1
|
Amantakul A, Amantakul A, Pojchamarnwiputh S, Chattipakorn N, Chattipakorn SC, Sripetchwandee J. Targeting mitochondria and programmed cell death as potential interventions for metastatic castration-resistant prostate cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03784-y. [PMID: 39681803 DOI: 10.1007/s12094-024-03784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer is one of the major causes of morbidity and mortality in men worldwide. Most patients with prostate cancer will turn into end-of-life stage when those tumor cells become metastatic castration-resistant prostate cancer (mCRPC). The mCRPC subsequently developed a resistance to androgen signaling. The current regimens for mCRPC therapy are still ineffective. Much evidence from in vitro and in vivo studies explored the roles of therapeutic interventions targeted at the mitochondria and programmed cell death for prostate cancer therapy. The present review will focus on the recent medications which targeted at mitochondria and programmed cell death in mCRPC and the significant findings from each study will be summarized and discussed. Development of therapeutic interventions, particularly at mitochondrial and cytotoxic targets for treatment of mCRPC without inducing cellular toxicity of normal tissues will be considered as the novel therapeutic strategy for mCRPC.
Collapse
Affiliation(s)
- Amonlaya Amantakul
- Department of Diagnostic Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Akara Amantakul
- Department of Urology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suwalee Pojchamarnwiputh
- Department of Diagnostic Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn Chaisin Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Niu L, Liu H, Li X, Wang L, Hua H, Cao Q, Xiang Q, Cai T, Zhu D. Design, synthesis, and biological evaluation of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives as TRPM4 inhibitors for the treatment of prostate cancer. Bioorg Med Chem 2024; 98:117584. [PMID: 38168629 DOI: 10.1016/j.bmc.2023.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Transient receptor potential melastatin 4 (TRPM4) is considered to be a potential target for cancer and other human diseases. Herein, a series of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives were designed and synthesized as new TRPM4 inhibitors, aiming to improve cellular potency. One of the most promising compounds, 7d (ZX08903), displayed promising antiproliferative activity against prostate cancer cell lines. 7d also suppressed colony formation and the expression of androgen receptor (AR) protein in prostate cancer cells. Furthermore, 7d can concentration-dependently induce cell apoptosis in prostate cancer cells. Collectively, these findings indicated that compound 7d may serve as a promising lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Le Niu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China; Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xiaomei Li
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Lin Wang
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Hua
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Qiaofeng Cao
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China.
| | - Dongsheng Zhu
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Zhong H, Wang X, Chen S, Wang Z, Wang H, Xu L, Hou T, Yao X, Li D, Pan P. Discovery of Novel Inhibitors of BRD4 for Treating Prostate Cancer: A Comprehensive Case Study for Considering Water Networks in Virtual Screening and Drug Design. J Med Chem 2024; 67:138-151. [PMID: 38153295 DOI: 10.1021/acs.jmedchem.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Androgen receptor (AR) is the primary target for treating prostate cancer (PCa), which inevitably progresses due to drug-resistant mutations. Bromodomain-containing protein 4 (BRD4) has been a new potential drug target for PCa treatment. Herein, we report the rational design and discovery of novel BRD4 inhibitors through computer-aided drug design (CADD), and a hit compound SQ-1 (IC50 = 676 nM) was identified by structure-based virtual screening (SBVS) with the conserved water network. To optimize the structure of SQ-1, the free energy landscape was constructed, and the binding mechanism was explored by characterizing the water profile and the dissociation mechanism. Finally, the compound SQ-17 with improved inhibitory activity (IC50 < 100 nM) was discovered, which showed potent antiproliferative activity against LNCaP. These data highlighted a successful attempt to identify and optimize a small molecule by comprehensive CADD application and provided essential clues for developing novel therapeutics for PCa treatment.
Collapse
Affiliation(s)
- Haiyang Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyue Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shicheng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huating Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Delivery of curcumin within emulsome nanoparticles enhances the anti-cancer activity in androgen-dependent prostate cancer cell. Mol Biol Rep 2023; 50:2531-2543. [PMID: 36607480 DOI: 10.1007/s11033-022-08208-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Curcumin, a dietary polyphenol isolated from turmeric, is a potent phytochemical possessing intrinsic anticancer activities against various cancer types including prostate cancer. However, low water solubility and bioavailability of the compound are major challenges against its medical use. The objective of this study is to evaluate the therapeutic potential of curcumin-loaded emulsome nanoparticular system, i.e. CurcuEmulsomes, for the treatment of androgen dependent LNCaP prostate cancer cell line. METHODS AND RESULTS The antiproliferative effect of both free curcumin and CurcuEmulsome were investigated comparatively on LNCaP and PNT1A cells. Cell viability data indicates that the inhibition in proliferation of LNCaP cells becomes more effective when curcumin is provided with its emulsome formulation rather than its free form. Corresponding to a therapeutic index of 2.25, Half maximal inhibitory (IC50) and cytotoxic (CC50) concentrations of CurcuEmulsomes for LNCaP and PNT1A cells were estimated as 17.1 µM and 38.6 µM, respectively. The fluorescence signal of autofluorescence curcumin was preserved within the CurcuEmulsomes at 72 h after the treatment. Thus, CurcuEmulsomes prolonged biological activity of curcumin. Induced apoptotic cell death and stimulated cell cycle arrest at G2/M phase were attributed to antiproliferative activity of CurcuEmulsomes. Treatment of LNCaP cells with CurcuEmulsomes increased expression of caspase-3 significantly by 11.76-fold, whereas decreased cyclin D1, Bcl-2 and AR expression levels significantly by of 0.18, 0.06 and 0.46-fold, respectively. CONCLUSIONS Presented safety and anticancer activity of CurcuEmulsomes on LNCaP cell line highlights the potential of CurcuEmulsomes to benefit intrinsic anticancer activities of curcumin in androgen dependent prostate cancer therapy.
Collapse
|
5
|
Shayegan B, Wallis CJ, Malone S, Cagiannos I, Hamilton RJ, Ferrario C, Gotto GT, Basappa NS, Morgan SC, Fernandes R, Morash C, Niazi T, Noonan KL, Rendon R, Osborne B, Park-Wyllie L, Chan KF, Hotte SJ, Saad F. Real-world use of systemic therapies in men with metastatic castration resistant prostate cancer (mCRPC) in Canada. Urol Oncol 2022; 40:192.e1-192.e9. [DOI: 10.1016/j.urolonc.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/27/2022]
|
6
|
Xiang Q, Wang C, Wu T, Zhang C, Hu Q, Luo G, Hu J, Zhuang X, Zou L, Shen H, Wu X, Zhang Y, Kong X, Liu J, Xu Y. Design, Synthesis, and Biological Evaluation of 1-(Indolizin-3-yl)ethan-1-ones as CBP Bromodomain Inhibitors for the Treatment of Prostate Cancer. J Med Chem 2021; 65:785-810. [PMID: 34962793 DOI: 10.1021/acs.jmedchem.1c01864] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) is a potential target for prostate cancer treatment. Herein, we report the structural optimization of a series of 1-(indolizin-3-yl)ethan-1-one compounds as new selective CBP bromodomain inhibitors, aiming to improve cellular potency and metabolic stability. This process led to compound 9g (Y08284), which possesses good liver microsomal stability and pharmacokinetic properties (F = 25.9%). Furthermore, the compound is able to inhibit CBP bromodomain as well as the proliferation, colony formation, and migration of prostate cancer cells. Additionally, the new inhibitor shows promising antitumor efficacy in a 22Rv1 xenograft model (TGI = 88%). This study provides new lead compounds for further development of drugs for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Tianbang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qingqing Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Guolong Luo
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jiankang Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoxi Zhuang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hui Shen
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
7
|
Faheem, Karan Kumar B, Venkata Gowri Chandra Sekhar K, Chander S, Kunjiappan S, Murugesan S. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin Drug Discov 2021; 16:1119-1147. [PMID: 33908322 DOI: 10.1080/17460441.2021.1916464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Cancer is a dreadful disorder that is emerging as one of the leading causes of mortality across the globe. The complex tumor environment, supplemented with drawbacks of the existing drugs, has made it a global health concern. The Tetrahydroisoquinoline (THIQ) ring holds an important position in medicinal chemistry due to its wide range of pharmacological properties. Several THIQ based natural products have been previously explored for their antitumor properties, making it a vital scaffold for anticancer drug design.Areas covered: This review article addresses the potential of THIQ as anticancer agents. Various medicinal chemistry strategies employed for the design and development of THIQ analogs as inhibitors or modulators of relevant anticancer targets have been discussed in detail. Moreover, the common strategies employed for the synthesis of the core scaffold are also highlighted.Expert opinion: Evidently, THIQs have tremendous potential in anticancer drug design. Some of these analogs exhibited potent activity against various cancer molecular targets. However, there are some drawbacks, such as selectivity that need addressing. The synthetic ease for constructing the core scaffold complimented with its reactivity makes it ideal for further structure-activity relationship studies. For these reasons, THIQ is a privileged scaffold for the design and development of novel anticancer agents.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | | | - Subhash Chander
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh, Noida, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| |
Collapse
|
8
|
Xu Y, Wang Q, Xiao K, Liu Z, Zhao L, Song X, Hu X, Feng Z, Gao T, Zuo W, Zeng J, Wang N, Yu L. Novel Dual BET and PLK1 Inhibitor WNY0824 Exerts Potent Antitumor Effects in CRPC by Inhibiting Transcription Factor Function and Inducing Mitotic Abnormality. Mol Cancer Ther 2020; 19:1221-1231. [PMID: 32220972 DOI: 10.1158/1535-7163.mct-19-0578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/31/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is a lethal disease with few treatment alternatives once patients become resistant to second-generation antiandrogens. In CRPC, BET proteins are key regulators of AR- and MYC-mediated transcription, while the PLK1 inhibitor potentially downregulates AR and MYC besides influencing the cell cycle. Therefore, synchronous inhibition of BET and PLK1 would be a promising approach for CRPC therapy. This study developed a dual BET and PLK1 inhibitor WNY0824 with nanomolar and equipotent inhibition of BRD4 and PLK1. In vitro, WNY0824 exhibited excellent antiproliferation activity on AR-positive CRPC cells and induced apoptosis. These activities are attributable to its disruption of the AR-transcriptional program and the inhibition of the ETS pathway. Furthermore, WNY0824 downregulated MYC and induced mitotic abnormality. In vivo, oral WNY0824 administration suppressed tumor growth in the CRPC xenograft model of enzalutamide resistance. These findings suggest that WNY0824 is a selective dual BET and PLK1 inhibitor with potent anti-CRPC oncogenic activity and provides insights into the development of other novel dual BET- and PLK1-inhibiting drugs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzamides
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Cycle Proteins/antagonists & inhibitors
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitosis
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/antagonists & inhibitors
- Receptors, Androgen/chemistry
- Transcription Factors/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kunjie Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tiantao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiqiong Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Discovery of pyridine tetrahydroisoquinoline thiohydantoin derivatives with low blood-brain barrier penetration as the androgen receptor antagonists. Eur J Med Chem 2020; 192:112196. [PMID: 32169785 DOI: 10.1016/j.ejmech.2020.112196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PC) is the most diagnosed type of malignancy in men and the major frequently cause of cancer-related death worldwide. The androgen receptor (AR) has become a promising drug target for the treatment of PC. Here, we reported the design, optimization and evaluation of pyridine tetrahydroisoquinoline thiohydantoin derivatives with improved activity and safety as potent AR antagonists. The most promising compound 42f exhibited potent inhibitory activity on AR and strongly blocked AR nuclear translocation. Moreover, 42f displayed promising in vitro antitumor activity toward AR-dependent prostate cancer cell lines (LNCaP) and also demonstrated therapeutic effects in LNCaP xenograft tumor model in mice (TGI: 79%) with no apparent toxicity observed in vivo. More importantly, 42f showed negligible penetration of the brain-blood barrier (BBB) compared with enzalutamide. These results provide a foundation for the development of a new class of androgen receptor antagonists for potential therapeutics against PC with lower seizurogenic risk for patients.
Collapse
|
10
|
Zhang X, Huang J, Yu C, Xiang L, Li L, Shi D, Lin F. Quercetin Enhanced Paclitaxel Therapeutic Effects Towards PC-3 Prostate Cancer Through ER Stress Induction and ROS Production. Onco Targets Ther 2020; 13:513-523. [PMID: 32021294 PMCID: PMC6970612 DOI: 10.2147/ott.s228453] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Prostate cancer is one of the most common cancers threatening public health worldwide. Although chemotherapy plays an important role in treating prostate cancer, it leads to many adverse effects and is prone to drug resistance. Quercetin, a natural product, is used in traditional Chinese medicine because of its strong antitumor activity and few side effects. Methods In this study, we combined quercetin and paclitaxel to kill prostate cancer cells in vivo and in vitro, and we investigated the relevant mechanism of this combination treatment. After the cancer cells were treated with quercetin or/and paclitaxel, cell growth inhibition, apoptosis, the cell cycle, reactive oxygen species (ROS) generation, and several endoplasmic reticulum (ER) stress signaling pathway related gene expressions were evaluated. Results The combined treatment with quercetin and paclitaxel significantly inhibited cell proliferation, increased apoptosis, arrested the cell cycle at the G2/M phase, inhibited cell migration, dramatically induced ER stress to occur, and increased ROS generation. In a PC-3 cancer-bearing murine model, this combination treatment exerted the most beneficial therapeutic effects, and quercetin increased the cancer cell-killing effects of paclitaxel, with nearly no side effects compared with the single paclitaxel treatment group. Conclusion Combination treatment possessed enhanced anti-cancer effects, and these results will provide a basis for treating prostate cancer using a combination of quercetin and paclitaxel.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Jingwen Huang
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical University, Bengbu 233004, People's Republic of China
| | - Chao Yu
- Department of Clinical Medicine, Jining Medical University, Jining 272000, People's Republic of China
| | - Longquan Xiang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Liang Li
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Dongmei Shi
- Department of Dermatology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| | - Fanzhong Lin
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, People's Republic of China
| |
Collapse
|
11
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
12
|
Oh WK, Cheng WY, Miao R, Vekeman F, Gauthier-Loiselle M, Duh MS, Drea E, Szatrowski TP. Real-world outcomes in patients with metastatic castration-resistant prostate cancer receiving second-line chemotherapy versus an alternative androgen receptor-targeted agent (ARTA) following early progression on a first-line ARTA in a US community oncology setting. Urol Oncol 2018; 36:500.e1-500.e9. [DOI: 10.1016/j.urolonc.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023]
|
13
|
|
14
|
Xue X, Zhang Y, Wang C, Zhang M, Xiang Q, Wang J, Wang A, Li C, Zhang C, Zou L, Wang R, Wu S, Lu Y, Chen H, Ding K, Li G, Xu Y. Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer. Eur J Med Chem 2018; 152:542-559. [PMID: 29758518 DOI: 10.1016/j.ejmech.2018.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The bromodomain and extra-terminal proteins (BET) have emerged as promising therapeutic targets for the treatment of castration-resistant prostate cancer (CRPC). We report the design, synthesis and evaluation of a new series of benzoxazinone-containing 3,5-dimethylisoxazole derivatives as selective BET inhibitors. One of the new compounds, (R)-12 (Y02234), binds to BRD4(1) with a Kd value of 110 nM and blocks bromodomain and acetyl lysine interactions with an IC50 value of 100 nM. It also exhibits selectivity for BET over non-BET bromodomain proteins and demonstrates reasonable anti-proliferation and colony formation inhibition effect in prostate cancer cell lines such as 22Rv1 and C4-2B. The BRD4 inhibitor (R)-12 also significantly suppresses the expression of ERG, Myc and AR target gene PSA at the mRNA level in prostate cancer cells. Treatment with (R)-12 significantly suppresses the tumor growth of prostate cancer (TGI = 70%) in a 22Rv1-derived xenograft model. These data suggest that compound (R)-12 is a promising lead compound for the development of a new class of therapeutics for the treatment of CRPC.
Collapse
Affiliation(s)
- Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Maofeng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Anhui Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116023, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China.
| |
Collapse
|
15
|
Zhang M, Zhang Y, Song M, Xue X, Wang J, Wang C, Zhang C, Li C, Xiang Q, Zou L, Wu X, Wu C, Dong B, Xue W, Zhou Y, Chen H, Wu D, Ding K, Xu Y. Structure-Based Discovery and Optimization of Benzo[d]isoxazole Derivatives as Potent and Selective BET Inhibitors for Potential Treatment of Castration-Resistant Prostate Cancer (CRPC). J Med Chem 2018; 61:3037-3058. [DOI: 10.1021/acs.jmedchem.8b00103] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Maofeng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ming Song
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chun Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Donghai Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Potential Anticancer Mechanisms of a Novel EGFR/DNA-Targeting Combi-Molecule (JDF12) against DU145 Prostate Cancer Cells: An iTRAQ-Based Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8050313. [PMID: 29164150 PMCID: PMC5661095 DOI: 10.1155/2017/8050313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 11/25/2022]
Abstract
The development of multitargeting drugs is an emerging trend in cancer research. To promote further development and clinical application of multitargeting drugs, this research was performed. MTT assay and flow cytometry of Annexin V/propidium iodide staining were used to confirm the proapoptotic efficacy of a novel combi-targeting molecule, JDF12, against DU145 prostate cancer (PCa) cells. Differentially expressed proteins between control and JDF12-treated cultures were revealed by isobaric tags for relative and absolute quantitation (iTRAQ), and part of them was confirmed by quantitative PCR. Differentially expressed proteins were further analyzed for function, pathway association, and protein−protein interactions using GO, KEGG, and STRING databases. A total of 119 differentially expressed proteins, 70 upregulated and 49 downregulated, were implicated in the anticancer effects of JDF12. Many of these proteins are involved in biosynthesis, response to stress, energy metabolism, and signal transduction. This study provides important information for understanding the anti-PCa mechanisms of JDF12, and well-designed combi-targeting drugs may possess stronger anticancer efficacy than single-targeting drugs and are thus promising candidates for clinical application.
Collapse
|
17
|
Efficacy of Abiraterone and Enzalutamide in Pre- and Postdocetaxel Castration-Resistant Prostate Cancer: A Trial-Level Meta-Analysis. Prostate Cancer 2017; 2017:8560827. [PMID: 29359049 PMCID: PMC5735648 DOI: 10.1155/2017/8560827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022] Open
Abstract
We examined the comparative efficacies of first-line abiraterone and enzalutamide in pre- and postdocetaxel settings in castration-resistant prostate cancer (CRPC) through a trial level meta-analysis. A mixed method approach was applied to 19 unique studies containing 17 median overall survival (OS) estimates and 13 median radiographic progression-free survival (PFS) estimates. We employed a random-effects meta-analysis to compare efficacies of abiraterone and enzalutamide with respect to OS and PFS. In the predocetaxel setting, enzalutamide use was associated with an increase in median OS of 5.9 months (p < 0.001), hazard ratio (HR) = 0.81, and an increase in median PFS of 8.3 months (p < 0.001), HR = 0.47 compared to abiraterone. The advantage of enzalutamide improved after adjusting for baseline Gleason score to 19.5 months (p < 0.001) and 14.6 months (p < 0.001) in median OS and PFS, respectively. In the postdocetaxel setting, the advantage of enzalutamide use was nominally significant for median PFS (1.2 months p = 0.02 without adjustment and 2.2 months and p = 0.0007 after adjustment); there was no significant difference in median OS between the two agents. The results from this comprehensive meta-analysis suggest a survival advantage with the use of first-line enzalutamide over abiraterone in CRPC and highlight the need for prospective clinical trials.
Collapse
|
18
|
Bashari O, Redko B, Cohen A, Luboshits G, Gellerman G, Firer MA. Discovery of peptide drug carrier candidates for targeted multi-drug delivery into prostate cancer cells. Cancer Lett 2017; 408:164-173. [PMID: 28888997 DOI: 10.1016/j.canlet.2017.08.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains essentially incurable. Targeted Drug Delivery (TDD) systems may overcome the limitations of current mCRPC therapies. We describe the use of strict criteria to isolate novel prostate cancer cell targeting peptides that specifically deliver drugs into target cells. Phage from a libraries displaying 7mer peptides were exposed to PC-3 cells and only internalized phage were recovered. The ability of these phage to internalize into other prostate cancer cells (LNCaP, DU-145) was validated. The displayed peptides of selected phage clones were synthesized and their specificity for target cells was validated in vitro and in vivo. One peptide (P12) which specifically targeted PC-3 tumors in vivo was incorporated into mono-drug (Chlorambucil, Combretastatin or Camptothecin) and dual-drug (Chlorambucil/Combretastatin or Chlorambucil/Camptothecin) PDCs and the cytotoxic efficacy of these conjugates for target cells was tested. Conjugation of P12 into dual-drug PDCs allowed discovery of new drug combinations with synergistic effects. The use of strict selection criteria can lead to discovery of novel peptides for use as drug carriers for TDD. PDCs represent an effective alternative to current modes of free drug chemotherapy for prostate cancer.
Collapse
Affiliation(s)
- O Bashari
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| | - B Redko
- Dept. Chemical Sciences, Ariel University, Ariel, 40700, Israel.
| | - A Cohen
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| | - G Luboshits
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| | - G Gellerman
- Dept. Chemical Sciences, Ariel University, Ariel, 40700, Israel.
| | - M A Firer
- Dept. Chemical Engineering, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
19
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Murray A, Madden SF, Synnott NC, Klinger R, O'Connor D, O'Donovan N, Gallagher W, Crown J, Duffy MJ. Vitamin D receptor as a target for breast cancer therapy. Endocr Relat Cancer 2017; 24:181-195. [PMID: 28213567 DOI: 10.1530/erc-16-0463] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 01/24/2023]
Abstract
Considerable epidemiological evidence suggests that high levels of circulating vitamin D (VD) are associated with a decreased incidence and increased survival from cancer, i.e., VD may possess anti-cancer properties. The aim of this investigation was therefore to investigate the anti-cancer potential of a low calcaemic vitamin D analogue, i.e., inecalcitol and compare it with the active form of vitamin D, i.e., calcitriol, in a panel of breast cancer cell lines (n = 15). Using the MTT assay, IC50 concentrations for response to calcitriol varied from 0.12 µM to >20 µM, whereas those for inecalcitol were significantly lower, ranging from 2.5 nM to 63 nM (P = 0.001). Sensitivity to calcitriol and inecalcitol was higher in VD receptor (VDR)-positive compared to VDR-negative cell lines (P = 0.0007 and 0.0080, respectively) and in ER-positive compared to ER-negative cell lines (P = 0.043 and 0.005, respectively). Using RNA-seq analysis, substantial but not complete overlap was found between genes differentially regulated by calcitriol and inecalcitol. In particular, significantly enriched gene ontology terms such as cell surface signalling and cell communication were found after treatment with inecalcitol but not with calcitriol. In contrast, ossification and bone morphogenesis were found significantly enriched after treatment with calcitriol but not with inecalcitol. Our preclinical results suggest that calcitriol and inecalcitol can inhibit breast cancer cell line growth, especially in cells expressing ER and VDR. As inecalcitol is significantly more potent than calcitriol and has low calcaemic potential, it should be further investigated for the treatment of breast cancer.
Collapse
Affiliation(s)
- Alyson Murray
- UCD School of MedicineConway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen F Madden
- Division of Population Health SciencesRoyal College of Surgeons in Ireland, Dublin, Ireland
| | - Naoise C Synnott
- UCD School of MedicineConway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rut Klinger
- UCD School of Biomolecular and Biomedical ScienceUCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Darran O'Connor
- Department of Molecular & Cellular TherapeuticsRoyal College of Surgeons Ireland, Dublin, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology (NICB)Dublin City University, Dublin, Ireland
| | - William Gallagher
- UCD School of Biomolecular and Biomedical ScienceUCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical OncologySt. Vincent's University Hospital, Dublin, Ireland
| | - Michael J Duffy
- UCD School of MedicineConway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Clinical Research CentreSt. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Chen M, Zhou B, Zhong P, Rajamanickam V, Dai X, Karvannan K, Zhou H, Zhang X, Liang G. Increased Intracellular Reactive Oxygen Species Mediates the Anti-Cancer Effects of WZ35 via Activating Mitochondrial Apoptosis Pathway in Prostate Cancer Cells. Prostate 2017; 77:489-504. [PMID: 27990666 DOI: 10.1002/pros.23287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The limited treatment option for recurrent prostate cancer and eventual resistant to conventional chemotherapy drugs has fueled continued interest in finding new anti-neoplastic agents. WZ35, a chemical analog of curcumin, had been demonstrated to have high chemical stability and potential anticancer effects in gastric cancer cells. The present study aimed to investigate the anti-prostate cancer effects of WZ35 in vitro and in vivo as well as the underlying mechanism. METHODS Two prostate cancer cell lines RM-1 and DU145 were utilized to test the anti-cancer effects of WZ35 and the underlying mechanism. MTT assay was used to assess the cytotoxic effect of WZ35. Cell cycle distribution, apoptosis, alteration of ROS, and [Ca2+ ]i level were evaluated using flow cytometry. Western blotting assay was applied to measure the levels of proteins associated with apoptosis and cell cycle. Immunofluorescence staining and Electron micrographs were used to evaluate activation of mitochondrial apoptosis pathway. Tumor models in nude mice were induced by injection of RM-1 prostate cancer cells to test the in vivo anticancer action of WZ35. RESULTS Our results showed that WZ35 treatment induced loss of cell viability, cell apoptosis, and G2/M cycle arrest in both RM-1 and DU145 cells, coupled with ROS overproduction, intracellular calcium surge, and activation of mitochondrial apoptosis pathway in RM-1 cells. Interestingly, all above changes induced by WZ35 were completely reversed by ROS blockage. In addition, prevention of [Ca2+ ]i elevation by BAPTA/AM also inhibited activation of mitochondrial apoptosis pathway induced by WZ35. In vivo studies, WZ35 treatment significantly inhibited RM-1 homograft tumor growth along with increased ROS accumulation, mitochondrial disruption, and cell apoptosis in tumor tissues. CONCLUSIONS In conclusion, this work provides a novel anticancer candidate for the treatment of prostate cancer and demonstrated that increased ROS mediate the anti-cancer effects of WZ35 via activating mitochondrial apoptosis pathway. Importantly, this work also reveals that targeting ROS generation might be an effective strategy in human androgen-resistant prostate cancer treatment. Prostate 77:489-504, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minxiao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, China
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Zhou
- The Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, China
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, China
| | - Xuanxuan Dai
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kanchana Karvannan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, China
| | - Huiping Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, China
| | - Xiuhua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Hotte SJ. Addressing taxane resistance in metastatic castration-resistant prostate cancer: a focus on chaperone proteins. Future Oncol 2017; 13:369-379. [DOI: 10.2217/fon-2016-0279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the significant survival benefit of taxane therapy in metastatic castration-resistant prostate cancer (mCRPC), all patients inevitably develop treatment resistance. An understanding of resistance mechanisms has led to new therapies for prostate cancer (cabazitaxel, abiraterone and enzalutamide), all of which have improved survival following first-line docetaxel. Another treatment, currently in development, targets the prosurvival molecule clusterin. Custirsen, an antisense molecule that inhibits clusterin production, has shown promise in combination with docetaxel in mCRPC patients at risk for poor outcomes. Although optimal sequence and combination of available therapies is unclear, the heterogeneity of mCRPC suggests a continuing need for personalized treatment regimens and improved abilities to predict which patients will respond to the available treatment options.
Collapse
Affiliation(s)
- Sebastien J Hotte
- Department of Oncology, Division of Medical Oncology, Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, L8V 5C2, Canada
| |
Collapse
|
23
|
Abstract
Prostate cancer is the second leading cause of cancer deaths in the USA. The challenge in managing castration-resistant prostate cancer (CRPC) stems not from the lack of therapeutic options but from the limited duration of clinical and survival benefit offered by treatments in this setting due to primary and acquired resistance. The remarkable molecular heterogeneity and tumor adaptability in advanced prostate cancer necessitate optimization of such treatment strategies. While the future of CRPC management will involve newer targeted therapies in deliberately biomarker-selected patients, interventions using current approaches may exhibit improved clinical benefit if employed in the context of optimal sequencing and combinations. This review outlines our current understanding of mechanisms of therapeutic resistance in progression to and after the development of castration resistance, highlighting targetable and reversible mechanisms of resistance.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Channing Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Natasha Kyprianou
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
24
|
Hu J, Chen Q. The role of glucocorticoid receptor in prostate cancer progression: from bench to bedside. Int Urol Nephrol 2016; 49:369-380. [PMID: 27987128 DOI: 10.1007/s11255-016-1476-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Glucocorticoids are a common class of adjuvant drugs for the treatment of castration-resistant prostate cancer (CRPC) combined with antitumour or antiandrogen agents. Glucocorticoids are administered clinically because they ameliorate toxic side effects and have inhibitory effects on adrenal androgen production, acting as a pituitary suppressant. However, their effects on prostate cancer cells especially the castration resistance prostate cancer cells are poorly defined. Glucocorticoids exert effects depend to a great extent on glucocorticoid receptor. In addition to a number of glucocorticoid receptor isoforms determined, it is found that the actions of glucocorticoids through GRα are influenced by other isoforms, such as GRβ and GRγ. Recently, studies found GR confers resistance to androgen deprivation therapy, and various glucocorticoids exert distinct efficacy in CRPC. In this review, we summarized the mechanisms of glucocorticoids and its clinical appliances on the basis of present evidence.
Collapse
Affiliation(s)
- Jieping Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Qingke Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
25
|
Barbieri CE, Chinnaiyan AM, Lerner SP, Swanton C, Rubin MA. The Emergence of Precision Urologic Oncology: A Collaborative Review on Biomarker-driven Therapeutics. Eur Urol 2016; 71:237-246. [PMID: 27567210 DOI: 10.1016/j.eururo.2016.08.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/25/2022]
Abstract
CONTEXT Biomarker-driven cancer therapy, also referred to as precision oncology, has received increasing attention for its promise of improving patient outcomes by defining subsets of patients more likely to respond to various therapies. OBJECTIVE In this collaborative review article, we examine recent literature regarding biomarker-driven therapeutics in urologic oncology, to better define the state of the field, explore the current evidence supporting utility of this approach, and gauge potential for the future. EVIDENCE ACQUISITION We reviewed relevant literature, with a particular focus on recent studies about targeted therapy, predictors of response, and biomarker development. EVIDENCE SYNTHESIS The recent advances in molecular profiling have led to a rapid expansion of potential biomarkers and predictive information for patients with urologic malignancies. Across disease states, distinct molecular subtypes of cancers have been identified, with the potential to inform choices of management strategy. Biomarkers predicting response to standard therapies (such as platinum-based chemotherapy) are emerging. In several malignancies (particularly renal cell carcinoma and castration-resistant prostate cancer), targeted therapy against commonly altered signaling pathways has emerged as standard of care. Finally, targeted therapy against alterations present in rare patients (less than 2%) across diseases has the potential to drastically alter patterns of care and choices of therapeutic options. CONCLUSIONS Precision medicine has the highest potential to impact the care of patients. Prospective studies in the setting of clinical trials and standard of care therapy will help define reliable predictive biomarkers and new therapeutic targets leading to real improvement in patient outcomes. PATIENT SUMMARY Precision oncology uses molecular information (DNA and RNA) from the individual and the tumor to match the right patient with the right treatment. Tremendous strides have been made in defining the molecular underpinnings of urologic malignancies and understanding how these predict response to treatment-this represents the future of urologic oncology.
Collapse
Affiliation(s)
- Christopher E Barbieri
- Department of Urology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center of Weill Cornell Medical College, New York, NY, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Departments of Pathology and Urology, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Seth P Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Charles Swanton
- University College London Cancer Institute, Cancer Research UK Lung Cancer Centre of Excellence, London, UK
| | - Mark A Rubin
- Department of Urology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center of Weill Cornell Medical College, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Stelloo S, Nevedomskaya E, van der Poel HG, de Jong J, van Leenders GJLH, Jenster G, Wessels LFA, Bergman AM, Zwart W. Androgen receptor profiling predicts prostate cancer outcome. EMBO Mol Med 2016; 7:1450-64. [PMID: 26412853 PMCID: PMC4644377 DOI: 10.15252/emmm.201505424] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most prevalent malignancy in men. Biomarkers for outcome prediction are urgently needed, so that high-risk patients could be monitored more closely postoperatively. To identify prognostic markers and to determine causal players in prostate cancer progression, we assessed changes in chromatin state during tumor development and progression. Based on this, we assessed genomewide androgen receptor/chromatin binding and identified a distinct androgen receptor/chromatin binding profile between primary prostate cancers and tumors with an acquired resistance to therapy. These differential androgen receptor/chromatin interactions dictated expression of a distinct gene signature with strong prognostic potential. Further refinement of the signature provided us with a concise list of nine genes that hallmark prostate cancer outcome in multiple independent validation series. In this report, we identified a novel gene expression signature for prostate cancer outcome through generation of multilevel genomic data on chromatin accessibility and transcriptional regulation and integration with publically available transcriptomic and clinical datastreams. By combining existing technologies, we propose a novel pipeline for biomarker discovery that is easily implementable in other fields of oncology.
Collapse
Affiliation(s)
- Suzan Stelloo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Division of Urology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Cifuentes FF, Valenzuela RH, Contreras HR, Castellón EA. Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer. Oncol Rep 2016; 34:2837-44. [PMID: 26503286 PMCID: PMC4722890 DOI: 10.3892/or.2015.4319] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is one of the most prevalent cancers in men worldwide. The main cause of death in these patients is androgen-resistant metastatic disease. Surgery of the primary tumor has been avoided in these patients as there is no strong evidence that supports a beneficial effect. From the biological point of view, it appears rational to hypothesize that the primary tumor may contribute to the establishment and growth of metastases. Considering this, we propose that cytoreductive surgery (CS) in advanced metastatic stage slows the progression of metastatic disease. To test this, we used a mouse model of resectable orthotopic prostate cancer (PCa) and performed CS. After surgery, metastases were smaller and less numerous in the treated mice; an effect that was observable until the end of the experiment. These results suggest that CS alone delays the progression of metastatic disease and that although this effect may be temporary, it may translate to prolonged survival, especially when used with adjuvant therapy.
Collapse
|
28
|
Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm 2016; 511:1058-69. [PMID: 27492023 DOI: 10.1016/j.ijpharm.2016.07.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/30/2016] [Indexed: 01/27/2023]
Abstract
siRNA has emerged as a potential therapeutic for the treatment of prostate cancer but effective delivery remains a major barrier to its clinical application. This study aimed to develop and characterise a 3D in vitro co-culture model to simulate prostate cancer bone metastasis and to assess the ability of the model to investigate nanoparticle-mediated siRNA delivery and gene knockdown. PC3 or LNCaP prostate cancer cells were co-cultured with hFOB 1.19 osteoblast cells in 2D on plastic tissue culture plates and in 3D on collagen scaffolds mimicking the bone microenvironment. To characterise the co-culture model, cell proliferation, enzyme secretion and the utility of two different gene delivery vectors to mediate siRNA uptake and gene knockdown were assessed. Cell proliferation was reduced by∼50% by day 7 in the co-culture system relative to monoculture (PC3 and LNCaP co-cultures, in 2D and 3D) and an enhanced level of MMP9 (a marker of bone metastasis) was secreted into the media (1.2-4-fold increase depending on the co-culture system). A cationic cyclodextrin gene delivery vector proved significantly less toxic in the co-culture system relative to the commercially available vector Lipofectamine 2000(®). In addition, knockdown of both the GAPDH gene (minimum 15%) and RelA subunit of the NF-κB transcription factor (minimum 20%) was achieved in 2D and 3D cell co-cultures. Results indicate that the prostate cancer-osteoblast in vitro co-culture model was more physiologically relevant vs the monoculture. This model has the potential to help improve the design and efficacy of gene delivery formulations, to more accurately predict in vivo performance and, therefore, to reduce the risk of product failure in late-stage clinical development.
Collapse
|
29
|
Endzeliņš E, Melne V, Kalniņa Z, Lietuvietis V, Riekstiņa U, Llorente A, Linē A. Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: a systematic review. Mol Cancer 2016; 15:41. [PMID: 27189160 PMCID: PMC4870749 DOI: 10.1186/s12943-016-0523-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/12/2016] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer, the second most frequently diagnosed cancer in males worldwide, is estimated to be diagnosed in 1.1 million men per year. Introduction of PSA testing substantially improved early detection of prostate cancer, however it also led to overdiagnosis and subsequent overtreatment of patients with an indolent disease. Treatment outcome and management of prostate cancer could be improved by the development of non-invasive biomarker assays that aid in increasing the sensitivity and specificity of prostate cancer screening, help to distinguish aggressive from indolent disease and guide therapeutic decisions. Prostate cancer cells release miRNAs into the bloodstream, where they exist incorporated into ribonucleoprotein complexes or extracellular vesicles. Later, cell-free miRNAs have been found in various other biofluids. The initial RNA sequencing studies suggested that most of the circulating cell-free miRNAs in healthy individuals are derived from blood cells, while specific disease-associated miRNA signatures may appear in the circulation of patients affected with various diseases, including cancer. This raised a hope that cell-free miRNAs may serve as non-invasive biomarkers for prostate cancer. Indeed, a number of cell-free miRNAs that potentially may serve as diagnostic, prognostic or predictive biomarkers have been discovered in blood or other biofluids of prostate cancer patients and need to be validated in appropriately designed longitudinal studies and clinical trials. In this review, we systematically summarise studies investigating cell-free miRNAs in biofluids of prostate cancer patients and discuss the utility of the identified biomarkers in various clinical scenarios. Furthermore, we discuss the possible mechanisms of miRNA release into biofluids and outline the biological questions and technical challenges that have arisen from these studies.
Collapse
Affiliation(s)
- Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Vita Melne
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Riga Stradiņš University, Dzirciema Str 16, Riga, LV-1007, Latvia
| | - Zane Kalniņa
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Vilnis Lietuvietis
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Riga Stradiņš University, Dzirciema Str 16, Riga, LV-1007, Latvia
| | - Una Riekstiņa
- Faculty of Medicine, University of Latvia, 19 Raina blvd., Riga, LV-1586, Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379, Oslo, Norway
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.
| |
Collapse
|
30
|
Onstenk W, de Klaver W, de Wit R, Lolkema M, Foekens J, Sleijfer S. The use of circulating tumor cells in guiding treatment decisions for patients with metastatic castration-resistant prostate cancer. Cancer Treat Rev 2016; 46:42-50. [PMID: 27107266 DOI: 10.1016/j.ctrv.2016.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 02/01/2023]
Abstract
The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has drastically changed over the past decade with the advent of several new anti-tumor agents. Oncologists increasingly face dilemmas concerning the best treatment sequence for individual patients since most of the novel compounds have been investigated and subsequently positioned either pre- or post-docetaxel. A currently unmet need exists for biomarkers able to guide treatment decisions and to capture treatment resistance at an early stage thereby allowing for an early change to an alternative strategy. Circulating tumor cells (CTCs) have in this context intensively been investigated over the last years. The CTC count, as determined by the CellSearch System (Janssen Diagnostics LLC, Raritan, NJ), is a strong, independent prognostic factor for overall survival in patients with mCRPC at various time points during treatment and, as an early response marker, outperforms traditional response evaluations using serum prostate specific antigen (PSA) levels, scintigraphy as well as radiography. The focus of research is now shifting toward the predictive value of CTCs and the use of the characterization of CTCs to guide the selection of treatments with the highest chance of success for individual patients. Recently, the presence of the androgen receptor splice variant 7 (AR-V7) has been shown to be a promising predictive factor. In this review, we have explored the clinical value of the enumeration and characterization of CTCs for the treatment of mCRPC and have put the results obtained from recent studies investigating the prognostic and predictive value of CTCs into clinical perspective.
Collapse
Affiliation(s)
- Wendy Onstenk
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Willemijn de Klaver
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ronald de Wit
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn Lolkema
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John Foekens
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Fernandez-Salas E, Wang S, Chinnaiyan AM. Role of BET proteins in castration-resistant prostate cancer. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:29-38. [PMID: 27769354 DOI: 10.1016/j.ddtec.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/29/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Castration resistant prostate cancer (CRPC) is a deadly disease with few therapeutic options once patients become resistant to second generation drugs targeting the AR-transcriptional program. The BET-BRD readers of chromatin are key regulators of AR-, ERG-, and c-Myc-mediated transcription in CRPC. BET-BRD inhibitors have demonstrated pre-clinical efficacy in models of CRPC and are currently being evaluated in several clinical trials. These novel drugs have the potential to transform the way we treat CRPC in the near future.
Collapse
Affiliation(s)
- Ester Fernandez-Salas
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics. Prostate Cancer 2016; 2016:8108549. [PMID: 27019751 PMCID: PMC4785274 DOI: 10.1155/2016/8108549] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer.
Collapse
|
33
|
Makarević J, Tsaur I, Juengel E, Borgmann H, Nelson K, Thomas C, Bartsch G, Haferkamp A, Blaheta RA. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci 2016; 147:137-42. [DOI: 10.1016/j.lfs.2016.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/22/2023]
|
34
|
Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res 2015; 5:66. [PMID: 26576996 PMCID: PMC4648835 DOI: 10.1186/s13550-015-0145-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) is a promising target for diagnostics and therapy of prostate carcinoma (PCa). Based on the hypothesis that PSMA expression can be modulated by variations in androgen deprivation therapy (ADT), we investigated the binding of a PSMA-directed radiopharmaceutical in vitro in order to get an insight of the interactions between altered premedication and PSMA expression before repetitive PSMA-directed PET/CT for therapy response and targeted therapy implementation. METHODS The human castration-resistant PCa cell line VCaP (CRPC) was treated with either 1 nmol/L testosterone (T) over 20 passages yielding the androgen-sensitive cell line (revCRPC) or with 5 μmol/L abiraterone acetate (AA) generating the abiraterone-tolerant subtype CRPCAA. In these cell lines, T and AA were varied by either supply or withdrawal of T and AA. PSMA expression of the three cell culture models was detected by Western blot and immunohistochemical staining. For quantitative measurement of tracer uptake, 0.3 nmol/L (68)Ga-labelled PSMA-HBED-CC peptide (100-300 kBq/ml) was added to different treated parallel cultures (n = 9 each). Time-dependent uptake per 10(6) cells of each culture was calculated and evaluated. PSMA mRNA expression was investigated by qPCR. RESULTS PSMA expression increased dependently on intensified ADT in all three basic cell lines. (68)Ga-PSMA-HBED-CC uptake almost doubled during 3 h in all cell lines (p < 0.01). Compared to the basic cells, pre-incubation with abiraterone for 48 h resulted in a significant increased uptake in CRPC (p < 0.001). In revCRPC, 48-h AA pre-incubation resulted in an eightfold higher uptake after 3 h (p < 0.001). Additional withdrawal of external testosterone increased the uptake up to tenfold (p < 0.01). The increase of PSMA expression upon ADT and AA treatments was confirmed by qPCR and Western blot data. Furthermore, in CRPCAA, 48-h AA withdrawal increased the uptake up to fivefold (p < 0.01). CONCLUSIONS The investigated three PCa cell culture subtypes represent a serial preclinical model of androgen deprivation therapy as a proxy for clinical situations with differing basal PSMA expression. The uptake of PSMA-binding tracers could be stimulated by therapeutic effective short-term variation in premedication in all stages of ADT response. These complex interactions have to be considered in the interpretation of diagnostic imaging using PSMA ligands as well as in the optimal timing of PSMA-based therapies.
Collapse
|