1
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Babaei Khorzoughi S, Tavakoli M, Mortazavi M, Jafarnejad Z, Malekpour A, Kopaiee Malek T, Kargar F. A review of recombinant HER3 affibodies with an effective diagnostic view of cancer cells. J Drug Target 2024:1-24. [PMID: 39485069 DOI: 10.1080/1061186x.2024.2420202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
One of the most common causes of cancer-related death in women worldwide is breast cancer(Edited)Restore original. Factors such as increased expression of HER family members can contribute to its development. Elevated HER3 expression, especially when combined with other tyrosine kinase receptors such as HER2, plays a significant role in activating cancer pathways crucial for cell survival and proliferation in breast cancer. Detecting high HER3 levels is essential for effective cancer treatment. Affibody proteins, a class including antibodies, are utilized to detect elevated HER3 receptor expression due to their specific high binding affinity. Affibodies, a new type of non-immune probe, show promise in therapy, diagnostics, and biotechnology due to their exceptional specificity and high target protein affinity. The innovative design of these recombinant affibodies not only enhances the accuracy of HER3 detection but also facilitates the development of targeted therapeutic strategies. By employing advanced engineering techniques, these affibodies can be optimized for improved stability and binding efficacy, making them ideal candidates for clinical applications. Additionally, the versatility of affibody-based systems allows for potential integration with imaging technologies, enabling real-time monitoring of HER3 expression and therapeutic response. This multifaceted approach could ultimately lead to more personalized treatment options for patients with HER3-positive breast cancers, thereby improving overall patient management and outcomes in this challenging disease landscape. This study presents recombinant affibodies tailored to bind to HER3 for cancer cell identification, along with novel methods for producing a range of affibody molecules.
Collapse
Affiliation(s)
- Sahar Babaei Khorzoughi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrnoosh Tavakoli
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Jafarnejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Tara Kopaiee Malek
- Department of Cell and Molecular biology, Faculty of science, Azad University of Damghan
| | - Farzane Kargar
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Bermúdez-Abreut E, Bergado Báez G, Martínez Pestano M, Attanasio G, Gonzales Castillo CY, Hernández Fernández DR, Alvarez-Arzola R, Alimonti A, Sánchez-Ramírez B. Antitumor activity of PAbs generated by immunization with a novel HER3-targeting protein-based vaccine candidate in preclinical models. Front Oncol 2024; 14:1472607. [PMID: 39479017 PMCID: PMC11521786 DOI: 10.3389/fonc.2024.1472607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Despite the cumulative evidence supporting HER3 as a target for antitumor therapies, no agents targeting HER3 have been approved for cancer treatment. Most of the agents evaluated in preclinical and clinical trials have been specific monoclonal antibodies (MAbs), with few examples of active immunotherapy directed against this receptor. However, some cancer vaccine formats may generate polyclonal antibodies (PAbs) that replicate the diverse effector mechanisms of MAbs, including ligand neutralization and receptor degradation. In this study, we developed a protein subunit-based monovalent vaccine candidate targeting the extracellular domain (ECD) of HER3. Immunization of mice with a formulation targeting murine ErbB3-ECD successfully overcome tolerance to this self-antigen, inducing high titers of ErbB3-specific PAbs. The antitumor potential of this formulation and the induced PAbs was demonstrated in vivo and in vitro in an ErbB3-overexpressing 3LL-D122-derived tumor model. The immunogenicity of the HER3-ECD-based vaccine candidate was confirmed by the induction of high titers of HER3-specific PAbs. Consistent with the initial results, HER3-ECD-targeting PAbs were cytotoxic in several human epithelial tumor cell lines and exerted antitumor effects in vivo. These results support the value of HER3 as a tumor antigen and the effector mechanisms of HER3-specific therapeutic MAbs, while suggesting the potential of the proposed vaccine candidate for the treatment of HER3-expressing carcinomas.
Collapse
Affiliation(s)
| | - Gretchen Bergado Báez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Giuseppe Attanasio
- Department of Molecular Oncology, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | | | - Rydell Alvarez-Arzola
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Andrea Alimonti
- Department of Molecular Oncology, Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Medicine, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padua, Padua, Italy
- Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | |
Collapse
|
4
|
Zhu M, Yu M, Meng Y, Yang J, Wang X, Li L, Liang Y, Kong F. HER3 receptor and its role in the therapeutic management of metastatic breast cancer. J Transl Med 2024; 22:665. [PMID: 39020378 PMCID: PMC11253420 DOI: 10.1186/s12967-024-05445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.
Collapse
Affiliation(s)
- Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Zeng H, Wang W, Zhang L, Lin Z. HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:14. [PMID: 38835349 PMCID: PMC11149107 DOI: 10.20517/cdr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3), which is part of the HER family, is aberrantly expressed in various human cancers. Since HER3 only has weak tyrosine kinase activity, when HER3 ligand neuregulin 1 (NRG1) or neuregulin 2 (NRG2) appears, activated HER3 contributes to cancer development and drug resistance by forming heterodimers with other receptors, mainly including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Inhibition of HER3 and its downstream signaling, including PI3K/AKT, MEK/MAPK, JAK/STAT, and Src kinase, is believed to be necessary to conquer drug resistance and improve treatment efficiency. Until now, despite multiple anti-HER3 antibodies undergoing preclinical and clinical studies, none of the HER3-targeted therapies are licensed for utilization in clinical cancer treatment because of their safety and efficacy. Therefore, the development of HER3-targeted drugs possessing safety, tolerability, and sensitivity is crucial for clinical cancer treatment. This review summarizes the progress of the mechanism of HER3 in drug resistance, the HER3-targeted therapies that are conducted in preclinical and clinical trials, and some emerging molecules that could be used as future designed drugs for HER3, aiming to provide insights for future research and development of anticancer drugs targeting HER3.
Collapse
Affiliation(s)
- Huilan Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Li X, Yao J, Qu C, Luo L, Li B, Zhang Y, Zhu Z, Qiu Y, Hua H. DB-1310, an ADC comprised of a novel anti-HER3 antibody conjugated to a DNA topoisomerase I inhibitor, is highly effective for the treatment of HER3-positive solid tumors. J Transl Med 2024; 22:362. [PMID: 38632563 PMCID: PMC11022355 DOI: 10.1186/s12967-024-05133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.
Collapse
Affiliation(s)
- Xi Li
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China.
| | - Jun Yao
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Chen Qu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Lan Luo
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Bing Li
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Yu Zhang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Zhongyuan Zhu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Yang Qiu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China
| | - Haiqing Hua
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Shanghai, 201204, P.R. China.
| |
Collapse
|
7
|
Li WJ, Xie CY, Zhu X, Tang J, Wang L, Lou LG. SIBP-03, a novel anti-HER3 antibody, exerts antitumor effects and synergizes with EGFR- and HER2-targeted drugs. Acta Pharmacol Sin 2024; 45:857-866. [PMID: 38200149 PMCID: PMC10942974 DOI: 10.1038/s41401-023-01221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
HER3 (human epidermal growth factor receptor 3) acts through heterodimerization with EGFR (epidermal growth factor receptor) or HER2 to play an essential role in activating phosphoinositide 3-kinase (PI3K) and AKT signaling-a crucial pathway that promotes tumor cell survival. HER3 is a promising target for cancer therapy, and several HER3-directed antibodies have already entered into clinical trials. In this study we characterized a novel anti-HER3 monoclonal antibody, SIBP-03. SIBP-03 (0.01-10 μg/mL) specifically and concentration-dependently blocked both neuregulin (NRG)-dependent and -independent HER3 activation, attenuated HER3-mediated downstream signaling and inhibited cell proliferation. This antitumor activity was dependent, at least in part, on SIBP-03-induced, cell-mediated cytotoxicity and cellular phagocytosis. Importantly, SIBP-03 enhanced the antitumor activity of EGFR- or HER2-targeted drugs (cetuximab or trastuzumab) in vitro and in vivo. The mechanisms underlying this synergy involve increased inhibition of HER3-mediated downstream signaling. Collectively, these results demonstrated that SIBP-03, which is currently undergoing a Phase I clinical trial in China, may offer a new treatment option for patients with cancers harboring activated HER3, particularly as part of a combinational therapeutic strategy.
Collapse
Affiliation(s)
- Wen-Jing Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Ying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiao Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Li-Guang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
9
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Lyu H, Shen F, Ruan S, Tan C, Zhou J, Thor AD, Liu B. HER3 functions as an effective therapeutic target in triple negative breast cancer to potentiate the antitumor activity of gefitinib and paclitaxel. Cancer Cell Int 2023; 23:204. [PMID: 37716943 PMCID: PMC10504712 DOI: 10.1186/s12935-023-03055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) represents a significant clinical challenge. Chemotherapy remains the mainstay for a large part of TNBC patients, whereas drug resistance and tumor recurrence frequently occur. It is in urgent need to identify novel molecular targets for TNBC and develop effective therapy against the aggressive disease. METHODS Immunohistochemistry was performed to examine the expression of HER3 in TNBC samples. Western blots were used to assess protein expression and activation. Cell proliferation and viability were determined by cell growth (MTS) assays. TCGA databases were analyzed to correlate HER3 mRNA expression with the clinical outcomes of TNBC patients. Specific shRNA was used to knockdown HER3 expression. IncuCyte system was utilized to monitor cell growth and migration. LIVE/DEAD Cell Imaging was to detect live and dead cells. HER3 recognition by our anti-HER3 monoclonal antibody (mAb) 4A7 was verified by ELISA, flow cytometry, and co-immunoprecipitation assays. Orthotopic tumor models were established in nude mice to determine the capability of TNBC cells forming tumors and to test if our mAb 4A7 could potentiate the antitumor activity of paclitaxel in vivo. RESULTS Elevated expression of HER3 was observed in approximately half of the TNBC specimens and cell lines tested. Analyses of TCGA databases found that the TNBC patients with high HER3 mRNA expression in the tumors showed significantly worse overall survival (OS) and relapse-free survival (RFS) than those with low HER3 expression. Specific knockdown of HER3 markedly inhibited TNBC cell proliferation and mammosphere formation in vitro and tumor growth in vivo. Our mAb 4A7 abrogated heregulin (a ligand for HER3), but not SDF-1 (a ligand for CXCR4)-induced enhancement of TNBC cell migration. Combinations of 4A7 and the EGFR-tyrosine kinase inhibitor (TKI) gefitinib dramatically decreased the levels of phosphorylated HER3, EGFR, Akt, and ERK1/2 in TNBC cells and potently induced growth inhibition and cell death. Moreover, 4A7 in combination with paclitaxel exerted significant antitumor activity against TNBC in vitro and in vivo. CONCLUSIONS Our data demonstrate that increased HER3 is an effective therapeutic target for TNBC and our anti-HER3 mAb (4A7) may enhance the efficacy of gefitinib or paclitaxel in TNBC.
Collapse
Affiliation(s)
- Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Fei Shen
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sanbao Ruan
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Congcong Tan
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Ann D Thor
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Xu T, Schulga A, Konovalova E, Rinne SS, Zhang H, Vorontsova O, Orlova A, Deyev SM, Tolmachev V, Vorobyeva A. Feasibility of Co-Targeting HER3 and EpCAM Using Seribantumab and DARPin-Toxin Fusion in a Pancreatic Cancer Xenograft Model. Int J Mol Sci 2023; 24:ijms24032838. [PMID: 36769161 PMCID: PMC9917732 DOI: 10.3390/ijms24032838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Hongchao Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Bio-Nanophotonic Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, Moscow 115409, Russia
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
13
|
Uliano J, Corvaja C, Curigliano G, Tarantino P. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8:100790. [PMID: 36764093 PMCID: PMC9929675 DOI: 10.1016/j.esmoop.2023.100790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is a member of the human epidermal growth factor receptors family, having as its main ligands neuregulins 1 and 2. Although its poor tyrosine kinase activity entails a weak oncogenic power on its own, HER3 can heterodimerize with HER2 and/or epidermal growth factor receptor (EGFR), leading to a drastic enhancement of transphosphorylation and activation of downstream signaling pathways, ultimately promoting oncogenesis, metastatic dissemination, and drug resistance. Given its ubiquitous expression across solid tumors, multiple efforts have been done to therapeutically target HER3 by blocking either the ligand binding domain or its dimerization with other receptors. Treatment with anti-HER3 monoclonal antibodies or bispecific antibodies, both as single agents and in combination with other compounds, unfortunately led to unsatisfactory results across several tumor types. The HER3-directed delivery of cytotoxic payloads through antibody-drug conjugates has recently demonstrated encouraging activity in several tumor types, however, suggesting a potential role for the therapeutic targeting of HER3 in cancer treatment.
Collapse
Affiliation(s)
- J Uliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan. https://twitter.com/jacopo_uli
| | - C Corvaja
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan; Department of Medicine, University of Udine, Udine, Italy. https://twitter.com/carlacorvaja
| | - G Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan. https://twitter.com/curijoey
| | - P Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston; Harvard Medical School, Boston, USA.
| |
Collapse
|
14
|
Chen N, Michaels E, Howard F, Nanda R. The evolving therapeutic landscape of antibody-drug conjugates in breast cancer. Expert Rev Anticancer Ther 2022; 22:1325-1331. [PMID: 36408586 PMCID: PMC9833603 DOI: 10.1080/14737140.2022.2147510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a relatively new class of anti-cancer therapies approved for a number of malignancies, including breast cancer. Their unique structure, consisting of a monoclonal antibody connected via a linker to a toxic payload, combines characteristics of both targeted therapy and chemotherapy. AREAS COVERED In this review, we discuss the unique molecular structure and pharmacologic principles of ADCs and present the clinical efficacy and relevant toxicities of ADCs both approved and in development. While HER2 is the most studied target with approved agents for both HER2-positive and HER2-low expressing tumors, novel targets in HER2-negative disease have expanded our therapeutic capabilities significantly. EXPERT OPINION ADCs are a promising, novel drug class with significant efficacy in all breast cancer subtypes. They are generally safe and well-tolerated. However, further research is necessary to improve their therapeutic potential. The development of predictive biomarkers to identify patients with greatest benefit, improved understanding of drug resistance to advance combination therapies, and novel targets are needed to further the field.
Collapse
Affiliation(s)
- Nan Chen
- Department of Internal Medicine, University of Chicago
| | | | | | - Rita Nanda
- Department of Internal Medicine, University of Chicago
| |
Collapse
|
15
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
16
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
17
|
Kemmer S, Berdiel-Acer M, Reinz E, Sonntag J, Tarade N, Bernhardt S, Fehling-Kaschek M, Hasmann M, Korf U, Wiemann S, Timmer J. Disentangling ERBB Signaling in Breast Cancer Subtypes-A Model-Based Analysis. Cancers (Basel) 2022; 14:2379. [PMID: 35625984 PMCID: PMC9139462 DOI: 10.3390/cancers14102379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Targeted therapies have shown striking success in the treatment of cancer over the last years. However, their specific effects on an individual tumor appear to be varying and difficult to predict. Using an integrative modeling approach that combines mechanistic and regression modeling, we gained insights into the response mechanisms of breast cancer cells due to different ligand-drug combinations. The multi-pathway model, capturing ERBB receptor signaling as well as downstream MAPK and PI3K pathways was calibrated on time-resolved data of the luminal breast cancer cell lines MCF7 and T47D across an array of four ligands and five drugs. The same model was then successfully applied to triple negative and HER2-positive breast cancer cell lines, requiring adjustments mostly for the respective receptor compositions within these cell lines. The additional relevance of cell-line-specific mutations in the MAPK and PI3K pathway components was identified via L1 regularization, where the impact of these mutations on pathway activation was uncovered. Finally, we predicted and experimentally validated the proliferation response of cells to drug co-treatments. We developed a unified mathematical model that can describe the ERBB receptor and downstream signaling in response to therapeutic drugs targeting this clinically relevant signaling network in cell line that represent three major subtypes of breast cancer. Our data and model suggest that alterations in this network could render anti-HER therapies relevant beyond the HER2-positive subtype.
Collapse
Affiliation(s)
- Svenja Kemmer
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.F.-K.)
- FDM—Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany
| | - Mireia Berdiel-Acer
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Eileen Reinz
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Johanna Sonntag
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Nooraldeen Tarade
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
- Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Mirjam Fehling-Kaschek
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.F.-K.)
- FDM—Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany
| | | | - Ulrike Korf
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany; (M.B.-A.); (E.R.); (J.S.); (N.T.); (S.B.); (U.K.)
| | - Jens Timmer
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.F.-K.)
- FDM—Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
19
|
Hassani D, Jeddi-Tehrani M, Yousefi P, Mansouri-Fard S, Mobini M, Ahmadi-Zare H, Golsaz-Shirazi F, Amiri MM, Shokri F. Differential tumor inhibitory effects induced by HER3 extracellular subdomain-specific mouse monoclonal antibodies. Cancer Chemother Pharmacol 2022; 89:347-361. [PMID: 35079876 DOI: 10.1007/s00280-021-04390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The therapeutic potential of targeting the human epidermal growth factor receptor-3 (ErbB3/HER3) has long been ignored due to impaired tyrosine kinase function and low expression level in tumor cells compared with EGFR and HER2. Although recent investigations have explored the potential benefit of HER3 targeting and several anti-HER3 agents have been developed, there is still a critical need to design and produce more efficient therapeutics. This study was designed to develop tumor inhibitory monoclonal antibodies (MAbs) against different extracellular subdomains of HER3. METHODS Distinct extracellular subdomains of HER3 (DI+II and DIII+IV) were utilized to produce MAbs by hybridoma technology. Biochemical and functional characteristics of these MAbs were then investigated by various methodologies, including immunoblotting, flow cytometry, cell proliferation, cell signaling, and enzyme-linked immunosorbent assays. RESULTS Four anti-DI+II and six anti-DIII+IV MAbs were obtained, selected based on their ability to bind recombinant full HER3 extracellular domain (ECD). Our data showed that only one anti-DI+II and four anti-DIII+IV MAbs recognized the native form of HER3 by immunoblotting. Four MAbs recognized the membranous HER3 by flow cytometry leading to induction of different levels of receptor internalization and subsequent degradation. Results of cell proliferation assays using these MAbs indicated that they differentially inhibited proliferation of HER3-expressing cancer cells and showed considerable synergistic effects in combination with trastuzumab. Selected MAb with the highest inhibitory effect significantly inhibited the phosphorylation of AKT and ERK1/2 molecules. CONCLUSION Some of the anti-HER3 MAbs produced in this study displayed tumor inhibitory function and may be considered promising candidates for future HER3-targeted cancer therapy.
Collapse
Affiliation(s)
- Danesh Hassani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parisa Yousefi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Mansouri-Fard
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi-Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Mantilla Rojas C, McGill MP, Salvador AC, Bautz D, Threadgill DW. Epithelial-specific ERBB3 deletion results in a genetic background-dependent increase in intestinal and colon polyps that is mediated by EGFR. PLoS Genet 2021; 17:e1009931. [PMID: 34843459 PMCID: PMC8659709 DOI: 10.1371/journal.pgen.1009931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/09/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
ERBB3 has gained attention as a potential therapeutic target to treat colorectal and other types of cancers. To confirm a previous study showing intestinal polyps are dependent upon ERBB3, we generated an intestinal epithelia-specific ERBB3 deletion in C57BL/6-ApcMin/+ mice. Contrary to the previous report showing a significant reduction in intestinal polyps with ablation of ERBB3 on a B6;129 mixed genetic background, we observed a significant increase in polyp number with ablation of ERBB3 on C57BL/6J compared to control littermates. We confirmed the genetic background dependency of ERBB3 by also analyzing polyp development on B6129 hybrid and B6;129 advanced intercross mixed genetic backgrounds, which showed that ERBB3 deficiency only reduced polyp number on the mixed background as previously reported. Increased polyp number with ablation of ERBB3 was also observed in C57BL/6J mice treated with azoxymethane showing the effect is model independent. Polyps forming in absence of ERBB3 were generally smaller than those forming in control mice, albeit the effect was greatest in genetic backgrounds with reduced polyp numbers. The mechanism for differential polyp number in the absence of ERBB3 was through altered proliferation. Backgrounds with increased polyp number with loss of ERBB3 showed an increase in cell proliferation even in non-tumor epithelia, while backgrounds showing reduced polyp number with loss of ERBB3 showed reduced cellular proliferation. Increase polyp number caused by loss of ERBB3 was mediated by increased epidermal growth factor receptor (EGFR) expression, which was confirmed by deletion of Egfr. Taken together, this study raises substantial implications on the use of ERBB3 inhibitors against colorectal cancer. The prediction is that some patients may have increased progression with ERBB3 inhibitor therapy, which is consistent with observations reported for ERBB3 inhibitor clinical trials.
Collapse
Affiliation(s)
- Carolina Mantilla Rojas
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Michael P McGill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Anna C Salvador
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - David Bautz
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David W Threadgill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America.,Department of Nutrition, Texas A&M University, College Station, Texas, United States of America.,Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
21
|
Aschmoneit N, Kühl L, Seifert O, Kontermann RE. Fc-comprising scDb-based trivalent, bispecific T-cell engagers for selective killing of HER3-expressing cancer cells independent of cytokine release. J Immunother Cancer 2021; 9:jitc-2021-003616. [PMID: 34782429 PMCID: PMC8593740 DOI: 10.1136/jitc-2021-003616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bispecific T-cell engagers are an established therapeutic strategy for the treatment of hematologic malignancies but face several challenges when it comes to their application for the treatment of solid tumors, including on-target off-tumor adverse events. Employing an avidity-mediated specificity gain by introducing an additional binding moiety for the tumor-associated antigen can be achieved using formats with a 2+1 stoichiometry. Methods Besides biochemical characterization and validation of target cell binding to cancer cells with different HER3 expression, we used in vitro co-culture assays with human peripheral blood mononuclear cells (PBMCs) and HER3-expressing target cells to determine T-cell activation, T-cell proliferation and PBMC-mediated cancer cell lysis of HER3-positive cell lines by the trivalent, bispecific antibodies. Results In this study, we developed trivalent, bispecific antibodies comprising a silenced Fc region for T-cell retargeting to HER3-expressing tumor cells, combining a bivalent single-chain diabody (scDb) fused to a first heterodimerizing Fc chain with either an Fab or scFv fused to a second heterodimerizing Fc chain. All these HER3-targeting T-cell engagers comprising two binding sites for HER3 and one binding site for CD3 mediated target cell killing. However, format and orientation of binding sites influenced efficacy of target cell binding, target cell-dependent T-cell activation and T-cell-mediated target cell killing. Beneficial effects were seen when the CD3 binding site was located in the scDb moiety. These molecules showed efficient killing of medium HER3-expressing cancer cells with very low induction of cytokine release, while sparing target cells with low or undetectable HER3 expression. Conclusion Our study demonstrates that these trivalent, bispecific antibodies represent formats with superior interdomain spacing resulting in efficient target cell killing and a potential advantageous safety profile due to very low cytokine release.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany .,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
22
|
Tsao LC, Force J, Hartman ZC. Mechanisms of Therapeutic Antitumor Monoclonal Antibodies. Cancer Res 2021; 81:4641-4651. [PMID: 34145037 PMCID: PMC8448950 DOI: 10.1158/0008-5472.can-21-1109] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies (mAb) are a major component of cancer therapy. In this review, we summarize the different therapeutic mAbs that have been successfully developed against various tumor-expressed antigens and examine our current understanding of their different mechanisms of antitumor action. These mechanisms of action (MOA) largely center on the stimulation of different innate immune effector processes, which appear to be principally responsible for the efficacy of most unconjugated mAb therapies against cancer. This is evident in studies of mAbs targeting antigens for hematologic cancers, with emerging data also demonstrating the critical nature of innate immune-mediated mechanisms in the efficacy of anti-HER2 mAbs against solid HER2+ cancers. Although HER2-targeted mAbs were originally described as inhibitors of HER2-mediated signaling, multiple studies have since demonstrated these mAbs function largely through their engagement with Fc receptors to activate innate immune effector functions as well as complement activity. Next-generation mAbs are capitalizing on these MOAs through improvements to enhance Fc-activity, although regulation of these mechanisms may vary in different tumor microenvironments. In addition, novel antibody-drug conjugates have emerged as an important means to activate different MOAs. Although many unknowns remain, an improved understanding of these immunologic MOAs will be essential for the future of mAb therapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, North Carolina.
- Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
23
|
A scDb-based trivalent bispecific antibody for T-cell-mediated killing of HER3-expressing cancer cells. Sci Rep 2021; 11:13880. [PMID: 34230555 PMCID: PMC8260734 DOI: 10.1038/s41598-021-93351-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 01/12/2023] Open
Abstract
HER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.
Collapse
|
24
|
Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer 2021; 21:181-197. [PMID: 33462501 DOI: 10.1038/s41568-020-00322-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Aberrant signalling of ERBB family members plays an important role in tumorigenesis and in the escape from antitumour immunity in multiple malignancies. Molecular-targeted agents against these signalling pathways exhibit robust clinical efficacy, but patients inevitably experience acquired resistance to these molecular-targeted therapies. Although cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have shown durable antitumour response in a subset of the treated patients in multiple cancer types, clinical efficacy is limited in cancers harbouring activating gene alterations of ERBB family members. In particular, ICI treatment of patients with non-small cell lung cancers with epidermal growth factor receptor (EGFR) alterations and breast cancers with HER2 alterations failed to show clinical benefits, suggesting that EGFR and HER2 signalling may have an essential role in inhibiting antitumour immune responses. Here, we discuss the mechanisms by which the signalling of ERBB family members affects not only autonomous cancer hallmarks, such as uncontrolled cell proliferation, but also antitumour immune responses in the tumour microenvironment and the potential application of immune-genome precision medicine into immunotherapy and molecular-targeted therapy focusing on the signalling of ERBB family members.
Collapse
Affiliation(s)
- Shogo Kumagai
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
| |
Collapse
|
25
|
Gutsch D, Jenke R, Büch T, Aigner A. Inhibition of HER Receptors Reveals Distinct Mechanisms of Compensatory Upregulation of Other HER Family Members: Basis for Acquired Resistance and for Combination Therapy. Cells 2021; 10:272. [PMID: 33572976 PMCID: PMC7911202 DOI: 10.3390/cells10020272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
Overexpression of members of the HER/erbB transmembrane tyrosine kinase family like HER2/erbB2/neu is associated with various cancers. Some heterodimers, especially HER2/HER3 heterodimers, are particularly potent inducers of oncogenic signaling. Still, from a clinical viewpoint their inhibition has yielded only moderate success so far, despite promising data from cell cultures. This suggests acquired resistance upon inhibitor therapy as one putative issue, requiring further studies in cell culture also aiming at rational combination therapies. In this paper, we demonstrate in ovarian carcinoma cells that the RNAi-mediated single knockdown of HER2 or HER3 leads to the rapid counter-upregulation of the respective other HER family member, thus providing a rational basis for combinatorial inhibition. Concomitantly, combined knockdown of HER2/HER3 exerts stronger anti-tumor effects as compared to single inhibition. In a tumor cell line xenograft mouse model, therapeutic intervention with nanoscale complexes based on polyethylenimine (PEI) for siRNA delivery, again reveals HER3 upregulation upon HER2 single knockdown and a therapeutic benefit from combination therapy. On the mechanistic side, we demonstrate that HER2 knockdown or inhibition reduces miR-143 levels with subsequent de-repression of HER3 expression, and validates HER3 as a direct target of miR-143. HER3 knockdown or inhibition, in turn, increases HER2 expression through the upregulation of the transcriptional regulator SATB1. These counter-upregulation processes of HER family members are thus based on distinct molecular mechanisms and may provide the basis for the rational combination of inhibitors.
Collapse
Affiliation(s)
- Daniela Gutsch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
| | - Robert Jenke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Thomas Büch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, D-04107 Leipzig, Germany; (D.G.); (R.J.); (T.B.)
| |
Collapse
|
26
|
Trombetta D, Sparaneo A, Muscarella LA. NRG fusions in tumors: moving from the past to future knowledge. Future Oncol 2021; 17:487-490. [PMID: 33399024 DOI: 10.2217/fon-2020-0957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Domenico Trombetta
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| |
Collapse
|
27
|
Berdiel-Acer M, Maia A, Hristova Z, Borgoni S, Vetter M, Burmester S, Becki C, Michels B, Abnaof K, Binenbaum I, Bethmann D, Chatziioannou A, Hasmann M, Thomssen C, Espinet E, Wiemann S. Stromal NRG1 in luminal breast cancer defines pro-fibrotic and migratory cancer-associated fibroblasts. Oncogene 2021; 40:2651-2666. [PMID: 33692466 PMCID: PMC8049869 DOI: 10.1038/s41388-021-01719-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
HER3 is highly expressed in luminal breast cancer subtypes. Its activation by NRG1 promotes activation of AKT and ERK1/2, contributing to tumour progression and therapy resistance. HER3-targeting agents that block this activation, are currently under phase 1/2 clinical studies, and although they have shown favorable tolerability, their activity as a single agent has proven to be limited. Here we show that phosphorylation and activation of HER3 in luminal breast cancer cells occurs in a paracrine manner and is mediated by NRG1 expressed by cancer-associated fibroblasts (CAFs). Moreover, we uncover a HER3-independent NRG1 signaling in CAFs that results in the induction of a strong migratory and pro-fibrotic phenotype, describing a subtype of CAFs with elevated expression of NRG1 and an associated transcriptomic profile that determines their functional properties. Finally, we identified Hyaluronan Synthase 2 (HAS2), a targetable molecule strongly correlated with NRG1, as an attractive player supporting NRG1 signaling in CAFs.
Collapse
Affiliation(s)
- Mireia Berdiel-Acer
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Maia
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhivka Hristova
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Simone Borgoni
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Martina Vetter
- grid.9018.00000 0001 0679 2801Department of Gynecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Burmester
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Becki
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birgitta Michels
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Binenbaum
- grid.7497.d0000 0004 0492 0584Division of Medical Informatics for Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, Patras, Greece ,grid.22459.380000 0001 2232 6894Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Daniel Bethmann
- grid.9018.00000 0001 0679 2801Institute of Pathology Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Aristotelis Chatziioannou
- grid.22459.380000 0001 2232 6894Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece ,e-NIOS PC, Kallithea-Athens, Greece
| | - Max Hasmann
- grid.424277.0Roche Diagnostics, Penzberg, Germany
| | - Christoph Thomssen
- grid.9018.00000 0001 0679 2801Department of Gynecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisa Espinet
- grid.7497.d0000 0004 0492 0584Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.482664.aHeidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Stefan Wiemann
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Wang W, Tan X, Jiang J, Cai Y, Feng F, Zhang L, Li W. Targeted biological effect of an affitoxin composed of an HPV16E7 affibody fused with granzyme B (ZHPV16E7-GrB) against cervical cancer in vitro and in vivo. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-112118. [PMID: 33292132 DOI: 10.2174/1568009620666201207145720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND High risk type 16 of human papillomavirus (HPV16) is associated with 50% of cervical cancer, for which reliable targeted therapies are lacking. HPV early protein 7 (E7) is an oncoprotein responsible for cell malignant transformation. In our previous work, a highly specific affibody targeting HPV16E7 (ZHPV16E7) was developed. OBJECTIVE In order to improve the targeted therapeutic effect, the present study prepared an affitoxin consisting of ZHPV16E7 fused with granzyme B (GrB), namely, ZHPV16E7-GrB, and evaluated its targeting action in vitro and in vivo. METHODS The ZHPV16E7-GrB fusion protein was produced in a prokaryotic expression system. The targeted binding properties of the ZHPV16E7-GrB to the HPV16E7 were confirmed by immunofluorescence assay (IFA) in cervical cancer cell lines, by immunohistochemical assay (IHA) in cervical cancer tissue from clinical specimens and by near-infrared imaging in tumour-bearing mice. The anti-tumour effect on both cervical cancer cells in vitro and tumour-bearing mice in vivo were further evaluated. RESULTS A 34-kDa ZHPV16E7-GrB fusion protein was produced in E. coli and displayed corresponding immunoreactivity. IFA revealed that ZHPV16E7-GrB bound specifically to HPV16-positive TC-1 and SiHa cells. IHA showed that ZHPV16E7-GrB also bound specifically to HPV16-positive clinical tissue specimens. In addition, the near-infrared imaging results showed that ZHPV16E7-GrB was enriched in tumour tissues. Moreover, both the ZHPV16E7-GrB affitoxin and ZHPV16E7 affibody (without GrB) significantly reduced the proliferation of cervical cancer cells in vitro and tumour-bearing mice in vivo, and the antiproliferative effect of ZHPV16E7-GrB was higher than that of the ZHPV16E7 affibody. CONCLUSIONS The affitoxin by coupling the affibody with GrB is a promising targeted therapeutic agent with the dual advantages of the targeted affibody and the GrB cytotoxin.
Collapse
Affiliation(s)
- Wenhuan Wang
- Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, Wenzhou, Zhejiang Province. China
| | - Xiaochun Tan
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Jie Jiang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Yiqi Cai
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Fangfang Feng
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| | - Wenshu Li
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang Province. China
| |
Collapse
|
29
|
Moody TW, Lee L, Jensen RT. The G Protein–Coupled Receptor PAC1 Regulates Transactivation of the Receptor Tyrosine Kinase HER3. J Mol Neurosci 2020; 71:1589-1597. [DOI: 10.1007/s12031-020-01711-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
|
30
|
Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Mol Cell 2020; 79:390-405.e7. [PMID: 32619402 DOI: 10.1016/j.molcel.2020.06.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.
Collapse
|
31
|
朱 磊, 袁 平, 赵 志, 王 鑫, 王 国, 颜 亮. [Bacterial expression of 183-227aa region of HER3 extracellular domain I and preparation and identification of its polyclonal antibodies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:806-813. [PMID: 32895213 PMCID: PMC7321272 DOI: 10.12122/j.issn.1673-4254.2020.06.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To prepare the recombinant peptide MVF-HER3 I composed of the 183-227aa peptide segment of human epidermal growth factor receptor 3 (HER3 I) and the measles virus protein 288-302 peptide segment (MVF), and prepare polyclonal antibodies (PcAb) against this recombinant peptide. METHODS The MVF-HER3 I gene was synthesized chemically and subcloned into pET21b or pET32a plasmid containing Thioredoxin (Trx) tag gene. The recombinant plasmids were identified by endonuclease digestion. MVF-HER3 I was expressed in E.coli BL21(DE3) cells under an optimal bacterial expression condition. The fusion protein Trx-MVF-HER3 I was purified using nickel ion affinity chromatography, and the purified protein was digested by enterokinase to remove Trx tag. The digested mixture underwent further nickel ion affinity chromatography to obtain purified MVF-HER3 I. The purified MVF-HER3 I was used to immunize SD rats subcutaneously for preparing anti-MVF-HER3 I PcAb. The titer of PcAb was determined using ELISA. The bindings of anti-MVF-HER3 I PcAb to MVF-HER3 I, native HER3 and MCF7 cells were analyzed using immunoblotting, immunoprecipitation and laser confocal microscopy. The growth inhibition effect of the antibodies on MCF7 cells cultured in the absence or presence of NRG was assessed using sulforhodamine B. RESULTS The recombinant peptide gene could not be expressed alone, but could be efficiently expressed after fusion with Trx gene under optimized conditions. The fusion peptide MVF-HER3 I was successfully prepared from Trx-MVF-HER3 I. The anti-MVF-HER3 I PcAb, with a titer reaching 1: 512 000, specifically bound to MVF-HER3 I, recognized native HER3 and bound to the membrane of MCF7 cells. The obtained PcAb could dose-dependently inhibit the growth of MCF7 cells irrespective of the presence or absence of NRG. CONCLUSIONS We successfully obtained the recombinant peptide MVF-HER3 I and prepared its PcAb, which can facilitate further functional analysis of HER3 signaling pathway.
Collapse
Affiliation(s)
- 磊 朱
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
- 皖南医学院药物筛选与评价研究所,安徽 芜湖 241002Research Institute for Pharmaceutical Screening & Evaluation, Wannan Medical College, Wuhu 241002, China
| | - 平川 袁
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - 志刚 赵
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - 鑫 王
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - 国栋 王
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - 亮 颜
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| |
Collapse
|
32
|
Gandullo-Sánchez L, Capone E, Ocaña A, Iacobelli S, Sala G, Pandiella A. HER3 targeting with an antibody-drug conjugate bypasses resistance to anti-HER2 therapies. EMBO Mol Med 2020; 12:e11498. [PMID: 32329582 PMCID: PMC7207167 DOI: 10.15252/emmm.201911498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Despite impressive clinical benefit obtained with anti‐HER2‐targeted therapies, in advances stages, especially in the metastatic setting, HER2‐positive tumors remain incurable. Therefore, it is important to develop novel strategies to fight these tumors, especially when they become resistant to available therapies. We show here that the anti‐HER3 antibody–drug conjugate EV20/MMAF exerted potent anti‐tumoral properties against several models of primary resistance and secondary resistance to common anti‐HER2 available therapies, including trastuzumab, lapatinib, neratinib, and trastuzumab‐emtansine. HER3 was expressed in these HER2+ breast cancer cells and knockdown experiments demonstrated that HER3 expression was required for the action of EV20/MMAF. In mice injected with trastuzumab‐resistant HER2+ cells, a single dose of EV20/MMAF caused complete and long‐lasting tumor regression. Mechanistically, EV20/MMAF bound to cell surface HER3 and became internalized to the lysosomes. Treatment with EV20/MMAF caused cell cycle arrest in mitosis and promoted cell death through mitotic catastrophe. These findings encourage the clinical testing of EV20/MMAF for several indications in the HER2+ cancer clinic, including situations in which HER2+ tumors become refractory to approved anti‐HER2 therapies.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | | | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l, Chieti, Italy
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| |
Collapse
|
33
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Rinne SS, Xu T, Dahlsson Leitao C, Ståhl S, Löfblom J, Orlova A, Tolmachev V, Vorobyeva A. Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. Int J Mol Sci 2020; 21:ijms21041312. [PMID: 32075258 PMCID: PMC7072899 DOI: 10.3390/ijms21041312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor type 3 (HER3) is an emerging therapeutic target in several malignancies. To select potential responders to HER3-targeted therapy, radionuclide molecular imaging of HER3 expression using affibody molecules could be performed. Due to physiological expression of HER3 in normal organs, high imaging contrast remains challenging. Due to slow internalization of affibody molecules by cancer cells, we hypothesized that labeling (HE)3-ZHER3:08698-DOTAGA affibody molecule with non-residualizing [125I]-N-succinimidyl-4-iodobenzoate (PIB) label would improve the tumor-to-normal organs ratios compared to previously reported residualizing radiometal labels. The [125I]I-PIB-(HE)3-ZHER3:08698-DOTAGA was compared side-by-side with [111In]In-(HE)3-ZHER3:08698-DOTAGA. Both conjugates demonstrated specific high-affinity binding to HER3-expressing BxPC-3 and DU145 cancer cells. Biodistribution in mice bearing BxPC-3 xenografts at 4 and 24 h pi showed faster clearance of the [125I]I-PIB label compared to the indium-111 label from most tissues, except blood. This resulted in higher tumor-to-organ ratios in HER3-expressing organs for [125I]I-PIB-(HE)3-ZHER3:08698-DOTAGA at 4 h, providing the tumor-to-liver ratio of 2.4 ± 0.3. The tumor uptake of both conjugates was specific, however, it was lower for the [125I]I-PIB label. In conclusion, the use of non-residualizing [125I]I-PIB label for HER3-targeting affibody molecule provided higher tumor-to-liver ratio than the indium-111 label, however, further improvement in tumor uptake and retention is needed.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: ; Tel.: +46-18-471-3868
| |
Collapse
|
35
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
36
|
Thakkar D, Sancenon V, Taguiam MM, Guan S, Wu Z, Ng E, Paszkiewicz KH, Ingram PJ, Boyd-Kirkup JD. 10D1F, an Anti-HER3 Antibody that Uniquely Blocks the Receptor Heterodimerization Interface, Potently Inhibits Tumor Growth Across a Broad Panel of Tumor Models. Mol Cancer Ther 2020; 19:490-501. [PMID: 31911530 DOI: 10.1158/1535-7163.mct-19-0515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/15/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
In recent years, HER3 has increasingly been implicated in the progression of a variety of tumor types and in acquired resistance to EGFR and HER2 therapies. Whereas EGFR and HER2 primarily signal through the MAPK pathway, HER3, as a heterodimer with EGFR or HER2, potently activates the PI3K pathway. Despite its critical role, previous attempts to target HER3 with neutralizing antibodies have shown disappointing efficacy in the clinic, most likely due to suboptimal and indirect mechanisms of action that fail to completely block heterodimerization; for example, tumors can escape inhibition of ligand binding by upregulating ligand-independent mechanisms of HER3 activation. We therefore developed 10D1F, a picomolar affinity, highly specific anti-HER3 neutralizing antibody that binds the HER3 heterodimerization interface, a region that was hitherto challenging to raise antibodies against. We demonstrate that 10D1F potently inhibits both EGFR:HER3 and HER2:HER3 heterodimerization to durably suppress activation of the PI3K pathway in a broad panel of tumor models. Even as a monotherapy, 10D1F shows superior inhibition of tumor growth in the same cell lines both in vitro and in mouse xenograft experiments, when compared with other classes of anti-HER3 antibodies. This includes models demonstrating ligand-independent activation of heterodimerization as well as constitutively activating mutations in the MAPK pathway. Possessing favorable pharmacokinetic and toxicologic profiles, 10D1F uniquely represents a new class of anti-HER3 neutralizing antibodies with a novel mechanism of action that offers significant potential for broad clinical benefit.10D1F is a novel anti-HER3 antibody that uniquely binds the receptor dimerization interface to block ligand-dependent and independent heterodimerization with EGFR/HER2 and thus more potently inhibits tumor growth than existing anti-HER3 antibodies.
Collapse
Affiliation(s)
| | | | | | - Siyu Guan
- Hummingbird Bioscience, 1 Research Link, Singapore
| | - Zhihao Wu
- Hummingbird Bioscience, 1 Research Link, Singapore
| | - Eric Ng
- Hummingbird Bioscience, 1 Research Link, Singapore
| | | | - Piers J Ingram
- Hummingbird Bioscience, 1 Research Link, Singapore.,Hummingbird Bioscience, South San Francisco, California
| | - Jerome D Boyd-Kirkup
- Hummingbird Bioscience, 1 Research Link, Singapore. .,Hummingbird Bioscience, South San Francisco, California
| |
Collapse
|
37
|
Yuan M, Huang LL, Chen JH, Wu J, Xu Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther 2019; 4:61. [PMID: 31871778 PMCID: PMC6914774 DOI: 10.1038/s41392-019-0099-9] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is one of the most common cancer in the world. In 2018, there were over 2 million new cases of lung cancer and over 1.7 million deaths were attributed to lung cancer. Targeted therapy has emerged as an important mean of the disease management for patients with non-small-cell lung cancer (NSCLC). Herein, we review and analyze recent literature, discuss the targeting pathways and ongoing clinical trials in lung cancer. Chemotherapy is no longer the best available treatment for all patients. Therapeutic decisions should be guided by an understanding of the molecular features of patient's tumor tissues. The future gains will likely emerge from finding optimal ways of combining targeted therapy, immunotherapy, and chemotherapy.
Collapse
Affiliation(s)
- Min Yuan
- Department of Oncology, Dermatology Hospital, Tongji University School of Medicine, Shanghai, 200443 China
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Li-Li Huang
- Department of Oncology, Dermatology Hospital, Tongji University School of Medicine, Shanghai, 200443 China
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Jian-Hua Chen
- Department of Oncology, Dermatology Hospital, Tongji University School of Medicine, Shanghai, 200443 China
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Qing Xu
- Department of Oncology, Dermatology Hospital, Tongji University School of Medicine, Shanghai, 200443 China
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
38
|
Hashimoto Y, Koyama K, Kamai Y, Hirotani K, Ogitani Y, Zembutsu A, Abe M, Kaneda Y, Maeda N, Shiose Y, Iguchi T, Ishizaka T, Karibe T, Hayakawa I, Morita K, Nakada T, Nomura T, Wakita K, Kagari T, Abe Y, Murakami M, Ueno S, Agatsuma T. A Novel HER3-Targeting Antibody-Drug Conjugate, U3-1402, Exhibits Potent Therapeutic Efficacy through the Delivery of Cytotoxic Payload by Efficient Internalization. Clin Cancer Res 2019; 25:7151-7161. [PMID: 31471314 DOI: 10.1158/1078-0432.ccr-19-1745] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE HER3 is a compelling target for cancer treatment; however, no HER3-targeted therapy is currently clinically available. Here, we produced U3-1402, an anti-HER3 antibody-drug conjugate with a topoisomerase I inhibitor exatecan derivative (DXd), and systematically investigated its targeted drug delivery potential and antitumor activity in preclinical models. EXPERIMENTAL DESIGN In vitro pharmacologic activities and the mechanisms of action of U3-1402 were assessed in several human cancer cell lines. Antitumor activity of U3-1402 was evaluated in xenograft mouse models, including patient-derived xenograft (PDX) models. Safety assessments were also conducted in rats and monkeys. RESULTS U3-1402 showed HER3-specific binding followed by highly efficient cancer cell internalization. Subsequently, U3-1402 was translocated to the lysosome and released its payload DXd. While U3-1402 was able to inhibit HER3-activated signaling similar to its naked antibody patritumab, the cytotoxic activity of U3-1402 in HER3-expressing cells was predominantly mediated by released DXd through DNA damage and apoptosis induction. In xenograft mouse models, U3-1402 exhibited dose-dependent and HER3-dependent antitumor activity. Furthermore, U3-1402 exerted potent antitumor activity against PDX tumors with HER3 expression. Acceptable toxicity was noted in both rats and monkeys. CONCLUSIONS U3-1402 demonstrated promising antitumor activity against HER3-expressing tumors with tolerable safety profiles. The activity of U3-1402 was driven by HER3-mediated payload delivery via high internalization into tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Taisei Nomura
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | | | | | - Yuki Abe
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Le Clorennec C, Lazrek Y, Dubreuil O, Sampaio C, Larbouret C, Lanotte R, Poul MA, Barret JM, Prost JF, Pèlegrin A, Chardès T. ITCH-dependent proteasomal degradation of c-FLIP induced by the anti-HER3 antibody 9F7-F11 promotes DR5/caspase 8-mediated apoptosis of tumor cells. Cell Commun Signal 2019; 17:106. [PMID: 31443721 PMCID: PMC6708219 DOI: 10.1186/s12964-019-0413-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background HER3/ErbB3 receptor deletion or blockade leads to tumor cell apoptosis, whereas its overexpression confers anti-cancer drug resistance through upregulation of protective mechanisms against apoptosis. We produced the anti-HER3 antibody 9F7-F11 that promotes HER3 ubiquitination and degradation via JNK1/2-dependent activation of the E3 ubiquitin ligase ITCH, and that induces apoptosis of cancer cells. Cellular FLICE-like inhibitory protein (c-FLIP) is a key regulator of apoptotic pathways. Here, we wanted to determine the mechanisms underlying the pro-apoptotic effect of 9F7-F11. Methods Anti-HER3 antibody-induced apoptosis was assessed by western blot, and by flow cytometry measurement of Annexin V/7-AAD-labelled tumor cells (BxPC3, MDA-MB-468 and DU145 cell lines). c-FLIP/ITCH interaction and subsequent degradation/ubiquitination were investigated by co-immunoprecipitation of ITCH-silenced vs scramble control cells. The relationship between ITCH-mediated c-FLIP degradation and antibody-induced apoptosis was examined by western blot and flow cytometry of tumor cells, after ITCH RNA interference or by pre-treatment with ITCH chemical inhibitor chlorimipramine (CI). Results Following incubation with 9F7-F11, cancer cell apoptosis occurs through activation of caspase-8, − 9 and − 3 and the subsequent cleavage of poly (ADP-ribose) polymerase (PARP). Moreover we showed that ubiquitination and proteasomal degradation of the anti-apoptotic protein c-FLIP was mediated by USP8-regulated ITCH recruitment. This effect was abrogated by ITCH- and USP8-specific RNA interference (siRNA), or by the ITCH chemical inhibitor CI. Specifically, ITCH silencing or CI blocked 9F7-F11-induced caspase-8-mediated apoptosis of tumor cells, and restored c-FLIP expression. ITCH-silencing or CI concomitantly abrogated HER3-specific antibody-induced apoptosis of Annexin V/7-AAD-labelled BxPC3 cells. 9F7-F11 favored the extrinsic apoptosis pathway by inducing TRAIL-R2/DR5 upregulation and TRAIL expression that promoted the formation of death-inducing signaling complex (DISC), leading to caspase-8-mediated apoptosis. Incubation with 9F7-F11 also induced BID cleavage, BAX upregulation and BIM expression, which initiated the caspase-9/3-mediated mitochondrial death pathway. The anti-HER3 antibody pro-apoptotic effect occurred concomitantly with downregulation of the pro-survival proteins c-IAP2 and XIAP. Conclusions The allosteric non-neuregulin competing modulator 9F7-F11, sensitizes tumor cells to DR5/caspase-8-mediated apoptosis through ITCH-dependent downregulation of c-FLIP. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France.,Present Address: UCSD School of Medicine, Moores Cancer Center, La Jolla, CA, 92093-0815, USA
| | - Yassamine Lazrek
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France.,Present Address: Institut Pasteur de Guyane, F- 97306, Cayenne, France
| | - Olivier Dubreuil
- GamaMabs Pharma SA, Centre Pierre Potier, F-31106, Toulouse, France
| | - Carla Sampaio
- Laboratoire d'Immunologie et d'Immunothérapie des Cancers, EA7269, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Romain Lanotte
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Marie-Alix Poul
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Jean-Marc Barret
- GamaMabs Pharma SA, Centre Pierre Potier, F-31106, Toulouse, France
| | | | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
40
|
Nagasaka M, Ou SHI. Neuregulin 1 Fusion–Positive NSCLC. J Thorac Oncol 2019; 14:1354-1359. [DOI: 10.1016/j.jtho.2019.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
41
|
Schardt JS, Noonan-Shueh M, Oubaid JM, Pottash AE, Williams SC, Hussain A, Lapidus RG, Lipkowitz S, Jay SM. HER3-Targeted Affibodies with Optimized Formats Reduce Ovarian Cancer Progression in a Mouse Xenograft Model. AAPS JOURNAL 2019; 21:48. [PMID: 30949858 DOI: 10.1208/s12248-019-0318-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/08/2019] [Indexed: 01/16/2023]
Abstract
Expression of the receptor tyrosine kinase HER3 is negatively correlated with survival in ovarian cancer, and HER3 overexpression is associated with cancer progression and therapeutic resistance. Thus, improvements in HER3-targeted therapy could lead to significant clinical impact for ovarian cancer patients. Previous work from our group established multivalency as a potential strategy to improve the therapeutic efficacy of HER3-targeted ligands, including affibodies. Others have established HER3 affibodies as viable and potentially superior alternatives to monoclonal antibodies for cancer therapy. Here, bivalent HER3 affibodies were engineered for optimized production, specificity, and function as evaluated in an ovarian cancer xenograft model. Enhanced inhibition of HER3-mediated signaling and increased HER3 downregulation associated with multivalency could be achieved with a simplified construct, potentially increasing translational potential. Additionally, functional effects of affibodies due to multivalency were found to be specific to HER3 targeting, suggesting a unique molecular mechanism. Further, HER3 affibodies demonstrated efficacy in ovarian cancer xenograft mouse models, both as single agents and in combination with carboplatin. Overall, these results reinforce the potential of HER3-targeted affibodies for cancer therapy and establish treatment of ovarian cancer as an application where multivalent HER3 ligands may be useful. Further, this work introduces the potential of HER3 affibodies to be utilized as part of clinically relevant combination therapies (e.g., with carboplatin).
Collapse
Affiliation(s)
- John S Schardt
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madeleine Noonan-Shueh
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Jinan M Oubaid
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Sonya C Williams
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Arif Hussain
- Baltimore VA Medical Center, Baltimore, Maryland, United States of America.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Translational Laboratory Shared Service, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America. .,Program in Molecular and Cellular Biology, University of Maryland, College Park, Maryland, United States of America.
| |
Collapse
|
42
|
Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Biol Proced Online 2019; 21:5. [PMID: 30930695 PMCID: PMC6425631 DOI: 10.1186/s12575-019-0093-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
HER3 is the third member of the human epidermal growth factor receptor (HER/EGFR) family, and unlike its other family members, is unique due to its minimal intrinsic kinase activity. As a result, HER3 has to interact with another receptor tyrosine kinase (RTK), such as EGFR or HER2, in order to activate the PI-3 K/Akt, MEK/MAPK, Jak/Stat pathways, as well as Src kinase. Over-expression of HER3 in various human cancers promotes tumor progression by increasing metastatic potential and acting as a major cause of treatment failure. Effective inhibition of HER3, and/or the key downstream mediators of HER3 signaling, is thought to be required to overcome resistance and enhance therapeutic efficacy. To date, there is no known HER3-targeted therapy that is approved for breast cancer, with a number of anti-HER3 antibodies current in various stages of development and clinical testing. Recent data suggests that the epigenetic strategy of using a histone deacetylase (HDAC) inhibitor, or functional cooperative miRNAs, may be an effective way to abrogate HER3 signaling. Here, we summarize the latest advances in our understanding of the mechanism of HER3 signaling in tumor progression, with continuing research towards the identification of therapeutic anti-HER3 antibodies. We will also examine the potential to develop novel epigenetic approaches that specifically target the HER3 receptor, along with important key downstream mediators that are involved in cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Liu
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Hui Lyu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Adam I Riker
- 3Department of Surgery, Section of Surgical Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Yamin Zhang
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Bolin Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|