1
|
Dong Y, Yang G, Yang Y, Zhang S, Wang Y, Xu H. Dynamic characterization of circulating tumor DNA in HER2-altered advanced non-small cell lung cancer treated with pyrotinib and apatinib: Exploratory biomarker analysis from PATHER2 study. Lung Cancer 2025; 200:108062. [PMID: 39827483 DOI: 10.1016/j.lungcan.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND HER2 mutations are critical drivers of non-small cell lung cancer (NSCLC), affecting 2 %-3 % of patients and often leads to poor prognosis and limited response to conventional therapies. This study investigates the genomic characteristics and prognostic relevance of dynamic circulating tumor DNA (ctDNA) monitoring in advanced NSCLC patients with HER2 mutations treated with pyrotinib and apatinib. METHODS The PATHER2 study included 33 advanced NSCLC patients harboring HER2 mutations or amplification, who received combination therapy of pyrotinib and apatinib. Among them, 27 patients had baseline blood samples available for analysis. Baseline blood samples (n = 27), follow-up samples after one treatment cycle (n = 13), and samples upon disease progression (n = 18) were collected. ctDNA was extracted and sequenced using a 556-gene panel. RESULTS At baseline, HER2 mutations were detected in 21 of 27 patients through ctDNA, and 19 showed consistent results between tissue and blood sample testing. Patients with TP53 and DNMT3A alterations at baseline had significantly shorter progression-free survival (PFS). Dynamic ctDNA monitoring revealed that patients without detectable HER2 mutations after one treatment cycle had longer PFS and a trend toward longer overall survival (OS) compared to those with persistent HER2 mutations. The newly emerged mutations after resistance were infrequently found in HER2, instead primarily enriched in the chromatin remodeling pathway. CONCLUSION ctDNA holds significant value in guiding the treatment of patients with HER2 mutations. Baseline TP53 and DNMT3A alterations, along with persistent HER2 mutations after initial treatment, are associated with poorer prognosis. The primary mechanism of resistance to pyrotinib and apatinib in these patients may be attributed to chromatin remodeling rather than on-target alterations.
Collapse
Affiliation(s)
- Yucheng Dong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guangjian Yang
- Department of Respiratory Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuyang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Tatalovic S, Doleschal B, Kupferthaler A, Grundner S, Burghofer J, Webersinke G, Schwendinger S, Jukic E, Zschocke J, Danhel L, Kirchweger A, Havranek L, Shalamberidze D, Rezaie D, Biebl M, Rumpold H, Kirchweger P. Circulating Tumor DNA (ctDNA) Dynamics Predict Early Response to Treatment in Metastasized Gastroesophageal Cancer (mGEC) After 2 Weeks of Systemic Treatment. Cancers (Basel) 2024; 16:3960. [PMID: 39682148 DOI: 10.3390/cancers16233960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
mGEC is associated with poor overall survival (OS) of approximately 4-10 months. CtDNA is emerging as a promising prognostic biomarker with high potential for early relapse detection. However, until now, there was little knowledge on serial ctDNA detection and its impact on early treatment evaluation and prognosis in mGEC. METHODS ctDNA detection (ddPCR) was carried out serially in 37 matched tissue (NGS) patients with mGEC prior to systemic treatment initiation and every two weeks thereafter until restaging (n = 173 samples). The results have been correlated with response to treatment (restaging CT), overall survival (OS), and progression-free survival (PFS). RESULTS The pretherapeutic detection rate was 77.8%. Response to treatment assessment was correct in 54.2% (pretherapeutically pos./neg.) and 85.7% (dynamics at week 4). Moreover, a decline in ctDNA (MAF in %) below 57.1% of the pretherapeutic value after 2 weeks of systemic treatment was accompanied by a sensitivity of 57.1% and a specificity of 90% (AUC = 0.73) for correct restaging assessment (response evaluation by CT after 3 months) evaluating 76.5% of patients correctly after only 2 weeks. In contrast to mere pretherapeutic ctDNA positivity (p = 0.445), a decline in ctDNA dynamics to under 57.1% of its initial value was significantly associated with OS (4.1 (95% Cl 2.1-6.1) vs. 13.6 (95% CI 10.4-16.6) months, p < 0.001) and PFS (3.2 (1.9-4.5) vs. 9.5 (95% CI 5.5-13.5) months, p = 0.001) after two weeks of treatment. Additionally, the change in detectability from positive pretherapeutic levels to negative during treatment was associated with similar survival as for patients who were always regarded as ctDNA-negative (9.5 (95%Cl 0.4-18.5) vs. 9.6 (95%Cl 1.3-17.9)). The absence of becoming undetectable was associated with worse survival (4.7 months). CONCLUSIONS ctDNA is a promising additional biomarker allowing for early evaluation of response to treatment and saving unevaluated treatment time for patients with mGEC, and could allow for an early change in treatment with anticipated prognostic benefit in the future.
Collapse
Affiliation(s)
- Stefan Tatalovic
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- VYRAL, 4020 Linz, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, 4010 Linz, Austria
| | - Alexander Kupferthaler
- Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Department of Diagnostic and Interventional Radiology, Ordensklinikum Linz, 4010 Linz, Austria
| | - Stephan Grundner
- Department of Diagnostic and Interventional Radiology, Ordensklinikum Linz, 4010 Linz, Austria
| | - Jonathan Burghofer
- Laboratory for Molecular Genetics Diagnostics, Ordensklinikum Linz, 4010 Linz, Austria
| | - Gerald Webersinke
- Laboratory for Molecular Genetics Diagnostics, Ordensklinikum Linz, 4010 Linz, Austria
| | - Simon Schwendinger
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Lorenz Danhel
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- VYRAL, 4020 Linz, Austria
| | - Antonia Kirchweger
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- VYRAL, 4020 Linz, Austria
| | - Lukas Havranek
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- VYRAL, 4020 Linz, Austria
| | - Demetre Shalamberidze
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- VYRAL, 4020 Linz, Austria
| | - Daniel Rezaie
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- VYRAL, 4020 Linz, Austria
| | - Matthias Biebl
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Holger Rumpold
- Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, 4010 Linz, Austria
| | - Patrick Kirchweger
- Department of Surgery, Ordensklinikum Linz, 4010 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- VYRAL, 4020 Linz, Austria
| |
Collapse
|
3
|
Ge Q, Zhang ZY, Li SN, Ma JQ, Zhao Z. Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review). Oncol Lett 2024; 28:548. [PMID: 39319213 PMCID: PMC11420644 DOI: 10.3892/ol.2024.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Traditional tumor diagnosis methods rely on tissue biopsy, which can be invasive and unsuitable for long-term monitoring of tumor dynamics. The advent of liquid biopsy has notably improved the overall management of patients with cancer. Liquid biopsy techniques primarily involve detection of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). The present review focuses on ctDNA because of its significance in tumor diagnosis, monitoring and treatment. The use of ctDNA-based liquid biopsy offers several advantages, including non-invasive or minimally invasive collection methods, the ability to conduct repeated assessment and comprehensive insights into tumor biology. It serves crucial roles in disease management by facilitating screening of high-risk patients, dynamically monitoring therapeutic responses and diagnosis. Furthermore, ctDNA can be used to demonstrate pseudo-progression, monitor postoperative tumor status and guide adaptive treatment plans. The present study provides a comprehensive review of ctDNA, exploring its origins, metabolism, detection methods, clinical role and the current challenges associated with its application.
Collapse
Affiliation(s)
- Qian Ge
- Graduate School, Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Zhi-Yun Zhang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Suo-Ni Li
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jie-Qun Ma
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zheng Zhao
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
4
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
5
|
Marinello A, Tagliamento M, Pagliaro A, Conci N, Cella E, Vasseur D, Remon J, Levy A, Dall'Olio FG, Besse B. Circulating tumor DNA to guide diagnosis and treatment of localized and locally advanced non-small cell lung cancer. Cancer Treat Rev 2024; 129:102791. [PMID: 38963991 DOI: 10.1016/j.ctrv.2024.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Liquid biopsy is a minimally invasive method for biomarkers detection in body fluids, particularly in blood, which offers an elevated and growing number of clinical applications in oncology. As a result of the improvement in the techniques for DNA analysis, above all next-generation sequencing (NGS) assays, circulating tumor DNA (ctDNA) has become the most informing tumor-derived material for most types of cancer, including non-small cell lung cancer (NSCLC). Although ctDNA concentration is higher in patients with advanced tumors, it can be detected even in patients with early-stage disease. Therefore, numerous clinical applications of ctDNA in the management of early-stage lung cancer are emerging, such as lung cancer screening, the identification of minimal residual disease (MRD), and the prediction of relapse before radiologic progression. Moreover, a high number of clinical trials are ongoing to better define the impact of ctDNA evaluation in this setting. Aim of this review is to offer a comprehensive overview of the most relevant implementations in using ctDNA for the management of early-stage lung cancer, addressing available data, technical aspects, limitations, and future perspectives.
Collapse
Affiliation(s)
- Arianna Marinello
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; INSERM Unit 1030 - Molecular Radiotherapy and Therapeutic Innovation, Gustave Roussy, Villejuif, France
| | - Marco Tagliamento
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy.
| | - Arianna Pagliaro
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Department of Medical Oncology, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | - Nicole Conci
- Department of Medical Oncology, IRCCS Sant'Orsola-Malpighi, Bologna, Italy
| | - Eugenia Cella
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Antonin Levy
- Department of Radiotherapy, Gustave Roussy, Villejuif, France
| | | | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| |
Collapse
|
6
|
Hayashi Y, Millen JC, Ramos RI, Linehan JA, Wilson TG, Hoon DSB, Bustos MA. Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors. Mol Oncol 2024. [PMID: 39129372 DOI: 10.1002/1878-0261.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Janelle-Cheri Millen
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jennifer A Linehan
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Timothy G Wilson
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
- Department of Genome Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
7
|
Yan X, Zhang W, Yang J. Self-signal electrochemical identification of circulating tumor DNA employing poly-xanthurenic acid assembled on black phosphorus nanosheets. Anal Biochem 2024; 690:115512. [PMID: 38527608 DOI: 10.1016/j.ab.2024.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
A self-signal electrochemical identification interface was prepared for the determination of circulating tumor DNA (ctDNA) in peripheral blood based on poly-xanthurenic acid (PXTA) assembled on black phosphorus nanosheets (BPNSs) acquired through simple ultrasonication method. The BPNSs with large surface area could be integrated with the xanthurenic acid (XTA) monomers by right of physisorption, and hence improved the electropolymerization efficiency and was beneficial to the enlargement of the signal response of PXTA. The assembled PXTA/BPNSs composite with attractive electrochemical activity was adopted as a platform for the recognition of DNA immobilization and hybridization. The probe ssDNA was covalently fixed onto the PXTA/BPNSs composite with plentiful carboxyl groups through the terminate free amines of DNA probes by use of the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydrosulfosuccinimide cross-linking reaction, accompanied with the decline of the self-signal response. When the hybridization between the probe ssDNA and the target DNA was accomplished, the self-signal response of the composite interface reproduced by virtue of the shaping of helix construction. The determination limit of the assembled DNA identification interface was 2.1 × 10-19 mol/L, and the complementary target DNA concentrations varied from 1.0 × 10-18 mol/L to 1.0 × 10-12 mol/L. The DNA identification platform displayed magnificent sensitivity, specificity and stability, and was efficaciously implemented to the mensuration of ctDNA derived from colorectal cancer.
Collapse
Affiliation(s)
- Xinyu Yan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China.
| | - Jimin Yang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| |
Collapse
|
8
|
Ma Z, Xu J, Hou W, Lei Z, Li T, Shen W, Yu H, Liu C, Zhang J, Tang S. Detection of Single Nucleotide Polymorphisms of Circulating Tumor DNA by Strand Displacement Amplification Coupled with Liquid Chromatography. Anal Chem 2024; 96:5195-5204. [PMID: 38520334 DOI: 10.1021/acs.analchem.3c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The detection of multiple single nucleotide polymorphisms (SNPs) of circulating tumor DNA (ctDNA) is still a great challenge. In this study, we designed enzyme-assisted nucleic acid strand displacement amplification combined with high-performance liquid chromatography (HPLC) for the simultaneous detection of three ctDNA SNPs. First, the trace ctDNA could be hybridized to the specially designed template strand, which initiated the strand displacement nucleic acid amplification process under the synergistic action of DNA polymerase and restriction endonuclease. Then, the targets would be replaced with G-quadruplex fluorescent probes with different tail lengths. Finally, the HPLC-fluorescence assay enabled the separation and quantification of multiple signals. Notably, this method can simultaneously detect both the wild type (WT) and mutant type (MT) of multiple ctDNA SNPs. Within a linear range of 0.1 fM-0.1 nM, the detection limits of BRAF V600E-WT, EGFR T790M-WT, and KRAS 134A-WT and BRAF V600E-MT, EGFR T790M-MT, and KRAS 134A-MT were 29, 31, and 11 aM and 22, 29, and 33 aM, respectively. By using this method, the mutation rates of multiple ctDNA SNPs in blood samples from patients with lung or breast cancer can be obtained in a simple way, providing a convenient and highly sensitive analytical assay for the early screening and monitoring of lung cancer.
Collapse
Affiliation(s)
- Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Junjie Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Weilin Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Zi Lei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Tingting Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang 212000, Jiangsu, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Kus T, Cicin I. A perspective: the integration of ctDNA into Response Evaluation Criteria in Solid Tumours 1.1 for phase II immunotherapy clinical trials. Immunotherapy 2024; 16:319-329. [PMID: 38197142 DOI: 10.2217/imt-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
A consensus guideline, iRECIST, was developed by the Response Evaluation Criteria in Solid Tumours (RECIST) working group for the use of the modified RECIST version 1.1 in cancer immunotherapy trials. iRECIST was designed to separate pseudoprogression from real progression. However, this is not the only ambiguous situation. In clinical immunotherapy trials, stable disease may reflect three tumor responses, including real stable disease, progressive disease and responsive disease. The prediction of a "true complete/partial response" is also important. Much data has accumulated showing that ctDNA can guide decisions at this point; thus, integrating ctDNA into the RECIST 1.1 criteria may help to distinguish a true tumor response type earlier in patients treated with immunotherapy; however, prospectively designed validation studies are needed.
Collapse
Affiliation(s)
- Tulay Kus
- School of Medicine, Department of Medical Oncology, Gaziantep University, Gaziantep, 27310, Turkey
| | - Irfan Cicin
- Department of Medical Oncology, Istinye University Topkapı Health Sciences Campus, Istanbul, 34295, Turkey
| |
Collapse
|
10
|
Gimeno-Valiente F, Martín-Arana J, Tébar-Martínez R, Gambardella V, Martínez-Ciarpaglini C, García-Micó B, Martínez-Castedo B, Palomar B, García-Bartolomé M, Seguí V, Huerta M, Moro-Valdezate D, Pla-Martí V, Pérez-Santiago L, Roselló S, Roda D, Cervantes A, Tarazona N. Sequencing paired tumor DNA and white blood cells improves circulating tumor DNA tracking and detects pathogenic germline variants in localized colon cancer. ESMO Open 2023; 8:102051. [PMID: 37951129 PMCID: PMC10774972 DOI: 10.1016/j.esmoop.2023.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND In the setting of localized colon cancer (CC), circulating tumor DNA (ctDNA) monitoring in plasma has shown potential for detecting minimal residual disease (MRD) and predicting a higher risk of recurrence. With the tumor-only sequencing approach, however, germline variants may be misidentified as somatic variations, precluding the possibility of tracking in up to 11% of patients due to a lack of known somatic mutations. In this study, we assess the potential value of adding white blood cells (WBCs) to tumor tissue sequencing to enhance the accuracy of sequencing results. PATIENTS AND METHODS A total of 148 patients diagnosed with localized CC were prospectively recruited at the Hospital Clínico Universitario in Valencia (Spain). Employing a custom 29-gene panel, sequencing was conducted on tumor tissue, plasma and corresponding WBCs. Droplet digital PCR and amplicon-based NGS were performed on plasma samples post-surgery to track MRD. Oncogenic somatic variants were identified by annotating with COSMIC, OncoKB and an internal repository of pathogenic mutations database. A variant prioritization analysis, mainly characterized by the match of oncogenic mutations with the evidence levels defined in OncoKB, was carried out to select specific targeted therapies. RESULTS Utilizing paired tumor and WBCs sequencing, we identified somatic mutations in all patients (100%) within our cohort, compared to 89% using only tumor tissue. Consequently, the top 10 most frequently mutated genes for plasma monitoring were altered. The sequencing of WBCs identified 9% of patients with pathogenic mutations in the germline, with APC and TP53 being the most frequently mutated genes. Additionally, mutations in genes related to clonal hematopoiesis of indeterminate potential were detected in 27% of the cohort, with TP53, KRAS, and KMT2C being the most frequently altered genes. There were no observed differences in the sensitivity of monitoring MRD using ddPCR or amplicon-based NGS (p = 1). Ultimately, 41% of the patients harbored potentially targetable alterations at diagnosis. CONCLUSION The germline testing method not only enhanced sequencing results and raised the proportion of patients eligible for plasma monitoring, but also uncovered the existence of pathogenic germline variations, thereby aiding in the identification of patients at a higher risk of hereditary cancer syndromes.
Collapse
Affiliation(s)
- F Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - J Martín-Arana
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid
| | - R Tébar-Martínez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - V Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - C Martínez-Ciarpaglini
- CIBERONC, Instituto de Salud Carlos III, Madrid; Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - B García-Micó
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid
| | - B Martínez-Castedo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid
| | - B Palomar
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - M García-Bartolomé
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - V Seguí
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - M Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia
| | - D Moro-Valdezate
- Colorectal Surgery Unit, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, Department of Surgery, University of Valencia, Valencia, Spain
| | - V Pla-Martí
- Colorectal Surgery Unit, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, Department of Surgery, University of Valencia, Valencia, Spain
| | - L Pérez-Santiago
- Colorectal Surgery Unit, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, Department of Surgery, University of Valencia, Valencia, Spain
| | - S Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid
| | - D Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid
| | - A Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid.
| | - N Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid.
| |
Collapse
|