1
|
Niu X, Lu D, Zhan W, Sun J, Li Y, Shi Y, Yu K, Huang S, Ma X, Liu X, Liu B. miR-9-5p/HMMR regulates the tumorigenesis and progression of clear cell renal cell carcinoma through EMT and JAK1/STAT1 signaling pathway. J Transl Med 2025; 23:36. [PMID: 39789627 PMCID: PMC11716318 DOI: 10.1186/s12967-024-05988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC. Further research is imperative to elucidate these aspects. METHODS We used The Cancer Genome Atlas (TCGA) database to preliminarily investigate HMMR expression and function in ccRCC and the data for 19 samples from the NCBI GEO database (GSE207493) for single-cell analysis. We assessed the differential expression level of HMMR between ccRCC cancerous tissues and their matched non-tumor tissues. Subsequently, a series of in vivo and in vitro experiments were designed to elucidate the biological function of HMMR in ccRCC, including Transwell assays, CCK-8 assays, clone formation assays and subcutaneous xenograft experiments in nude mice. Through bioinformatics analysis, we identified potential microRNAs (miRNAs) that may regulate HMMR, as well as the possible signaling pathways involved. Finally, we conducted a series of cellular functional experiments to validate our hypotheses regarding the HMMR axis. RESULTS HMMR expression was significantly up-regulated in tumor tissues of ccRCC patients, and elevated HMMR expression level showed a strong correlation with ccRCC progression and adverse prognoses of patients. Knocking down HMMR inhibited the proliferative and migratory abilities of ccRCC cells, while its overexpression amplified these oncogenic properties. In nude mice model, reduced HMMR expression inhibited ccRCC tumor proliferation in vivo. Furthermore, overexpression of an upstream transcriptional regulator, miR-9-5p, effectively downregulated HMMR expression and thus impeded ccRCC cells proliferation and migration. HMMR might influence ccRCC growth via the Epithelial-Mesenchymal Transition (EMT) pathway and the Janus Kinase 1/Signal Transducer and Activator of Transcription 1 (JAK1/STAT1) pathway. CONCLUSIONS HMMR is overexpressed in ccRCC, and there is a significant link between high HMMR expression and tumor progression, as well as poor patient prognosis. Specifically, HMMR could be targeted and inhibited by miR-9-5p and might modulate the tumorigenesis and progression of ccRCC through both EMT and JAK1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Xinyang Niu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Dingheng Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Weitao Zhan
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Jiazhu Sun
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Yuxiao Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Yuchen Shi
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Kai Yu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Suyuelin Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Xueyou Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Xiaoyan Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China.
- Cancer Center, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
2
|
Chen YJ, Tseng SC, Chen PT, Hwang E. The non-mitotic role of HMMR in regulating the localization of TPX2 and the dynamics of microtubules in neurons. eLife 2024; 13:RP94547. [PMID: 38904660 PMCID: PMC11192530 DOI: 10.7554/elife.94547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
A functional nervous system is built upon the proper morphogenesis of neurons to establish the intricate connection between them. The microtubule cytoskeleton is known to play various essential roles in this morphogenetic process. While many microtubule-associated proteins (MAPs) have been demonstrated to participate in neuronal morphogenesis, the function of many more remains to be determined. This study focuses on a MAP called HMMR in mice, which was originally identified as a hyaluronan binding protein and later found to possess microtubule and centrosome binding capacity. HMMR exhibits high abundance on neuronal microtubules and altering the level of HMMR significantly affects the morphology of neurons. Instead of confining to the centrosome(s) like cells in mitosis, HMMR localizes to microtubules along axons and dendrites. Furthermore, transiently expressing HMMR enhances the stability of neuronal microtubules and increases the formation frequency of growing microtubules along the neurites. HMMR regulates the microtubule localization of a non-centrosomal microtubule nucleator TPX2 along the neurite, offering an explanation for how HMMR contributes to the promotion of growing microtubules. This study sheds light on how cells utilize proteins involved in mitosis for non-mitotic functions.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Shun-Cheng Tseng
- Department of Orthopedic Surgery, Changhua Christian HospitalChanghuaTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Peng-Tzu Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
3
|
Labropoulou VT, Manou D, Ravazoula P, Alzahrani FM, Kalofonos HP, Theocharis AD. Expression of CD44 is associated with aggressiveness in seminomas. Mol Biol Rep 2024; 51:693. [PMID: 38796656 PMCID: PMC11127849 DOI: 10.1007/s11033-024-09638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) exhibit diverse biological and pathological features and are divided in two main types, seminomas and nonseminomatous germ cell tumors (NSGCTs). CD44 is a cell surface receptor, which is highly expressed in malignancies and is implicated in tumorigenesis affecting cell-matrix interactions and cell signaling. METHODS AND RESULTS Here, we examined the expression of CD44 in tumor cell lines and in patients' material. We found that CD44 is over-expressed in TGCTs compared to normal tissues. Immunohistochemical staining in 71 tissue specimens demonstrated increased expression of CD44 in some patients, whereas CD44 was absent in normal tissue. In seminomas, a high percentage of tumor and stromal cells showed cytoplasmic and/or cell surface staining for CD44 as well as increased staining for CD44 in the tumor stroma was found in some cases. The increased expression of CD44 either in tumor cells or in stromal components was associated with tumor size, nodal metastasis, vascular/lymphatic invasion, and disease stage only in seminomas. The increased stromal expression of CD44 in TGCTs was positively associated with angiogenesis. CONCLUSIONS CD44 may exhibit diverse biological functions in seminomas and NSGCTs. The expression of CD44 in tumor cells as well as in tumor stroma fosters an aggressive phenotype in seminomas and should be considered in disease treatment.
Collapse
Affiliation(s)
- Vasiliki T Labropoulou
- Department of Internal Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece.
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Panagiota Ravazoula
- Department of Pathology, University Hospital of Patras, Patras, 26504, Greece
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Haralabos P Kalofonos
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, 26504, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
4
|
Zhang X, Huang D, Li K, Han C, Li H, Li C, Liu L. Hmmr Acts as a Key Regulator in the ADSCs Proliferation and Mitosis. Stem Cell Rev Rep 2023:10.1007/s12015-023-10563-9. [PMID: 37222947 DOI: 10.1007/s12015-023-10563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Obesity is a common chronic health problem that requires lifelong efforts for the successful treatment. The proliferation of ADSCs is an essential step in the development of obesity. Identifying key regulators of ADSCs will be a novel strategy for adipogenesis inhibition and obesity prevention. In this study, transcriptomes of 15532 ADSCs were firstly profiled by single cell RNA-sequencing. On the basis of gene expression patterns, 15 cell subpopulations (six defined cell types) were distinguished. A subpopulation was identified as CD168+ ADSCs, and it was demonstrated to play a vital role in ADSCs proliferation. Furthermore, Hmmr, a specific marker gene of CD168+ ADSCs was found to be a critical gene associated with ADSCs proliferation and mitosis. Hmmr knockout resulted that ADSCs growth nearly arrested and aberrant nuclear division occurred. Finally, it was revealed that Hmmr promoted ADSCs proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway. This study identified Hmmr as a key regulator in ADSCs proliferation and mitosis, and suggested that Hmmr may be a novel target for obesity prevention.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Dou Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Kaide Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chaoying Han
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Cai Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Pibuel MA, Poodts D, Molinari Y, Díaz M, Amoia S, Byrne A, Hajos S, Lompardía S, Franco P. The importance of RHAMM in the normal brain and gliomas: physiological and pathological roles. Br J Cancer 2023; 128:12-20. [PMID: 36207608 PMCID: PMC9814267 DOI: 10.1038/s41416-022-01999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/27/2023] Open
Abstract
Although the literature about the functions of hyaluronan and the CD44 receptor in the brain and brain tumours is extensive, the role of the receptor for hyaluronan-mediated motility (RHAMM) in neural stem cells and gliomas remain poorly explored. RHAMM is considered a multifunctional receptor which performs various biological functions in several normal tissues and plays a significant role in cancer development and progression. RHAMM was first identified for its ability to bind to hyaluronate, the extracellular matrix component associated with cell motility control. Nevertheless, additional functions of this protein imply the interaction with different partners or cell structures to regulate other biological processes, such as mitotic-spindle assembly, gene expression regulation, cell-cycle control and proliferation. In this review, we summarise the role of RHAMM in normal brain development and the adult brain, focusing on the neural stem and progenitor cells, and discuss the current knowledge on RHAMM involvement in glioblastoma progression, the most aggressive glioma of the central nervous system. Understanding the implications of RHAMM in the brain could be useful to design new therapeutic approaches to improve the prognosis and quality of life of glioblastoma patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina.
| | - Daniela Poodts
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Yamila Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Capital Federal (1113), Buenos Aires, Argentina
| | - Sofía Amoia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Agustín Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvia Hajos
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Silvina Lompardía
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Microbiología, Inmunología y Biotecnología; Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| | - Paula Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica; Departamento de Química Biológica. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Capital Federal (1113), Buenos Aires, Argentina
| |
Collapse
|
6
|
Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol 2022; 12:982231. [PMID: 36033439 PMCID: PMC9400171 DOI: 10.3389/fonc.2022.982231] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM’s pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.
Collapse
Affiliation(s)
- Josephine A. Hinneh
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joanna L. Gillis
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nicole L. Moore
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| | - Margaret M. Centenera
- South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide, SA, Australia
- Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Lisa M. Butler, ; Margaret M. Centenera,
| |
Collapse
|
7
|
Jiang X, Tang L, Yuan Y, Wang J, Zhang D, Qian K, Cho WC, Duan L. NcRNA-Mediated High Expression of HMMR as a Prognostic Biomarker Correlated With Cell Proliferation and Cell Migration in Lung Adenocarcinoma. Front Oncol 2022; 12:846536. [PMID: 35311097 PMCID: PMC8927766 DOI: 10.3389/fonc.2022.846536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Hyaluronan-mediated motility receptor (HMMR) plays a pivotal role in cell proliferation in various cancers, including lung cancer. However, its function and biological mechanism in lung adenocarcinoma (LUAD) remain unclear. Methods Data on HMMR expression from several public databases were extensively analyzed, including the prognosis of HMMR in the Gene Expression Profiling Interactive Analysis (GEPIA) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using DAVID and gene set enrichment analysis (GSEA) software. The correlation between HMMR expression and immune cell infiltration was analyzed in the Tumor Immune Estimation Resource (TIMER) database, and the gene and protein networks were examined using the GeneMANIA and STRING databases. Experimentally, the expression of HMMR in LUAD and lung cancer cell lines was determined using immunohistochemistry and quantitative RT-PCR assays. Besides, the function of HMMR on cancer cell proliferation and migration was examined using cell growth curve and colony formation, Transwell, and wound healing assays. Results In this study, we found that HMMR was elevated in LUAD and that its high expression was associated with poor clinicopathological features and adverse outcomes in LUAD patients. Furthermore, our results demonstrated that the expression of HMMR was positively correlated with immune cell infiltration and immune modulation. Interestingly, diverse immune cell infiltration affects the prognosis of LUAD. In the functional assay, depletion of HMMR significantly repressed the cancer cell growth and migration of LUAD. Mechanically, we found that that the DNA methylation/TMPO-AS1/let-7b-5p axis mediated the high expression of HMMR in LUAD. Depletion of TMPO-AS1 and overexpression of let-7b-5p could result in the decreased expression of HMMR in LUAD cells. Furthermore, we found that TMPO-AS1 was positively correlated with HMMR, yet negatively correlated with let-7b-5p expression in LUAD. Conclusions Our findings elucidated that the DNA methylation/TMPO-AS1/let-7b-5p axis mediated the high expression of HMMR, which may be considered as a biomarker to predict prognosis in LUAD.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/ Kunming Institute of Zoology, Kunming, China
| | - Lin Tang
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kebao Qian
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Lincan Duan
- The Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Various effects of two types of kinesin-5 inhibitors on mitosis and cell proliferation. Biochem Pharmacol 2021; 193:114789. [PMID: 34582773 DOI: 10.1016/j.bcp.2021.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
Kinesin-5 has received considerable attention as a new target for mitosis. Various small-molecule compounds targeting kinesin-5 have been developed in the last few decades. However, the differences in the cellular effects of kinesin-5 inhibitors remain poorly understood. Here, we used two different kinesin-5 inhibitors, biphenyl-type PVZB1194 and S-trityl-L-cysteine-type PVEI0021, to examine their effects on molecular events involving kinesin-5. Our biochemical study of kinesin-5 protein-protein interactions showed that PVZB1194-treated kinesin-5 interacted with TPX2 microtubule nucleation factor, Aurora-A kinase, receptor for hyaluronan-mediated motility, and γ-tubulin, as did untreated mitotic kinesin-5. However, PVEI0021 prevented kinesin-5 from binding to these proteins. In mitotic HeLa cells recovered from nocodazole inhibition, kinesin-5 colocalized with these binding proteins, along with microtubules nucleated near kinetochores. By acting on kinesin-5 interactions with chromatin-associated microtubules, PVZB1194, rather than PVEI0021, not only affected the formation of dispersed microtubule clusters but also enhanced the stability of microtubules. In addition, screening for mitotic inhibitors working synergistically with the kinesin-5 inhibitors revealed that paclitaxel synergistically inhibited HeLa cell proliferation only with PVZB1194. In contrast, the Aurora-A inhibitor MLN8237 exerted a synergistic anti-cell proliferation effect when combined with either inhibitor. Together, these results have provided a better understanding of the molecular action of kinesin-5 inhibitors and indicate their usefulness as molecular tools for the study of mitosis and the development of anticancer agents.
Collapse
|
9
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Jiang Z, Zhang S, Lee YM, Teng X, Yang Q, Toyama Y, Liou YC. Hyaluronan-Mediated Motility Receptor Governs Chromosome Segregation by Regulating Microtubules Sliding Within the Bridging Fiber. Adv Biol (Weinh) 2021; 5:e2000493. [PMID: 33788418 DOI: 10.1002/adbi.202000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Indexed: 11/06/2022]
Abstract
Accurate segregation of chromosomes during anaphase relies on the central spindle and its regulators. A newly raised concept of the central spindle, the bridging fiber, shows that sliding of antiparallel microtubules (MTs) within the bridging fiber promotes chromosome segregation. However, the regulators of the bridging fiber and its regulatory mechanism on MTs sliding remain largely unknown. In this study, the non-motor microtubule-associated protein, hyaluronan-mediated motility receptor (HMMR), is identified as a novel regulator of the bridging fiber. It then identifies that HMMR regulates MTs sliding within the bridging fiber by cooperating with its binding partner HSET. By utilizing a laser-based cell ablation system and photoactivation approach, the study's results reveal that depletion of HMMR causes an inhibitory effect on MTs sliding within the bridging fiber and disrupts the forced uniformity on the kinetochore-attached microtubules-formed fibers (k-fibers). These are created by suppressing the dynamics of HSET, which functions in transiting the force from sliding of bridging MTs to the k-fiber. This study sheds new light on the novel regulatory mechanism of MTs sliding within the bridging fiber by HMMR and HSET and uncovers the role of HMMR in chromosome segregation during anaphase.
Collapse
Affiliation(s)
- Zemin Jiang
- Laboratory of Precision Cancer Medicine, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yusuke Toyama
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
11
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
12
|
A Dual Protein-mRNA Localization Screen Reveals Compartmentalized Translation and Widespread Co-translational RNA Targeting. Dev Cell 2020; 54:773-791.e5. [PMID: 32783880 DOI: 10.1016/j.devcel.2020.07.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Local translation allows spatial control of gene expression. Here, we performed a dual protein-mRNA localization screen, using smFISH on 523 human cell lines expressing GFP-tagged genes. 32 mRNAs displayed specific cytoplasmic localizations with local translation at unexpected locations, including cytoplasmic protrusions, cell edges, endosomes, Golgi, the nuclear envelope, and centrosomes, the latter being cell-cycle-dependent. Automated classification of mRNA localization patterns revealed a high degree of intercellular heterogeneity. Surprisingly, mRNA localization frequently required ongoing translation, indicating widespread co-translational RNA targeting. Interestingly, while P-body accumulation was frequent (15 mRNAs), four mRNAs accumulated in foci that were distinct structures. These foci lacked the mature protein, but nascent polypeptide imaging showed that they were specialized translation factories. For β-catenin, foci formation was regulated by Wnt, relied on APC-dependent polysome aggregation, and led to nascent protein degradation. Thus, translation factories uniquely regulate nascent protein metabolism and create a fine granular compartmentalization of translation.
Collapse
|
13
|
He Z, Mei L, Connell M, Maxwell CA. Hyaluronan Mediated Motility Receptor (HMMR) Encodes an Evolutionarily Conserved Homeostasis, Mitosis, and Meiosis Regulator Rather than a Hyaluronan Receptor. Cells 2020; 9:cells9040819. [PMID: 32231069 PMCID: PMC7226759 DOI: 10.3390/cells9040819] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan is an extracellular matrix component that absorbs water in tissues and engages cell surface receptors, like Cluster of Differentiation 44 (CD44), to promote cellular growth and movement. Consequently, CD44 demarks stem cells in normal tissues and tumor-initiating cells isolated from neoplastic tissues. Hyaluronan mediated motility receptor (HMMR, also known as RHAMM) is another one of few defined hyaluronan receptors. HMMR is also associated with neoplastic processes and its role in cancer progression is often attributed to hyaluronan-mediated signaling. But, HMMR is an intracellular, microtubule-associated, spindle assembly factor that localizes protein complexes to augment the activities of mitotic kinases, like polo-like kinase 1 and Aurora kinase A, and control dynein and kinesin motor activities. Expression of HMMR is elevated in cells prior to and during mitosis and tissues with detectable HMMR expression tend to be highly proliferative, including neoplastic tissues. Moreover, HMMR is a breast cancer susceptibility gene product. Here, we briefly review the associations between HMMR and tumorigenesis as well as the structure and evolution of HMMR, which identifies Hmmr-like gene products in several insect species that do not produce hyaluronan. This review supports the designation of HMMR as a homeostasis, mitosis, and meiosis regulator, and clarifies how its dysfunction may promote the tumorigenic process and cancer progression.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
| | - Lin Mei
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
| | - Christopher A. Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; (Z.H.); (L.M.); (M.C.)
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: ; Tel.: +1-6048752000 (ext. 4691)
| |
Collapse
|
14
|
Fulcher LJ, Sapkota GP. Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle 2020; 19:505-524. [PMID: 32048898 PMCID: PMC7100989 DOI: 10.1080/15384101.2020.1728014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
15
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
16
|
Li H, Shukla S, Frappart L, Herrlich P, Ploubidou A. cd44 deletion suppresses atypia in the precancerous mouse testis. Mol Carcinog 2018; 58:621-626. [PMID: 30582228 DOI: 10.1002/mc.22961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 11/06/2022]
Abstract
Loss-of-function of RHAMM causes hypofertility and testicular atrophy in young mice, followed by germ cell neoplasia in situ (GCNIS) of the testis, cellular atypia, and development of the testicular germ cell tumor (TGCT) seminoma. These pathologies reflect the risk factors and phenotypes that precede seminoma development in humans and-given the high prevalence of RHAMM downregulation in human seminoma-link RHAMM dysfunction with the aetiology of male hypofertility and GCNIS-related TGCTs. The initiating event underlying these pathologies, in RHAMM mutant testis, is premature displacement of undifferentiated progenitors from the basal compartment. We hypothesized that cd44 (both cancer initiating cell- and oncogenic progression marker) will drive GCNIS development, induced by RHAMM-loss-of-function in the mouse. We report that cd44 is expressed in a specific subset of GCNIS testes. Its genetic deletion has no effect on GCNIS onset, but it ameliorates oncogenic progression. We conclude that cd44 expression, combined with RHAMM dysfunction, promotes oncogenic progression in the testis.
Collapse
Affiliation(s)
- Huaibiao Li
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Shalmali Shukla
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Lucien Frappart
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Peter Herrlich
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | | |
Collapse
|
17
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
18
|
Chen H, Connell M, Mei L, Reid GSD, Maxwell CA. The nonmotor adaptor HMMR dampens Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation. Mol Biol Cell 2018; 29:786-796. [PMID: 29386294 PMCID: PMC5905292 DOI: 10.1091/mbc.e17-08-0531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The nonmotor adaptor protein HMMR maintains the kinetics and integrity of chromosome segregation by promoting TPX2-Eg5 complexes that dampen Eg5-mediated forces and support K-fiber stability, kinetochore–microtubule attachments, and inter-kinetochore tension. HMMR is needed to prevent the generation of aneuploid progeny cells. Mitotic spindle assembly and organization require forces generated by motor proteins. The activity of these motors is regulated by nonmotor adaptor proteins. However, there are limited studies reporting the functional importance of adaptors on the balance of motor forces and the promotion of faithful and timely cell division. Here we show that genomic deletion or small interfering RNA silencing of the nonmotor adaptor Hmmr/HMMR disturbs spindle microtubule organization and bipolar chromosome–kinetochore attachments with a consequent elevated occurrence of aneuploidy. Rescue experiments show a conserved motif in HMMR is required to generate interkinetochore tension and promote anaphase entry. This motif bears high homology with the kinesin Kif15 and is known to interact with TPX2, a spindle assembly factor. We find that HMMR is required to dampen kinesin Eg5-mediated forces through localizing TPX2 and promoting the formation of inhibitory TPX2-Eg5 complexes. In HMMR-silenced cells, K-fiber stability is reduced while the frequency of unattached chromosomes and the time needed for chromosome segregation are both increased. These defects can be alleviated in HMMR-silenced cells with chemical inhibition of Eg5 but not through the silencing of Kif15. Together, our findings indicate that HMMR balances Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation.
Collapse
Affiliation(s)
- Helen Chen
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Lin Mei
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Gregor S D Reid
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC V5Z 4H4, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
19
|
Eibes S, Gallisà-Suñé N, Rosas-Salvans M, Martínez-Delgado P, Vernos I, Roig J. Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown. Curr Biol 2017; 28:121-129.e4. [PMID: 29276125 DOI: 10.1016/j.cub.2017.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
Abstract
Centrosomes [1, 2] play a central role during spindle assembly in most animal cells [3]. In early mitosis, they organize two symmetrical microtubule arrays that upon separation define the two poles of the forming spindle. Centrosome separation is tightly regulated [4, 5], occurring through partially redundant mechanisms that rely on the action of microtubule-based dynein and kinesin motors and the actomyosin system [6]. While centrosomes can separate in prophase or in prometaphase after nuclear envelope breakdown (NEBD), prophase centrosome separation optimizes spindle assembly and minimizes the occurrence of abnormal chromosome attachments that could end in aneuploidy [7, 8]. Prophase centrosome separation relies on the activity of Eg5/KIF11, a mitotic kinesin [9] that accumulates around centrosomes in early mitosis under the control of CDK1 and the Nek9/Nek6/7 kinase module [10-17]. Here, we show that Eg5 localization and centrosome separation in prophase depend on the nuclear microtubule-associated protein TPX2 [18], a pool of which localizes to the centrosomes before NEBD. This localization involves RHAMM/HMMR [19] and the kinase Nek9 [20], which phosphorylates TPX2 nuclear localization signal (NLS) preventing its interaction with importin and nuclear import. The pool of centrosomal TPX2 in prophase has a critical role for both microtubule aster organization and Eg5 localization, and thereby for centrosome separation. Our results uncover an unsuspected role for TPX2 before NEBD and define a novel regulatory mechanism for centrosome separation in prophase. They furthermore suggest NLS phosphorylation as a novel regulatory mechanism for spindle assembly factors controlled by the importin/Ran system.
Collapse
Affiliation(s)
- Susana Eibes
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Núria Gallisà-Suñé
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Miquel Rosas-Salvans
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Paula Martínez-Delgado
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Joan Roig
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
20
|
Connell M, Chen H, Jiang J, Kuan CW, Fotovati A, Chu TLH, He Z, Lengyell TC, Li H, Kroll T, Li AM, Goldowitz D, Frappart L, Ploubidou A, Patel MS, Pilarski LM, Simpson EM, Lange PF, Allan DW, Maxwell CA. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. eLife 2017; 6:e28672. [PMID: 28994651 PMCID: PMC5681225 DOI: 10.7554/elife.28672] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.
Collapse
Affiliation(s)
- Marisa Connell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Helen Chen
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Jihong Jiang
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Chia-Wei Kuan
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Abbas Fotovati
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tony LH Chu
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Zhengcheng He
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tess C Lengyell
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Huaibiao Li
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Torsten Kroll
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Amanda M Li
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Lucien Frappart
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Millan S Patel
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Linda M Pilarski
- Cross Cancer Institute, Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Philipp F Lange
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| | - Douglas W Allan
- Department of Cellular and Physiological SciencesLife Sciences Centre, University of British ColumbiaVancouverCanada
| | - Christopher A Maxwell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| |
Collapse
|
21
|
Spindle Misorientation of Cerebral and Cerebellar Progenitors Is a Mechanistic Cause of Megalencephaly. Stem Cell Reports 2017; 9:1071-1080. [PMID: 28943256 PMCID: PMC5639290 DOI: 10.1016/j.stemcr.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022] Open
Abstract
Misoriented division of neuroprogenitors, by loss-of-function studies of centrosome or spindle components, has been linked to the developmental brain defects microcephaly and lissencephaly. As these approaches also affect centrosome biogenesis, spindle assembly, or cell-cycle progression, the resulting pathologies cannot be attributed solely to spindle misorientation. To address this issue, we employed a truncation of the spindle-orienting protein RHAMM. This truncation of the RHAMM centrosome-targeting domain does not have an impact on centrosome biogenesis or on spindle assembly in vivo. The RHAMM mutants exhibit misorientation of the division plane of neuroprogenitors, without affecting the division rate of these cells, resulting against expectation in megalencephaly associated with cerebral cortex thickening, cerebellum enlargement, and premature cerebellum differentiation. We conclude that RHAMM associates with the spindle of neuroprogenitor cells via its centrosome-targeting domain, where it regulates differentiation in the developing brain by orienting the spindle.
Collapse
|
22
|
Sulimenko V, Hájková Z, Klebanovych A, Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. PROTOPLASMA 2017; 254:1187-1199. [PMID: 28074286 DOI: 10.1007/s00709-016-1070-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
The microtubule cytoskeleton is critically important for spatio-temporal organization of eukaryotic cells. The nucleation of new microtubules is typically restricted to microtubule organizing centers (MTOCs) and requires γ-tubulin that assembles into multisubunit complexes of various sizes. γ-Tubulin ring complexes (TuRCs) are efficient microtubule nucleators and are associated with large number of targeting, activating and modulating proteins. γ-Tubulin-dependent nucleation of microtubules occurs both from canonical MTOCs, such as spindle pole bodies and centrosomes, and additional sites such as Golgi apparatus, nuclear envelope, plasma membrane-associated sites, chromatin and surface of pre-existing microtubules. Despite many advances in structure of γ-tubulin complexes and characterization of γTuRC interacting factors, regulatory mechanisms of microtubule nucleation are not fully understood. Here, we review recent work on the factors and regulatory mechanisms that are involved in centrosomal and non-centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Zuzana Hájková
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Anastasiya Klebanovych
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
23
|
Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci Rep 2017; 7:42297. [PMID: 28205572 PMCID: PMC5304320 DOI: 10.1038/srep42297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/05/2017] [Indexed: 01/07/2023] Open
Abstract
The microtubule (MT) cytoskeleton is essential for the formation of morphologically appropriate neurons. The existence of the acentrosomal MT organizing center in neurons has been proposed but its identity remained elusive. Here we provide evidence showing that TPX2 is an important component of this acentrosomal MT organizing center. First, neurite elongation is compromised in TPX2-depleted neurons. In addition, TPX2 localizes to the centrosome and along the neurite shaft bound to MTs. Depleting TPX2 decreases MT formation frequency specifically at the tip and the base of the neurite, and these correlate precisely with the regions where active GTP-bound Ran proteins are enriched. Furthermore, overexpressing the downstream effector of Ran, importin, compromises MT formation and neuronal morphogenesis. Finally, applying a Ran-importin signaling interfering compound phenocopies the effect of TPX2 depletion on MT dynamics. Together, these data suggest a model in which Ran-dependent TPX2 activation promotes acentrosomal MT nucleation in neurons.
Collapse
|
24
|
Oldenburg D, Ru Y, Weinhaus B, Cash S, Theodorescu D, Guin S. CD44 and RHAMM are essential for rapid growth of bladder cancer driven by loss of Glycogen Debranching Enzyme (AGL). BMC Cancer 2016; 16:713. [PMID: 27595989 PMCID: PMC5011830 DOI: 10.1186/s12885-016-2756-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
Background Loss of Amylo-alpha-1-6-glucosidase-4-alpha-glucanotransferase (AGL) drives rapid proliferation of bladder cancer cells by upregulating Hyaluronic acid(HA) Synthase (HAS2) mediated HA synthesis. However the role of HA receptors CD44 and Hyaluronan Mediated Motility Receptor (RHAMM) in regulating the growth of bladder cancer cells driven by loss of AGL has not been studied. Methods Western blot analysis and Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was carried out to study cellular apoptosis with HAS2, CD44 and RHAMM loss in bladder cancer cells with and without AGL expression. Proliferation and softagar assays were carried out to study cellular anchorage dependent and independent growth. Clinicopathologic analysis was carried out on bladder cancer patient datasets. Results Higher amounts of cleaved Cas3, Cas9 and PARP was observed in AGL low bladder cancer cell with loss of HAS2, CD44 or RHAMM. TUNEL staining showed more apoptotic cells with loss of HAS2, CD44 or RHAMM in AGL low bladder cancer cells. This revealed that bladder cancer cells whose aggressive growth is mediated by loss of AGL are susceptible to apoptosis with loss of HAS2, CD44 or RHAMM. Interestingly loss of either CD44 or RHAMM induces apoptosis in different low AGL expressing bladder cancer cell lines. Growth assays showed that loss of CD44 and RHAMM predominantly inhibit anchorage dependent and independent growth of AGL low bladder cancer cells. Clinicopathologic analysis revealed that high RHAMM mRNA expression is a marker of poor patient outcome in bladder cancer and patients with high RHAMM and low AGL tumor mRNA expression have poor survival. Conclusion Our findings strongly point to the importance of the HAS2-HA-CD44/RHAMM pathway for rapid growth of bladder cancer cells with loss of AGL and provides rational for targeting this pathway at various steps for “personalized” treatment of bladder cancer patients based of their AGL expression status. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2756-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darby Oldenburg
- Gundersen Medical Foundation, 1300 Badger Street, La Crosse, WI, 54601, USA
| | - Yuanbin Ru
- BioMarin Pharmaceutical Inc, 300 Bel Merin Keys Blvd, Novato, CA, 94949, USA
| | - Benjamin Weinhaus
- University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI, 54601, USA
| | - Steve Cash
- Gundersen Medical Foundation, 1300 Badger Street, La Crosse, WI, 54601, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), University of Colorado, 13001 E 17th Pl, Aurora, CO, 80045, USA.,Department of Pharmacology, University of Colorado, 13001 E 17th Pl, Aurora, CO, 80045, USA.,University of Colorado Comprehensive Cancer Center, 13001 E 17th Pl, Aurora, CO, 80045, USA
| | - Sunny Guin
- Gundersen Medical Foundation, 1300 Badger Street, La Crosse, WI, 54601, USA.
| |
Collapse
|
25
|
Impaired Planar Germ Cell Division in the Testis, Caused by Dissociation of RHAMM from the Spindle, Results in Hypofertility and Seminoma. Cancer Res 2016; 76:6382-6395. [DOI: 10.1158/0008-5472.can-16-0179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022]
|
26
|
Abstract
The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis.
Collapse
Affiliation(s)
- Sylvain Meunier
- a Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Spain
| | - Krystal Timón
- a Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Spain
| | - Isabelle Vernos
- a Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Universitat Pompeu Fabra (UPF) , Barcelona , Spain.,c Insitució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Spain
| |
Collapse
|
27
|
Abstract
Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.
Collapse
Affiliation(s)
- Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014;
| |
Collapse
|
28
|
Receptor for hyaluronic acid- mediated motility (RHAMM) regulates HT1080 fibrosarcoma cell proliferation via a β-catenin/c-myc signaling axis. Biochim Biophys Acta Gen Subj 2016; 1860:814-24. [DOI: 10.1016/j.bbagen.2016.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/24/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
|
29
|
Joukov V, Walter JC, De Nicolo A. Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation. Methods Mol Biol 2016; 1413:207-235. [PMID: 27193852 DOI: 10.1007/978-1-4939-3542-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Faithful chromosome segregation during cell division requires proper bipolar spindle assembly and critically depends on spindle pole integrity. In most animal cells, spindle poles form as the result of the concerted action of various factors operating in two independent pathways of microtubule assembly mediated by chromatin/RanGTP and by centrosomes. Mutation or deregulation of a number of spindle pole-organizing proteins has been linked to human diseases, including cancer and microcephaly. Our knowledge on how the spindle pole-organizing factors function at the molecular level and cooperate with one another is still quite limited. As the list of these factors expands, so does the need for the development of experimental approaches to study their function. Cell-free extracts from Xenopus laevis eggs have played an instrumental role in the dissection of the mechanisms of bipolar spindle assembly and have recently allowed the reconstitution of the key steps of the centrosome-driven microtubule nucleation pathway (Joukov et al., Mol Cell 55:578-591, 2014). Here we describe assays to study both centrosome-dependent and centrosome-independent spindle pole formation in Xenopus egg extracts. We also provide experimental procedures for the use of artificial centrosomes, such as microbeads coated with an anti-Aurora A antibody or a recombinant fragment of the Cep192 protein, to model and study centrosome maturation in egg extract. In addition, we detail the protocol for a microtubule regrowth assay that allows assessment of the centrosome-driven spindle microtubule assembly in mammalian cells.
Collapse
Affiliation(s)
- Vladimir Joukov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Room C1-226A, 240 Longwood Ave., Boston, MA, 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Arcangela De Nicolo
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
30
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
31
|
Meunier S, Vernos I. Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How. Trends Cell Biol 2015; 26:80-87. [PMID: 26475655 DOI: 10.1016/j.tcb.2015.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
In mitosis the cell assembles the bipolar spindle, a microtubule (MT)-based apparatus that segregates the duplicated chromosomes into two daughter cells. Most animal cells enter mitosis with duplicated centrosomes that provide an active source of dynamic MTs. However, it is now established that spindle assembly relies on the nucleation of acentrosomal MTs occurring around the chromosomes after nuclear envelope breakdown, and on pre-existing microtubules. Where chromosome-dependent MT nucleation occurs, when MT amplification takes place and how the two pathways function are still key questions that generate some controversies. We reconcile the data and present an integrated model accounting for acentrosomal microtubule assembly in the dividing cell.
Collapse
Affiliation(s)
- Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
32
|
Esguerra KVN, Tolg C, Akentieva N, Price M, Cho CF, Lewis JD, McCarthy JB, Turley EA, Luyt LG. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr Biol (Camb) 2015; 7:1547-60. [PMID: 26456171 DOI: 10.1039/c5ib00222b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragments of the extracellular matrix component hyaluronan (HA) promote tissue inflammation, fibrosis and tumor progression. HA fragments act through HA receptors including CD44, LYVE1, TLR2, 4 and the receptor for hyaluronan mediated motility (RHAMM/HMMR). RHAMM is a multifunctional protein with both intracellular and extracellular roles in cell motility and proliferation. Extracellular RHAMM binds directly to HA fragments while intracellular RHAMM binds directly to ERK1 and tubulin. Both HA and regions of tubulin (s-tubulin) are anionic and bind to basic amino acid-rich regions in partner proteins, such as in HA and tubulin binding regions of RHAMM. We used this as a rationale for developing bioinformatics and SPR (surface plasmon resonance) based screening to identify high affinity anionic RHAMM peptide ligands. A library of 12-mer peptides was prepared based on the carboxyl terminal tail sequence of s-tubulin isoforms and assayed for their ability to bind to the HA/tubulin binding region of recombinant RHAMM using SPR. This approach resulted in the isolation of three 12-mer peptides with nanomolar affinity for RHAMM. These peptides bound selectively to RHAMM but not to CD44 or TLR2,4 and blocked RHAMM:HA interactions. Furthermore, fluorescein-peptide uptake by PC3MLN4 prostate cancer cells was blocked by RHAMM mAb but not by CD44 mAb. These peptides also reduced the ability of prostate cancer cells to degrade collagen type I. The selectivity of these novel HA peptide mimics for RHAMM suggest their potential for development as HA mimetic imaging and therapeutic agents for HA-promoted disease.
Collapse
|
33
|
Li H, Moll J, Winkler A, Frappart L, Brunet S, Hamann J, Kroll T, Verlhac MH, Heuer H, Herrlich P, Ploubidou A. RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility. Biol Open 2015; 4:562-71. [PMID: 25750434 PMCID: PMC4400598 DOI: 10.1242/bio.201410892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility.
Collapse
Affiliation(s)
- Huaibiao Li
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Jürgen Moll
- Forschungszentrum Karlsruhe, Institut für Toxicologie und Genetik, Postfach 3640, D-76021 Karlsruhe, Germany Present address: Boehringer-Ingelheim RCV and Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Anne Winkler
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany Present address: Georg-August-University Göttingen, Dept. of Neuropathology, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Lucien Frappart
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany INSERM, Oncogenèse et Progression Tumorale, Université Claude Bernard Lyon I, 28 rue Laënnec, 69373 Lyon, France
| | - Stéphane Brunet
- Collège de France, 11 place Marcelin Berthelot, 75231 Paris, France
| | - Jana Hamann
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Torsten Kroll
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | - Heike Heuer
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany Leibniz Research Institute for Environmental Medicine (IUF), 40021 Düsseldorf, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Aspasia Ploubidou
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| |
Collapse
|
34
|
Scrofani J, Sardon T, Meunier S, Vernos I. Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr Biol 2014; 25:131-140. [PMID: 25532896 DOI: 10.1016/j.cub.2014.11.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND The γ-tubulin ring complex (γTuRC) is a multisubunit complex responsible for microtubule (MT) nucleation in eukaryotic cells. During mitosis, its spatial and temporal regulation promotes MT nucleation through different pathways. One of them is triggered around the chromosomes by RanGTP. Chromosomal MTs are essential for functional spindle assembly, but the mechanism by which RanGTP activates MT nucleation has not yet been resolved. RESULTS We used a combination of Xenopus egg extracts and in vitro experiments to dissect the mechanism by which RanGTP triggers MT nucleation. In egg extracts, NEDD1-coated beads promote MT nucleation only in the presence of RanGTP. We show that RanGTP promotes a direct interaction between one of its targets, TPX2, and XRHAMM that defines a specific γTuRC subcomplex. Through depletion/add-back experiments using mutant forms of TPX2 and NEDD1, we show that the activation of MT nucleation by RanGTP requires both NEDD1 phosphorylation on S405 by the TPX2-activated Aurora A and the recruitment of the complex through a TPX2-dependent mechanism. CONCLUSIONS The XRHAMM-γTuRC complex is the target for activation by RanGTP that promotes an interaction between TPX2 and XRHAMM. The resulting TPX2-RHAMM-γTuRC supracomplex fulfills the two essential requirements for the activation of MT nucleation by RanGTP: NEDD1 phosphorylation on S405 by the TPX2-activated Aurora A and the recruitment of the complex onto a TPX2-dependent scaffold. Our data identify TPX2 as the only direct RanGTP target and NEDD1 as the only Aurora A substrate essential for the activation of the RanGTP-dependent MT nucleation pathway.
Collapse
Affiliation(s)
- Jacopo Scrofani
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Teresa Sardon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain.
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
35
|
Shigeishi H, Higashikawa K, Takechi M. Role of receptor for hyaluronan-mediated motility (RHAMM) in human head and neck cancers. J Cancer Res Clin Oncol 2014; 140:1629-40. [PMID: 24676428 DOI: 10.1007/s00432-014-1653-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/15/2014] [Indexed: 11/30/2022]
Abstract
The receptor for hyaluronan (HA)-mediated motility (RHAMM) is a HA-binding protein located in the cytoskeleton and centrosome. RHAMM has multiple functions that manifest with different cellular localizations, for example, modulation of growth factor receptor, regulation of cell signaling pathways, and mitotic spindle assembly. In addition, its increased expression has major roles in tumorigenesis and can induce genomic instability and cancer progression. In head and neck cancers, increased expression of RHAMM is associated with high proliferation of cancer cells and decreased survival. CD44, a cell-adhesion molecule and HA receptor, can modulate intracellular signaling by forming complexes with RHAMM to promote invasion and metastasis of cancer cells. In this review, we provide an overview of the biological functions of RHAMM in non-neoplastic cells and cancer cells, as well as its association with CD44, and also introduce studies that particularly implicate RHAMM in the pathogenesis of head and neck cancers.
Collapse
Affiliation(s)
- Hideo Shigeishi
- Department of Oral and Maxillofacial Surgery, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan,
| | | | | |
Collapse
|
36
|
Hyaluronan and RHAMM in wound repair and the "cancerization" of stromal tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103923. [PMID: 25157350 PMCID: PMC4137499 DOI: 10.1155/2014/103923] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Tumors and wounds share many similarities including loss of tissue architecture, cell polarity and cell differentiation, aberrant extracellular matrix (ECM) remodeling (Ballard et al., 2006) increased inflammation, angiogenesis, and elevated cell migration and proliferation. Whereas these changes are transient in repairing wounds, tumors do not regain tissue architecture but rather their continued progression is fueled in part by loss of normal tissue structure. As a result tumors are often described as wounds that do not heal. The ECM component hyaluronan (HA) and its receptor RHAMM have both been implicated in wound repair and tumor progression. This review highlights the similarities and differences in their roles during these processes and proposes that RHAMM-regulated wound repair functions may contribute to “cancerization” of the tumor microenvironment.
Collapse
|
37
|
Chen H, Mohan P, Jiang J, Nemirovsky O, He D, Fleisch MC, Niederacher D, Pilarski LM, Lim CJ, Maxwell CA. Spatial regulation of Aurora A activity during mitotic spindle assembly requires RHAMM to correctly localize TPX2. Cell Cycle 2014; 13:2248-61. [PMID: 24875404 DOI: 10.4161/cc.29270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Construction of a mitotic spindle requires biochemical pathways to assemble spindle microtubules and structural proteins to organize these microtubules into a bipolar array. Through a complex with dynein, the receptor for hyaluronan-mediated motility (RHAMM) cross-links mitotic microtubules to provide structural support, maintain spindle integrity, and correctly orient the mitotic spindle. Here, we locate RHAMM to sites of microtubule assembly at centrosomes and non-centrosome sites near kinetochores and demonstrate that RHAMM is required for the activation of Aurora kinase A. Silencing of RHAMM delays the kinetics of spindle assembly, mislocalizes targeting protein for XKlp2 (TPX2), and attenuates the localized activation of Aurora kinase A with a consequent reduction in mitotic spindle length. The RHAMM-TPX2 complex requires a C-terminal basic leucine zipper in RHAMM and a domain that includes the nuclear localization signal in TPX2. Together, our findings identify RHAMM as a critical regulator for Aurora kinase A signaling and suggest that RHAMM ensures bipolar spindle assembly and mitotic progression through the integration of biochemical and structural pathways.
Collapse
Affiliation(s)
- Helen Chen
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Pooja Mohan
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Jihong Jiang
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Daniel He
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Markus C Fleisch
- Department of Gynaecology and Obstetrics; University Hospital Düsseldorf; Heinrich-Heine University; Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Gynaecology and Obstetrics; University Hospital Düsseldorf; Heinrich-Heine University; Düsseldorf, Germany
| | - Linda M Pilarski
- Department of Oncology; University of Alberta and Cross Cancer Institute; Edmonton, Alberta, Canada
| | - C James Lim
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics; Child and Family Research Institute; University of British Columbia; Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Ran GTPase in nuclear envelope formation and cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:323-51. [PMID: 24563355 DOI: 10.1007/978-1-4899-8032-8_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
Collapse
|
39
|
Petrovská B, Jeřábková H, Kohoutová L, Cenklová V, Pochylová Ž, Gelová Z, Kočárová G, Váchová L, Kurejová M, Tomaštíková E, Binarová P. Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4575-87. [PMID: 24006426 PMCID: PMC3808333 DOI: 10.1093/jxb/ert271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TPX2 performs multiple roles in microtubule organization. Previously, it was shown that plant AtTPX2 binds AtAurora1 kinase and colocalizes with microtubules in a cell cycle-specific manner. To elucidate the function of TPX2 further, this work analysed Arabidopsis cells overexpressing AtTPX2-GFP. Distinct arrays of bundled microtubules, decorated with AtTPX2-GFP, were formed in the vicinity of the nuclear envelope and in the nuclei of overexpressing cells. The microtubular arrays showed reduced sensitivity to anti-microtubular drugs. TPX2-mediated formation of nuclear/perinuclear microtubular arrays was not specific for the transition to mitosis and occurred independently of Aurora kinase. The fibres were not observed in cells with detectable programmed cell death and, in this respect, they differed from TPX2-dependent microtubular assemblies functioning in mammalian apoptosis. Colocalization and co-purification data confirmed the interaction of importin with AtTPX2-GFP. In cells with nuclear foci of overexpressed AtTPX2-GFP, strong nuclear signals for Ran and importin diminished when microtubular arrays were assembled. This observation suggests that TPX2-mediated microtubule formation might be triggered by a Ran cycle. Collectively, the data suggest that in the acentrosomal plant cell, in conjunction with importin, overexpressed AtTPX2 reinforces microtubule formation in the vicinity of chromatin and the nuclear envelope.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Hana Jeřábková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Lucie Kohoutová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- * These authors contributed equally to this manuscript
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Zuzana Gelová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Gabriela Kočárová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Váchová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Michaela Kurejová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Eva Tomaštíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Jiang J, Mohan P, Maxwell CA. The cytoskeletal protein RHAMM and ERK1/2 activity maintain the pluripotency of murine embryonic stem cells. PLoS One 2013; 8:e73548. [PMID: 24019927 PMCID: PMC3760809 DOI: 10.1371/journal.pone.0073548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
Receptor for hyaluronan mediated motility (RHAMM, encoded by HMMR) may be a cell-surface receptor for hyaluronan that regulates embryonic stem cell pluripotency and differentiation, however, a precise mechanism for its action is not known. We examined murine embryonic stem cells with and without hemizygous genomic mutation of Hmmr/RHAMM, but we were not able to find RHAMM on the cell-surface. Rather, RHAMM localized to the microtubule cytoskeleton and along mitotic spindles. Genomic loss of Hmmr/RHAMM did not alter cell cycle progression but augmented differentiation and attenuated pluripotency in murine embryonic stem cells. Through a candidate screen of small-molecule kinase inhibitors, we identified ERK1/2 and aurora kinase A as barrier kinases whose inhibition was sufficient to rescue pluripotency in RHAMM(+/-) murine embryonic stem cells. Thus, RHAMM is not found on the cell-surface of embryonic stem cells, but it is required to maintain pluripotency and its dominant mechanism of action is through the modulation of signal transduction pathways at microtubules.
Collapse
Affiliation(s)
- Jihong Jiang
- Department of Pediatrics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pooja Mohan
- Department of Pediatrics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A. Maxwell
- Department of Pediatrics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Mohan P, Castellsague J, Jiang J, Allen K, Chen H, Nemirovsky O, Spyra M, Hu K, Kluwe L, Pujana MA, Villanueva A, Mautner VF, Keats JJ, Dunn SE, Lazaro C, Maxwell CA. Genomic imbalance of HMMR/RHAMM regulates the sensitivity and response of malignant peripheral nerve sheath tumour cells to aurora kinase inhibition. Oncotarget 2013; 4:80-93. [PMID: 23328114 PMCID: PMC3702209 DOI: 10.18632/oncotarget.793] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are rare, hereditary cancers associated with neurofibromatosis type I. MPNSTs lack effective treatment options as they often resist chemotherapies and have high rates of disease recurrence. Aurora kinase A (AURKA) is an emerging target in cancer and an aurora kinase inhibitor (AKI), termed MLN8237, shows promise against MPNST cell lines in vitro and in vivo. Here, we test MLN8237 against two primary human MPNST grown in vivo as xenotransplants and find that treatment results in tumour cells exiting the cell cycle and undergoing endoreduplication, which cumulates in stabilized disease. Targeted therapies can often fail in the clinic due to insufficient knowledge about factors that determine tumour susceptibilities, so we turned to three MPNST cell-lines to further study and modulate the cellular responses to AKI. We find that the sensitivity of cell-lines with amplification of AURKA depends upon the activity of the kinase, which correlates with the expression of the regulatory gene products TPX2 and HMMR/RHAMM. Silencing of HMMR/RHAMM, but not TPX2, augments AURKA activity and sensitizes MPNST cells to AKI. Furthermore, we find that AURKA activity is critical to the propagation and self-renewal of sphere-enriched MPNST cancer stem-like cells. AKI treatment significantly reduces the formation of spheroids, attenuates the self-renewal of spheroid forming cells, and promotes their differentiation. Moreover, silencing of HMMR/RHAMM is sufficient to endow MPNST cells with an ability to form and maintain sphere culture. Collectively, our data indicate that AURKA is a rationale therapeutic target for MPNST and tumour cell responses to AKI, which include differentiation, are modulated by the abundance of HMMR/RHAMM.
Collapse
Affiliation(s)
- Pooja Mohan
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 2013; 152:768-77. [PMID: 23415226 DOI: 10.1016/j.cell.2012.12.044] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022]
Abstract
The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence has suggested that microtubules also might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires γ-tubulin and augmin and is stimulated by factors previously implicated in chromatin-stimulated nucleation, guanosine triphosphate(GTP)-bound Ran and its effector, TPX2. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance.
Collapse
|
43
|
Dunsch AK, Hammond D, Lloyd J, Schermelleh L, Gruneberg U, Barr FA. Dynein light chain 1 and a spindle-associated adaptor promote dynein asymmetry and spindle orientation. ACTA ACUST UNITED AC 2012; 198:1039-54. [PMID: 22965910 PMCID: PMC3444778 DOI: 10.1083/jcb.201202112] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The asymmetric cortical localization of dynein during spindle orientation requires dynein light chain 1 and a spindle-microtubule–associated adaptor formed by CHIA and HMMR. The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.
Collapse
Affiliation(s)
- Anja K Dunsch
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK
| | | | | | | | | | | |
Collapse
|
44
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
45
|
Liang H, Xu J, Zhao D, Tian H, Yang X, Liang A, Wang W. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus. FEBS J 2012; 279:2520-33. [PMID: 22594798 DOI: 10.1111/j.1742-4658.2012.08634.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amitosis, a direct method of cell division is common in ciliated protozoan, fungi and some animal and plant cells. During amitosis, intranuclear microtubules are reorganized into specified arrays which assist in separation of nucleus, despite lack of a bipolar spindle. However, the regulation of amitosis is not understood. Here, we focused on the localization and role of mitotic spindle assembly regulator: Ran GTPase (Ran1) in macronuclear amitosis in binucleated protozoan Tetrahymena thermophila. HA-tagged Ran1 was localized in the macronucleus throughout the cell cycle of Tetrahymena during vegetative growth, and the accessory factor binding domains of Ran1 contributed to its macronuclear localization. Incomplete somatic knockout of RAN1 resulted in aberrant intramacronuclear microtubule array formation, missegregation of macronuclear chromosomes and ultimately blocked macronuclei proliferation. When the Ran1 cycle was perturbed by overexpression of Ran1T25N (GDP-bound Ran1-mimetic) or Ran1Q70L (GTP-bound Ran1-mimetic), intramacronuclear microtubule assembly was inhibited or multi-micronucleate cells formed. These results suggest that Ran GTPase pathway is involved in assembly of a specialized intramacronuclear microtubule network and coordinates amitotic progression in Tetrahymena.
Collapse
Affiliation(s)
- Haixia Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Maxwell CA, Benítez J, Gómez-Baldó L, Osorio A, Bonifaci N, Fernández-Ramires R, Costes SV, Guinó E, Chen H, Evans GJR, Mohan P, Català I, Petit A, Aguilar H, Villanueva A, Aytes A, Serra-Musach J, Rennert G, Lejbkowicz F, Peterlongo P, Manoukian S, Peissel B, Ripamonti CB, Bonanni B, Viel A, Allavena A, Bernard L, Radice P, Friedman E, Kaufman B, Laitman Y, Dubrovsky M, Milgrom R, Jakubowska A, Cybulski C, Gorski B, Jaworska K, Durda K, Sukiennicki G, Lubiński J, Shugart YY, Domchek SM, Letrero R, Weber BL, Hogervorst FBL, Rookus MA, Collee JM, Devilee P, Ligtenberg MJ, van der Luijt RB, Aalfs CM, Waisfisz Q, Wijnen J, van Roozendaal CEP, Easton DF, Peock S, Cook M, Oliver C, Frost D, Harrington P, Evans DG, Lalloo F, Eeles R, Izatt L, Chu C, Eccles D, Douglas F, Brewer C, Nevanlinna H, Heikkinen T, Couch FJ, Lindor NM, Wang X, Godwin AK, Caligo MA, Lombardi G, Loman N, Karlsson P, Ehrencrona H, von Wachenfeldt A, Bjork Barkardottir R, Hamann U, Rashid MU, Lasa A, Caldés T, Andrés R, Schmitt M, Assmann V, Stevens K, Offit K, Curado J, Tilgner H, Guigó R, Aiza G, Brunet J, Castellsagué J, Martrat G, Urruticoechea A, Blanco I, Tihomirova L, Goldgar DE, Buys S, John EM, Miron A, Southey M, Daly MB, Schmutzler RK, Wappenschmidt B, Meindl A, Arnold N, Deissler H, Varon-Mateeva R, Sutter C, Niederacher D, Imyamitov E, Sinilnikova OM, Stoppa-Lyonne D, Mazoyer S, Verny-Pierre C, Castera L, de Pauw A, Bignon YJ, Uhrhammer N, Peyrat JP, Vennin P, Fert Ferrer S, Collonge-Rame MA, Mortemousque I, Spurdle AB, Beesley J, Chen X, Healey S, Barcellos-Hoff MH, Vidal M, Gruber SB, Lázaro C, Capellá G, McGuffog L, Nathanson KL, Antoniou AC, Chenevix-Trench G, Fleisch MC, Moreno V, Pujana MA. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol 2011; 9:e1001199. [PMID: 22110403 PMCID: PMC3217025 DOI: 10.1371/journal.pbio.1001199] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/10/2011] [Indexed: 12/24/2022] Open
Abstract
Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
Collapse
Affiliation(s)
- Christopher A. Maxwell
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Javier Benítez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Biomedical Research Centre Network for Rare Diseases, Spain
| | - Laia Gómez-Baldó
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health, Spain
| | - Ana Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Biomedical Research Centre Network for Rare Diseases, Spain
| | - Núria Bonifaci
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health, Spain
- Biomarkers and Susceptibility Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Catalonia, Spain
| | - Ricardo Fernández-Ramires
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Biomedical Research Centre Network for Rare Diseases, Spain
| | - Sylvain V. Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Elisabet Guinó
- Biomedical Research Centre Network for Epidemiology and Public Health, Spain
- Biomarkers and Susceptibility Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Catalonia, Spain
| | - Helen Chen
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Gareth J. R. Evans
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Pooja Mohan
- Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Isabel Català
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet, Catalonia, Spain
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet, Catalonia, Spain
| | - Helena Aguilar
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Alvaro Aytes
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Jordi Serra-Musach
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
- Biomarkers and Susceptibility Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Catalonia, Spain
| | - Gad Rennert
- CHS National Cancer Control Center, Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Flavio Lejbkowicz
- CHS National Cancer Control Center, Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Paolo Peterlongo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, and IFOM Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Carla B. Ripamonti
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, and IFOM Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Alessandra Viel
- Division of Experimental Oncology 1, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - Anna Allavena
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Loris Bernard
- Department of Experimental Oncology, Istituto Europeo di Oncologia, and Consortium for Genomics Technology (Cogentech), Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori, and IFOM Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Bella Kaufman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Maya Dubrovsky
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Roni Milgrom
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Anna Jakubowska
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bohdan Gorski
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jaworska
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Durda
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Sukiennicki
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Centre, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Yin Yao Shugart
- Unit of Statistical Genetics, Division of Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, United States of America
| | - Susan M. Domchek
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard Letrero
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Barbara L. Weber
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Frans B. L. Hogervorst
- Family Cancer Clinic, Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Matti A. Rookus
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J. Margriet Collee
- Department of Clinical Genetics, Rotterdam Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter Devilee
- Department of Genetic Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Rob B. van der Luijt
- Department of Clinical Molecular Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Cora M. Aalfs
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Juul Wijnen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - HEBON
- Hereditary Breast and Ovarian Cancer Group, the Netherlands
| | - EMBRACE
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Susan Peock
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Cook
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Clare Oliver
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - D. Gareth Evans
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Fiona Lalloo
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Rosalind Eeles
- The Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, United Kingdom
| | - Louise Izatt
- Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Carol Chu
- Yorkshire Regional Genetics Service, St. James's Hospital, Leeds, United Kingdom
| | - Diana Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Fiona Douglas
- Institute of Human Genetics, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Carole Brewer
- Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noralane M. Lindor
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Maria A. Caligo
- Section of Genetic Oncology, Department of Oncology, University of Pisa, and Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Grazia Lombardi
- Section of Genetic Oncology, Department of Oncology, University of Pisa, and Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Niklas Loman
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hans Ehrencrona
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - SWE-BRCA
- Swedish Breast Cancer Study, Sweden
| | | | - Ute Hamann
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany, and Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Adriana Lasa
- Genetic Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Madrid, Spain
| | - Raquel Andrés
- Medical Oncology Division, Hospital Clínico de Zaragoza, Zaragoza, Spain
| | - Michael Schmitt
- Department of Internal Medicine III, University of Rostock, Rostock, Germany
| | - Volker Assmann
- Center for Experimental Medicine, Institute of Tumor Biology, University Hospital Hamburg–Eppendorf, Hamburg, Germany
| | - Kristen Stevens
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - João Curado
- Bioinformatics and Genomics Group, Centre for Genomic Regulation (CRG), Biomedical Research Park of Barcelona (PRBB), Barcelona, Catalonia, Spain
| | - Hagen Tilgner
- Bioinformatics and Genomics Group, Centre for Genomic Regulation (CRG), Biomedical Research Park of Barcelona (PRBB), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics Group, Centre for Genomic Regulation (CRG), Biomedical Research Park of Barcelona (PRBB), Barcelona, Catalonia, Spain
| | - Gemma Aiza
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Joan Brunet
- Genetic Counseling and Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBELL and Girona Biomedical Research Institute (IdIBGi), Catalonia, Spain
| | - Joan Castellsagué
- Genetic Counseling and Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBELL and Girona Biomedical Research Institute (IdIBGi), Catalonia, Spain
| | - Griselda Martrat
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Ander Urruticoechea
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Ignacio Blanco
- Genetic Counseling and Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBELL and Girona Biomedical Research Institute (IdIBGi), Catalonia, Spain
| | | | - David E. Goldgar
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Saundra Buys
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, California, United States of America
| | - Alexander Miron
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melissa Southey
- Centre for Molecular, Environmental, Genetic and Analytic (MEGA) Epidemiology, Melbourne School of Population Health, The University of Melbourne, Victoria, Australia
| | - Mary B. Daly
- Division of Population Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - BCFR
- Breast Cancer Family Registry, United States of America
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer and Center of Integrated Oncology, University of Cologne, Cologne, Germany
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer and Center of Integrated Oncology, University of Cologne, Cologne, Germany
| | - Alfons Meindl
- Department of Obstetrics and Gynaecology, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - Norbert Arnold
- Division of Oncology, Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Helmut Deissler
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Christian Sutter
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Dieter Niederacher
- Division of Molecular Genetics, Department of Gynaecology and Obstetrics, Clinical Center University of Düsseldorf, Düsseldorf, Germany
| | - Evgeny Imyamitov
- N. N. Petrov Institute of Oncology, Saint-Petersburg, Russian Federation
| | - Olga M. Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon, Centre Léon Bérard, Lyon, France
- Equipe labellisée LIGUE 2008, UMR5201 CNRS, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Dominique Stoppa-Lyonne
- INSERM U509, Service de Génétique Oncologique, Institut Curie, Université Paris-Descartes, Paris, France
| | - Sylvie Mazoyer
- Equipe labellisée LIGUE 2008, UMR5201 CNRS, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Carole Verny-Pierre
- Equipe labellisée LIGUE 2008, UMR5201 CNRS, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Laurent Castera
- INSERM U509, Service de Génétique Oncologique, Institut Curie, Université Paris-Descartes, Paris, France
| | - Antoine de Pauw
- INSERM U509, Service de Génétique Oncologique, Institut Curie, Université Paris-Descartes, Paris, France
| | - Yves-Jean Bignon
- Département d'Oncogénétique, Centre Jean Perrin, Université de Clermont-Ferrand, Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Département d'Oncogénétique, Centre Jean Perrin, Université de Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Philippe Peyrat
- Laboratoire d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, Lille, France
| | - Philippe Vennin
- Consultation d'Oncogénétique, Centre Oscar Lambret, Lille, France
| | - Sandra Fert Ferrer
- Laboratoire de Génétique Chromosomique, Hôtel Dieu Centre Hospitalier, Chambéry, France
| | - Marie-Agnès Collonge-Rame
- Service de Génétique-Histologie-Biologie du Développement et de la Reproduction, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - GEMO Study Collaborators
- GEMO Study (Genetics Network “Groupe Génétique et Cancer”), Fédération Nationale des Centres de Lutte Contre le Cancer, France
| | | | | | - Xiaoqing Chen
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Sue Healey
- Queensland Institute of Medical Research, Brisbane, Australia
| | - kConFab
- The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, Peter MacCallum Cancer Institute, East Melbourne, Australia
| | - Mary Helen Barcellos-Hoff
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Gruber
- Department of Internal Medicine, Epidemiology, Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Conxi Lázaro
- Genetic Counseling and Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBELL and Girona Biomedical Research Institute (IdIBGi), Catalonia, Spain
| | - Gabriel Capellá
- Genetic Counseling and Hereditary Cancer Programme, Catalan Institute of Oncology, IDIBELL and Girona Biomedical Research Institute (IdIBGi), Catalonia, Spain
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Katherine L. Nathanson
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Markus C. Fleisch
- Department of Obstetrics and Gynaecologie, Heinrich-Heine-University, Duesseldorf, Germany
| | - Víctor Moreno
- Biomedical Research Centre Network for Epidemiology and Public Health, Spain
- Biomarkers and Susceptibility Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Catalonia, Spain
| | - Miguel Angel Pujana
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health, Spain
- Biomarkers and Susceptibility Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Catalonia, Spain
| |
Collapse
|
47
|
Sharp JA, Plant JJ, Ohsumi TK, Borowsky M, Blower MD. Functional analysis of the microtubule-interacting transcriptome. Mol Biol Cell 2011; 22:4312-23. [PMID: 21937723 PMCID: PMC3216657 DOI: 10.1091/mbc.e11-07-0629] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A combination of bioinformatic and RNA interference analysis of Xenopus tropicalis RNA-seq data shows that the identification of microtubule-associated (MT) mRNAs can be used for discovering novel factors in the processes of spindle pole organization and centrosome structure. MT-RNAs are likely to contribute to spindle-localized mitotic translation. RNA localization is an important mechanism for achieving precise control of posttranscriptional gene expression. Previously, we demonstrated that a subset of cellular mRNAs copurify with mitotic microtubules in egg extracts of Xenopus laevis. Due to limited genomic sequence information available for X. laevis, we used RNA-seq to comprehensively identify the microtubule-interacting transcriptome of the related frog Xenopus tropicalis. We identified ∼450 mRNAs that showed significant enrichment on microtubules (MT-RNAs). In addition, we demonstrated that the MT-RNAs incenp, xrhamm, and tpx2 associate with spindle microtubules in vivo. MT-RNAs are enriched with transcripts associated with cell division, spindle formation, and chromosome function, demonstrating an overrepresentation of genes involved in mitotic regulation. To test whether uncharacterized MT-RNAs have a functional role in mitosis, we performed RNA interference and discovered that several MT-RNAs are required for normal spindle pole organization and γ-tubulin distribution. Together, these data demonstrate that microtubule association is one mechanism for compartmentalizing functionally related mRNAs within the nucleocytoplasmic space of mitotic cells and suggest that MT-RNAs are likely to contribute to spindle-localized mitotic translation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Kouvidi K, Berdiaki A, Nikitovic D, Katonis P, Afratis N, Hascall VC, Karamanos NK, Tzanakakis GN. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem 2011; 286:38509-38520. [PMID: 21914806 DOI: 10.1074/jbc.m111.275875] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) modulates key cancer cell functions through interaction with its CD44 and receptor for hyaluronic acid-mediated motility (RHAMM) receptors. HA was recently found to regulate the migration of fibrosarcoma cells in a manner specifically dependent on its size. Here, we investigated the effect of HA/RHAMM signaling on the ability of HT1080 fibrosarcoma cells to adhere onto fibronectin. Low molecular weight HA (LMWHA) significantly increased (p ≤ 0.01) the adhesion capacity of HT1080 cells, which high molecular weight HA inhibited. The ability of HT1080 RHAMM-deficient cells, but not of CD44-deficient ones, to adhere was significantly decreased (p ≤ 0.001) as compared with control cells. Importantly, the effect of LMWHA on HT1080 cell adhesion was completely attenuated in RHAMM-deficient cells. In contrast, adhesion of RHAMM-deficient cells was not sensitive to high molecular weight HA treatment, which identifies RHAMM as a specific conduit of the LMWHA effect. Western blot and real time-PCR analyses indicated that LMWHA significantly increased RHAMM transcript (p ≤ 0.05) and protein isoform levels (53%, 95 kDa; 37%, 73 kDa) in fibrosarcoma cells. Moreover, Western blot analyses showed that LMWHA in a RHAMM-dependent manner enhanced basal and adhesion-dependent ERK1/2 and focal adhesion kinase (FAK) phosphorylation in HT1080 cells. Utilization of a specific ERK1/2 inhibitor completely inhibited (p ≤ 0.001) LMWHA-dependent adhesion, suggesting that ERK1/2 is a downstream effector of LMWHA/RHAMM signaling. Likewise, the utilization of the specific ERK1 inhibitor resulted in a strong down-regulation of FAK activation in HT1080 cells, which identifies ERK1/2 as a FAK upstream activator. In conclusion, our results suggest that RHAMM/HA interaction regulates fibrosarcoma cell adhesion via the activation of FAK and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Katerina Kouvidi
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece
| | - Dragana Nikitovic
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece
| | - Pavlos Katonis
- Department of Orthopaedics, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Vincent C Hascall
- Cleveland Clinic, Biomedical Engineering ND-20, Cleveland, Ohio 44195
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Histology-Embryology, University of Crete, Heraklion 71003, Greece.
| |
Collapse
|
49
|
Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. Proc Natl Acad Sci U S A 2011; 108:14473-8. [PMID: 21844347 DOI: 10.1073/pnas.1110412108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently proposed spindle-based MT nucleation pathway that involves augmin, an 8-subunit protein complex, also contributes to spindle morphogenesis. We used an assay system in which hundreds of meiotic spindles can be observed forming around chromatin-coated beads after introduction of Xenopus egg extracts. Spindles forming in augmin-depleted extracts showed reduced rates of MT formation and were predominantly multipolar, revealing a function of augmin in stabilizing the bipolar shape of the acentrosomal meiotic spindle. Our studies also have uncovered an apparent augmin-independent MT nucleation process from acentrosomal poles, which becomes increasingly active over time and appears to partially rescue the spindle defects that arise from augmin depletion. Our studies reveal that spatially and temporally distinct MT generation pathways from chromatin, spindle MTs, and acentrosomal poles all contribute to robust bipolar spindle formation in meiotic extracts.
Collapse
|
50
|
Duncan T, Wakefield JG. 50 ways to build a spindle: the complexity of microtubule generation during mitosis. Chromosome Res 2011; 19:321-33. [PMID: 21484448 DOI: 10.1007/s10577-011-9205-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accurate segregation of duplicated chromosomes, essential for the development and viability of a eukaryotic organism, requires the formation of a robust microtubule (MT)-based spindle apparatus. Entry into mitosis or meiosis precipitates a cascade of signalling events which result in the activation of pathways responsible for a dramatic reorganisation of the MT cytoskeleton: through changes in the properties of MT-associated proteins, local concentrations of free tubulin dimer and through enhanced MT nucleation. The latter is generally thought to be driven by localisation and activation of γ-tubulin-containing complexes (γ-TuSC and γ-TuRC) at specific subcellular locations. For example, upon entering mitosis, animal cells concentrate γ-tubulin at centrosomes to tenfold the normal level during interphase, resulting in an aster-driven search and capture of chromosomes and bipolar mitotic spindle formation. Thus, in these cells, centrosomes have traditionally been perceived as the primary microtubule organising centre during spindle formation. However, studies in meiotic cells, plants and cell-free extracts have revealed the existence of complementary mechanisms of spindle formation, mitotic chromatin, kinetochores and nucleation from existing MTs or the cytoplasm can all contribute to a bipolar spindle apparatus. Here, we outline the individual known mechanisms responsible for spindle formation and formulate ideas regarding the relationship between them in assembling a functional spindle apparatus.
Collapse
Affiliation(s)
- Tommy Duncan
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | |
Collapse
|