Key Laboratory for Bio-medical Research, School of
Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| |
Collapse
|
34
|
Subhapriya S, Gomathipriya P. Induction of apoptotic effects of anti-proliferative zeolite X from coal fly ash on cervical cancer (HeLa) cell lines. Mol Biol Rep 2018; 45:1077-1087. [PMID: 30047039 DOI: 10.1007/s11033-018-4259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
The synthesised zeolite X from coal fly ash showed significant cytotoxic activity in contradiction of HeLa cells (cervical cancer) in a concentration-dependent way at concentrations ranges from 200 µg to 0.781 µg/ml as shown by MTT assay and failed to cause cytotoxic effect in normal cells (Gh239). Cell cycle analysis exposed that zeolite X (10 and 15 µg/ml) endorses cell growth inhibition by inducing G2/M phase arrest in HeLa cells as observed using flow cytometry. The confocal microscopic results depicted increased early apoptotic related changes in HeLa cell lines induced by zeolite X at a dosage of 10, 15 and 20 µg/ml. Zeolite X at a dosage of 10, 15 and 20 µg/ml in HeLa cells showed fragmentation of DNA by ladder pattern thereby indicates that cell death is related with apoptosis. By the increase of Bax/Bcl-2 ratio, zeolite X leads to the caspase-3 and caspase-9 activation and allow the cells to enter apoptosis. These collective results evidently showed that the influence of mitochondria-mediated signalling pathway in zeolite X induced apoptosis and intensely delivered investigational suggestion for the use of zeolite X as a significant curative agent in the preclusion and therapy of human cervical carcinoma.
Collapse
Affiliation(s)
- S Subhapriya
- Department of Chemical Engineering, Anna University, A.C. Tech Campus, Chennai, Tamil Nadu, 600 025, India
| | - P Gomathipriya
- Department of Chemical Engineering, Anna University, A.C. Tech Campus, Chennai, Tamil Nadu, 600 025, India.
| |
Collapse
|
35
|
Cavaco C, Pereira JAM, Taunk K, Taware R, Rapole S, Nagarajaram H, Câmara JS. Screening of salivary volatiles for putative breast cancer discrimination: an exploratory study involving geographically distant populations. Anal Bioanal Chem 2018; 410:4459-4468. [PMID: 29732495 DOI: 10.1007/s00216-018-1103-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/05/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Abstract
Saliva is possibly the easiest biofluid to analyse and, despite its simple composition, contains relevant metabolic information. In this work, we explored the potential of the volatile composition of saliva samples as biosignatures for breast cancer (BC) non-invasive diagnosis. To achieve this, 106 saliva samples of BC patients and controls in two distinct geographic regions in Portugal and India were extracted and analysed using optimised headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME/GC-MS, 2 mL acidified saliva containing 10% NaCl, stirred (800 rpm) for 45 min at 38 °C and using the CAR/PDMS SPME fibre) followed by multivariate statistical analysis (MVSA). Over 120 volatiles from distinct chemical classes, with significant variations among the groups, were identified. MVSA retrieved a limited number of volatiles, viz. 3-methyl-pentanoic acid, 4-methyl-pentanoic acid, phenol and p-tert-butyl-phenol (Portuguese samples) and acetic, propanoic, benzoic acids, 1,2-decanediol, 2-decanone, and decanal (Indian samples), statistically relevant for the discrimination of BC patients in the populations analysed. This work defines an experimental layout, HS-SPME/GC-MS followed by MVSA, suitable to characterise volatile fingerprints for saliva as putative biosignatures for BC non-invasive diagnosis. Here, it was applied to BC samples from geographically distant populations and good disease separation was obtained. Further studies using larger cohorts are therefore very pertinent to challenge and strengthen this proof-of-concept study. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Carina Cavaco
- CQM-UMa - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM-UMa - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal.
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Hampapathalu Nagarajaram
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Nampally, Hyderabad, 500001, India.,Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - José S Câmara
- CQM-UMa - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal.,Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
36
|
Luna Coronell JA, Sergelen K, Hofer P, Gyurján I, Brezina S, Hettegger P, Leeb G, Mach K, Gsur A, Weinhäusel A. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:73-84. [PMID: 29505855 PMCID: PMC6000238 DOI: 10.1016/j.gpb.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/01/2017] [Accepted: 10/19/2017] [Indexed: 01/16/2023]
Abstract
Characterization of the colon cancer immunome and its autoantibody signature from differentially-reactive antigens (DIRAGs) could provide insights into aberrant cellular mechanisms or enriched networks associated with diseases. The purpose of this study was to characterize the antibody profile of plasma samples from 32 colorectal cancer (CRC) patients and 32 controls using proteins isolated from 15,417 human cDNA expression clones on microarrays. 671 unique DIRAGs were identified and 632 were more highly reactive in CRC samples. Bioinformatics analyses reveal that compared to control samples, the immunoproteomic IgG profiling of CRC samples is mainly associated with cell death, survival, and proliferation pathways, especially proteins involved in EIF2 and mTOR signaling. Ribosomal proteins (e.g., RPL7, RPL22, and RPL27A) and CRC-related genes such as APC, AXIN1, E2F4, MSH2, PMS2, and TP53 were highly enriched. In addition, differential pathways were observed between the CRC and control samples. Furthermore, 103 DIRAGs were reported in the SEREX antigen database, demonstrating our ability to identify known and new reactive antigens. We also found an overlap of 7 antigens with 48 “CRC genes.” These data indicate that immunomics profiling on protein microarrays is able to reveal the complexity of immune responses in cancerous diseases and faithfully reflects the underlying pathology.
Collapse
Affiliation(s)
| | - Khulan Sergelen
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria
| | - Philipp Hofer
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University Vienna, A-1090 Vienna, Austria
| | - István Gyurján
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria
| | - Stefanie Brezina
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University Vienna, A-1090 Vienna, Austria
| | - Peter Hettegger
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria
| | - Gernot Leeb
- Hospital Oberpullendorf, A-7350, Oberpullendorf, Austria
| | - Karl Mach
- Hospital Oberpullendorf, A-7350, Oberpullendorf, Austria
| | - Andrea Gsur
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University Vienna, A-1090 Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics, AIT - Austrian Institute of Technology, A-1190 Vienna, Austria.
| |
Collapse
|
37
|
Modulation of Molecular Biomarker Expression in Response to Chemotherapy in Invasive Ductal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7154708. [PMID: 29619374 PMCID: PMC5830017 DOI: 10.1155/2018/7154708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/30/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) has varied morphological and biological features and is classified based on molecular and morphological examinations. Molecular classification of BC is based on biological gene-expression profiling. In this study, biomarker modulation was assessed during BC treatment in 30 previously untreated patients. Heterogeneity among patients was pathologically diagnosed and classified into luminal and basal-like immunohistochemical profiles based on estrogen, progesterone, and human epidermal growth factor receptor (ER/PR/HER2) status. Marker heterogeneity was compared with mRNA biomarker expression in patients with BC before and after therapy. Reverse transcription-polymerase chain reaction was performed for molecular characterization. Expression and modulation of biological markers, CK19, hMAM, CEA, MUC, Myc, Ki-67, HER2/neu, ErbB2, and ER, were assessed after treatment, where the expression of the biomarkers CK19, Ki-67, Myc, and CEA was noted to be significantly decreased. Marker expression modulation was determined according to different stages and pathological characteristics of patients; coexpression of three markers (CK19, Ki-67, and Myc) was specifically modulated after therapy. In the histopathologically classified basal-like group, two markers (CK19 and Ki-67) were downregulated and could be considered as diagnostic biomarkers. In conclusion, pathological characteristics and marker variation levels can be evaluated to decide a personalized treatment for patients.
Collapse
|
38
|
Cheow ESH, Cheng WC, Yap T, Dutta B, Lee CN, Kleijn DPVD, Sorokin V, Sze SK. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach. J Proteome Res 2017; 17:499-515. [DOI: 10.1021/acs.jproteome.7b00651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esther Sok Hwee Cheow
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Woo Chin Cheng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
| | - Terence Yap
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Bamaprasad Dutta
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Dominique P. V. de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands & Interuniversity Cardiovascular Institute of The Netherlands, Utrecht 3508 GA, The Netherlands
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| |
Collapse
|
39
|
Abbas M, Habib M, Naveed M, Karthik K, Dhama K, Shi M, Dingding C. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice. Biomed Pharmacother 2017; 95:1082-1090. [DOI: 10.1016/j.biopha.2017.09.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
|
40
|
Saitta C, Raffa G, Alibrandi A, Brancatelli S, Lombardo D, Tripodi G, Raimondo G, Pollicino T. PIVKA-II is a useful tool for diagnostic characterization of ultrasound-detected liver nodules in cirrhotic patients. Medicine (Baltimore) 2017; 96:e7266. [PMID: 28658121 PMCID: PMC5500043 DOI: 10.1097/md.0000000000007266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein induced by vitamin K absence-II (PIVKA-II) is a potential screening marker for hepatocellular carcinoma (HCC). Limited data are available about its utility in discriminating neoplastic from regenerative nodules at ultrasonography (US) evaluation in cirrhotic patients. Aim of this study was to investigate the diagnostic utility of PIVKA-II in cases showing liver nodules of uncertain diagnosis at US.Ninety cirrhotics with US evidence of liver nodule(s) were enrolled. All patients underwent blood sampling within 1 week of US and were thereafter followed up. HCC was confirmed in 40/90 cases, and in all cases it was in a very early/early stage. All sera were tested for PIVKA-II and alpha-fetoprotein (AFP) at the end of follow-up. PIVKA-II at a cut off of 60 mAU/mL was significantly associated with HCC at both univariate and multivariate analysis (P = .016 and P = .032, respectively). AFP at a cut off of 6.5 ng/mL was not associated with HCC at univariate analysis (P = .246). ROC curves showed that PIVKA-II had 60% sensitivity, 88% specificity, 80% positive predictive value (PPV), and 73% negative predictive value (NPV), whereas AFP had 67% sensitivity, 68% specificity, 63% PPV, and 72% NPV. AUROC curves showed that the combination of both biomarkers increased the diagnostic accuracy for HCC (AUC 0.76; sensitivity 70%, specificity 94%, PPV 91%, and NPV 79%).In conclusion, PIVKA-II is a useful tool for the diagnostic definition of US-detected liver nodules in cirrhotic patients, and it provides high diagnostic accuracy for HCC when combined with AFP.
Collapse
Affiliation(s)
- Carlo Saitta
- Division of Clinical and Molecular Hepatology, Department of Internal Medicine, University Hospital of Messina
| | - Giuseppina Raffa
- Division of Clinical and Molecular Hepatology, Department of Internal Medicine, University Hospital of Messina
- Department of Clinical and Experimental Medicine
| | | | - Santa Brancatelli
- Division of Clinical and Molecular Hepatology, Department of Internal Medicine, University Hospital of Messina
- Department of Clinical and Experimental Medicine
| | | | | | - Giovanni Raimondo
- Division of Clinical and Molecular Hepatology, Department of Internal Medicine, University Hospital of Messina
- Department of Clinical and Experimental Medicine
| | - Teresa Pollicino
- Division of Clinical and Molecular Hepatology, Department of Internal Medicine, University Hospital of Messina
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
41
|
Hasanzadeh M, Shadjou N, de la Guardia M. Early stage screening of breast cancer using electrochemical biomarker detection. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Association between PSCA gene polymorphisms and the risk of cancer: an updated meta-analysis and trial sequential analysis. Oncotarget 2017; 8:51766-51778. [PMID: 28881685 PMCID: PMC5584286 DOI: 10.18632/oncotarget.17011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/30/2017] [Indexed: 01/25/2023] Open
Abstract
Previous studies have investigated the relationships between PSCA rs2294008 C>T and rs2976392 G>A polymorphisms and cancer susceptibility. However, the available findings remained inconsistent and even controversial. Thus, the aim of this meta-analysis was performed to clarify such associations. The online databases PubMed, EMBASE and Web of Science searched for relevant studies, covering all the papers published until September 1st, 2016. Data were pooled by odds ratios (ORs) with 95% confidence intervals (CIs) to evaluate the strength of such associations. Then, trial sequential analysis was performed to estimate whether the evidence of the results was firm. Overall, a significant increased risk of cancer was associated with PSCA rs2294008 C>T and rs2976392 G>A polymorphisms. For the PSCA rs2294008 polymorphism, when stratified by type of cancer, the results were significant especially in gastric cancer and bladder cancer. Moreover, in the subgroup analysis by ethnicity, significant results were detected in both Asian and Caucasian populations. Similarly, for the PSCA rs2976392 polymorphism, the stratification analyses by type of cancer showed that the results were significant only in gastric cancer. In addition, the stratification analyses by ethnicity detected that this polymorphism increased cancer risk only in Asian populations. Then, trial sequential analyses demonstrated that the results of the meta-analysis were based on sufficient evidence. Therefore, this meta-analysis suggested that the PSCA rs2294008 C>T and rs2976392 G>A polymorphisms might be associated with cancer susceptibility, which might act as a potential predicted biomarker for genetic susceptibility to cancer, especially in gastric cancer and bladd er cancer.
Collapse
|
43
|
Lee SH, Lee SS. Electrochemical Quantitative Analysis of Nucleic Acids Using β-Cyclodextrin Modified Gold Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201600686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sun Hyeok Lee
- Department of Pharmaceutical Engineering; Soonchunhyang University; Asan-Si 31538 Republic of Korea
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering; Soonchunhyang University; Asan-Si 31538 Republic of Korea
| |
Collapse
|
44
|
Carcinoembryonic antigen detection with “Handing”-controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron 2017; 90:508-515. [DOI: 10.1016/j.bios.2016.10.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 01/30/2023]
|
45
|
Selvolini G, Marrazza G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. SENSORS 2017; 17:s17040718. [PMID: 28353669 PMCID: PMC5421678 DOI: 10.3390/s17040718] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Detecting cancer disease at an early stage is one of the most important issues for increasing the survival rate of patients. Cancer biomarker detection helps to provide a diagnosis before the disease becomes incurable in later stages. Biomarkers can also be used to evaluate the progression of therapies and surgery treatments. In recent years, molecularly imprinted polymer (MIP) based sensors have been intensely investigated as promising analytical devices in several fields, including clinical analysis, offering desired portability, fast response, specificity, and low cost. The aim of this review is to provide readers with an overview on recent important achievements in MIP-based sensors coupled to various transducers (e.g., electrochemical, optical, and piezoelectric) for the determination of cancer biomarkers by selected publications from 2012 to 2016.
Collapse
Affiliation(s)
- Giulia Selvolini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy.
| |
Collapse
|
46
|
Ding L, Zhang Z, Xu Y, Zhang Y. Comparative study of Her-2, p53, Ki-67 expression and clinicopathological characteristics of breast cancer in a cohort of northern China female patients. Bioengineered 2017; 8:383-392. [PMID: 28075663 DOI: 10.1080/21655979.2016.1235101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The objective was to study the relationship among Her-2, Ki-67, p53 expression and the clinicopathologic characteristics of breast cancer in the patients of northern China. Expression of Her-2, Ki-67, p53 and clinical characteristics of 260 breast cancer patients were retrospectively studied. Her-2 overexpression led to higher incidence rates of infiltrating ductal carcinoma and axillary lymph node metastasis, bigger diameters of the primary tumors, later pTNM staging, and a lower incidence rate of ductal carcinoma in situ (p < 0.05). High expression of ER and PR led to fewer patients classified histologically in higher grade (p = 0.001), while high expression of Ki-67 and p53 caused more patients classified histologically in higher grade (p = 0.001). In patients histologically classified in grade 1 and 2, the expression of Ki-67 and p53 was significantly (p = 0.001) higher, and the expression of ER and PR was significantly lower, in Her-2 positive patients than Her-2 negative patients. Breast cancer with Her-2 overexpression was more likely to recur and metastasize than Her-2 negative breast cancer. Higher coincidence of high expression of p53 and Ki-67 with Her-2 overexpression and more progressed tumors suggested that in addition to p53, Ki-67 might also be a prognostic biomarker of breast cancer.
Collapse
Affiliation(s)
- Li Ding
- a Department of Oncology , Beijing Hospital, National Center of Gerontology , Beijing , China
| | - Zijin Zhang
- a Department of Oncology , Beijing Hospital, National Center of Gerontology , Beijing , China
| | - Yan Xu
- a Department of Oncology , Beijing Hospital, National Center of Gerontology , Beijing , China
| | - Yongqiang Zhang
- a Department of Oncology , Beijing Hospital, National Center of Gerontology , Beijing , China
| |
Collapse
|
47
|
Synthesis and biological evaluation of a water-soluble phosphate prodrug salt and structural analogues of KGP94, a lead inhibitor of cathepsin L. Bioorg Med Chem Lett 2016; 27:1304-1310. [PMID: 28117205 DOI: 10.1016/j.bmcl.2016.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 11/22/2022]
Abstract
The magnitude of expression of cathepsin L, often upregulated in the tumor microenvironment, correlates with the invasive and metastatic nature of certain tumors. Inhibition of cathepsin L represents an emerging strategy for the treatment of metastatic cancer. A potent, small-molecule inhibitor (referred to as KGP94) of cathepsin L, and new KGP94 analogues were synthesized. (3,5-Dibromophenyl)-(3-hydroxyphenyl) ketone thiosemicarbazone (22), with an IC50 value of 202nM, exhibited similar inhibitory activity against cathepsin L compared to KGP94 (IC50=189nM). Due to limited aqueous solubility of KGP94, a water-soluble phosphate salt (KGP420) was prepared in order to facilitate future in vivo studies. Enzymatic hydrolysis with alkaline phosphatase (ALP) demonstrated that the phosphate prodrug, KGP420, was readily converted to the parent compound, KGP94.
Collapse
|
48
|
Rama EC, Costa-García A. Screen-printed Electrochemical Immunosensors for the Detection of Cancer and Cardiovascular Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600126] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Estefanía Costa Rama
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| | - Agustín Costa-García
- Departamento de Química Física y Analítica, Facultad de Química; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
49
|
Parker EN, Song J, Kishore Kumar GD, Odutola SO, Chavarria GE, Charlton-Sevcik AK, Strecker TE, Barnes AL, Sudhan DR, Wittenborn TR, Siemann DW, Horsman MR, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorg Med Chem 2015; 23:6974-92. [PMID: 26462052 DOI: 10.1016/j.bmc.2015.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates.
Collapse
Affiliation(s)
- Erica N Parker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Jiangli Song
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - G D Kishore Kumar
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Samuel O Odutola
- Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798-7224, United States
| | - Gustavo E Chavarria
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Amanda K Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Ashleigh L Barnes
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Dhivya R Sudhan
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610, United States
| | - Thomas R Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL 32610, United States; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - David J Chaplin
- OXiGENE, Inc., 701 Gateway Blvd, Suite 210, South San Francisco, CA 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798-7224, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798-7224, United States.
| |
Collapse
|
50
|
Tang Y, Li W, Cao J, Li W, Zhao Y. Bioassay-guided isolation and identification of cytotoxic compounds from Bolbostemma paniculatum. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:18-23. [PMID: 25882313 DOI: 10.1016/j.jep.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bolbostemma paniculatum (Maxim.) Franquet (B. paniculatum), also named "Tu-bei-mu" in Chinese folk medicines, has been described in application for the treatment of tumors, warts, inflammation and toxication in traditional Chinese medicinal books. The major constituents in B. paniculatum are triterpenoid saponins, which have been proved to possess dramatically cytotoxic activity and antivirus activity. The aim of this study is to isolate and identify the active triterpenoid saponin from the bulb of B. paniculatum by a bioassay-guided method. MATERIALS AND METHODS Four cucurbitacine triterpenoid sapogenins and 11 triterpenoid saponins were isolated from the active EtOAc and n-BuOH extract of B. paniculatum by using bioassay-guided screening. Their structures were elucidated based on the spectroscopic methods and compared with published data. Cytotoxic activities of isolated compounds were determined by MTT assay. RESULTS Four cucurbitacine triterpenoid sapogenins, isocucurbitacin B(1), 23,24-dihydroisocucurbitacin B(2), cucurbitacin E(3), 23,24-dihydrocucurbitacin E(4), and 11 triterpenoid saponins, tubeimosideI(5), tubeimoside III(6), tubeimoside V(7), dexylosyltubeimoside III(8), lobatoside C(9), tubeimoside A(10), tumeimoside B(11), lobatoside A(12), tubeimoside C(13), tubeimoside IV(14), 7β,18,20,26-tetrahydroxy-(20S)-dammar-24E-en-3-O-α-L-(4-acetyl)arabinopyranosyl-(1→2)-β-D-glucopyranoside(15) were isolated from the active EtOAc and n-BuOH extracts. Of them, compounds 2, 4, 9 and 12 were firstly isolated from the Bolbostemma genus. MTT assay revealed that compounds 1, 3 and 4 had significantly activities against HeLa and HT-29 human cancer cells with IC50 values ranging from 0.93 to 9.73μM. It is worth mentioning that compound 4׳s activities against the two cell lines are 12- and 8-fold that of the positive control drug (5-Fu). Whereas, the cyclic bisdesmosides 5-9 exerted significantly activities on BGC-823, HeLa, HT-29 and MCF-7 cancer cells with IC50 values ranging from 1.30 to 15.64μM. And 6׳s activities against the four cell lines are 6-, 3-, 10- and 16-fold that of 5-Fu and 8׳s activities against the four cell lines are 5-, 3-, 14- and 9-fold that of 5-Fu. CONCLUSION The cytotoxic activity of the bulbs of B. paniculatum is mainly ascribable to cucurbitacine triterpenoid sapogenins (1-4) and the cyclic bisdesmosides (5-9). The cyclic bisdesmosides are the main anti-cancer active compounds of B. paniculatum. The above results provide scientific evidence to support, to some extent, the ethnomedicinal use of B. paniculatum as anticancer remedies in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Natural Active Pharmaceutical Constituents of Jiangxi Province, Yichun University, Yichun 336000, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Li
- Key Laboratory of Natural Active Pharmaceutical Constituents of Jiangxi Province, Yichun University, Yichun 336000, PR China
| | - Jiaqing Cao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Wei Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Yuqing Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|