1
|
Demidova EV, Czyzewicz P, Hasan A, Avkshtol V, Lesh RW, Handorf E, Devarajan K, Schultz BM, James JD, Connolly DC, Einarson MB, Baldwin D, Golemis EA, Meyer JE, Arora S. Optimizing and Validating Systemic DNA Damage Response Profiling to Predict Neoadjuvant Chemoradiation Response in Rectal Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.22.24317789. [PMID: 39606370 PMCID: PMC11601745 DOI: 10.1101/2024.11.22.24317789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purpose This study aimed to stratify patients with locally advanced rectal cancer (LARC) based on their response to neoadjuvant chemoradiation therapy (nCRT) using DNA damage response (DDR)-related proteins measured in peripheral blood monocytes (PBMCs). We optimized and validated an innovative assay to quantify these proteins, providing a predictive framework for nCRT response. Experimental Design We used PBMCs collected from LARC patients either before or after standard course of ∼5.5 weeks of nCRT, with patients categorized by neoadjuvant rectal (NAR) score. DDR was assessed by immunofluorescence (γH2AX S139 foci), and by Luminex multi-analyte platform (xMAP) assay providing semi-quantitative assessment of phosphorylated Chk1 S345 , Chk2 T68 , γH2AX S139 , p53 S15 and total ATR, MDM2, p21. Assay performance was evaluated using reference controls and banked PBMCs from healthy controls (n=50). Results PBMCs from poor responders (PoR; NAR >14; n=21) had significantly lower γH2AX S139 foci than complete responders (CR; NAR <1; n=21) (p<0.0001), with no significant differences between pre- and post-nCRT samples (p=0.4961). The xMAP assay performance assessment showed linear sample curves, precision with acceptable inter- and intra-assay coefficients of variability, and high reproducibility with ∼1% outliers in replicates. Clinical associations using the xMAP assay found levels of six proteins (ATR, MDM2, Chk1 S345 , Chk2 T68 , γH2AX S139 , p53 S15 ) significantly differentiating CRs from PoRs (p ≤ 1e-5). Univariate CART analysis determined thresholds that segregated PoRs from CRs with high precision (p<0.001). Conclusion We optimized an assay to assess DDR proteins in PBMCs and identified specific proteins, along with their threshold levels, that can accurately predict response to nCRT in patients with LARC. Translational Relevance Although neoadjuvant chemoradiation therapy followed by surgery is the standard of care for patients with locally advanced rectal cancer (LARC), many patients do not benefit from this treatment and suffer from its side effects. The motivation for this study was to reliably identify patients with LARC who will or will not respond to treatment, thereby permitting more effective direction of therapy only to likely responders. In this report, we describe identification and optimization of a novel multianalyte assay for patients diagnosed with LARC. This assay uses a Luminex xMAP platform to detect DNA damage response (DDR) signaling proteins in peripheral blood monocytes of pre-treatment patients. This assay, detecting the DDR proteins, effectively segregates responders from non-responders (p ≤ 1e-5), supporting optimization of treatment efficacy and reduction of unnecessary toxicity, thus advancing personalized medicine in oncology.
Collapse
|
2
|
Patócs A, Nagy P, Papp J, Bozsik A, Antal B, Grolmusz VK, Pócza T, Butz H. Cost-effectiveness of Genetic Testing of Endocrine Tumor Patients Using a Comprehensive Hereditary Cancer Gene Panel. J Clin Endocrinol Metab 2024; 109:3220-3233. [PMID: 38701358 PMCID: PMC11570362 DOI: 10.1210/clinem/dgae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Heterogenous clinical manifestations, overlapping phenotypes, and complex genetic backgrounds are common in patients with endocrine tumors. There are no comprehensive recommendations for genetic testing and counseling of these patients compared to other hereditary cancer syndromes. The application of multigene panel testing is common in clinical genetic laboratories, but their performance for patients with endocrine tumors has not been assessed. METHODS As a national reference center, we prospectively tested the diagnostic utility and cost-efficiency of a multigene panel covering 113 genes representing genetic susceptibility for solid tumors; 1279 patients (including 96 cases with endocrine tumors) were evaluated between October 2021 and December 2022 who were suspected to have hereditary tumor syndromes. RESULTS The analytical performance of the hereditary cancer panel was suitable for diagnostic testing. Clinical diagnosis was confirmed in 24% (23/96); incidental findings in genes not associated with the patient's phenotype were identified in 5% (5/96). A further 7% of pathogenic/likely pathogenic variants were detected in genes with potential genetic susceptibility roles but currently no clear clinical consequence. Cost-benefit analysis showed that the application of a more comprehensive gene panel in a diagnostic laboratory yielded a shorter turnaround time and provided additional genetic results with the same cost and workload. DISCUSSION Using comprehensive multigene panel results in faster turnaround time and cost-efficiently identifies genetic alterations in hereditary endocrine tumor syndromes. Incidentally identified variants in patients with poor prognoses may serve as a potential therapeutic target in tumors where therapeutic possibilities are limited.
Collapse
Affiliation(s)
- Attila Patócs
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - János Papp
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Anikó Bozsik
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Bálint Antal
- Semmelweis University, National Academy of Scientist Education, H-1085 Budapest, Hungary
| | - Vince Kornél Grolmusz
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| | - Henriett Butz
- HUN-REN Hereditary Tumors Research Group, Hungarian Research Network, H-1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, H-1122 Budapest, Hungary
| |
Collapse
|
3
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Dong Q, Yu T, Chen B, Liu M, Sun X, Cao H, Liu K, Xu H, Wang Y, Zhuang S, Jin Z, Liang H, Hui Y, Gu Y. Mutant RB1 enhances therapeutic efficacy of PARPis in lung adenocarcinoma by triggering the cGAS/STING pathway. JCI Insight 2023; 8:e165268. [PMID: 37937640 PMCID: PMC10721263 DOI: 10.1172/jci.insight.165268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) are approved for cancer therapy according to their synthetic lethal interactions, and clinical trials have been applied in non-small cell lung cancer. However, the therapeutic efficacy of PARPis in lung adenocarcinoma (LUAD) is still unknown. We explored the effect of a mutated retinoblastoma gene (RB1) on PARPi sensitivity in LUAD. Bioinformatic screening was performed to identify PARPi-sensitive biomarkers. Here, we showed that viability of LUAD cell lines with mutated RB1 was significantly decreased by PARPis (niraparib, rucaparib, and olaparib). RB1 deficiency induced genomic instability, prompted cytosolic double-stranded DNA (dsDNA) formation, activated the cGAS/STING pathway, and upregulated downstream chemokines CCL5 and CXCL10, triggering immune cell infiltration. Xenograft experiments indicated that PARPi treatment reduced tumorigenesis in RB1-KO mice. Additionally, single-cell RNA sequencing analysis showed that malignant cells with downregulated expression of RB1 had more communications with other cell types, exhibiting activation of specific signaling such as GAS, IFN response, and antigen-presenting and cytokine activities. Our findings suggest that RB1 mutation mediates the sensitivity to PARPis through a synthetic lethal effect by triggering the cGAS/STING pathway and upregulation of immune infiltration in LUAD, which may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Tong Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Xiang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huiying Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Huanhuan Xu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Yuquan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuping Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zixin Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| |
Collapse
|
5
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
6
|
Demidova EV, Serebriiskii IG, Vlasenkova R, Kelow S, Andrake MD, Hartman TR, Kent T, Virtucio J, Rosen GL, Pomerantz RT, Dunbrack RL, Golemis EA, Hall MJ, Chen DYT, Daly MB, Arora S. Candidate variants in DNA replication and repair genes in early-onset renal cell carcinoma patients referred for germline testing. BMC Genomics 2023; 24:212. [PMID: 37095444 PMCID: PMC10123997 DOI: 10.1186/s12864-023-09310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.
Collapse
Affiliation(s)
- Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Kazan Federal University, Kazan, 420008, Russia
| | - Ilya G Serebriiskii
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ramilia Vlasenkova
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Simon Kelow
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark D Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Tiffiney R Hartman
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Arcadia University, Glenside, PA, USA
| | - Tatiana Kent
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James Virtucio
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roland L Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David Y T Chen
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
7
|
Li T, Wang X, Qin S, Chen B, Yi M, Zhou J. Targeting PARP for the optimal immunotherapy efficiency in gynecologic malignancies. Biomed Pharmacother 2023; 162:114712. [PMID: 37075667 DOI: 10.1016/j.biopha.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Gynecologic cancer, which includes ovarian, cervical, endometrial, vulvar, and vaginal cancer, is a major health concern for women all over the world. Despite the availability of various treatment options, many patients eventually progress to advanced stages and face high mortality rates. PARPi (poly (ADP-ribose) polymerase inhibitor) and immune checkpoint inhibitor (ICI) have both shown significant efficacy in the treatment of advanced and metastatic gynecologic cancer. However, both treatments have limitations, including inevitable resistance and a narrow therapeutic window, making PARPi and ICI combination therapy a promising approach to treating gynecologic malignancies. Preclinical and clinical trials have looked into the combination therapy of PARPi and ICI. PARPi improves ICI efficacy by inducing DNA damage and increasing tumor immunogenicity, resulting in a stronger immune response against cancer cells. ICI, conversly, can increase PARPi sensitivity by priming and activating immune cells, consequently prompting immune cytotoxic effect. Several clinical trials in gynecologic cancer patients have investigated the combination therapy of PARPi and ICI. When compared to monotherapy, the combination of PARPi and ICI increased progression-free survival and overall survival in ovarian cancer patients. The combination therapy has also been studied in other types of gynecologic cancer, including endometrial and cervical cancer, with promising results. Finally, the combination therapeutic strategy of PARPi and ICI is a promising approach in the treatment of gynecologic cancer, particularly advanced and metastatic stages. Preclinical studies and clinical trials have demonstrated the safety and efficacy of this combination therapy in improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|