1
|
Wang Y, Wu W, Gong J. Live or death in cells: from micronutrition metabolism to cell fate. Front Cell Dev Biol 2023; 11:1185989. [PMID: 37250891 PMCID: PMC10213646 DOI: 10.3389/fcell.2023.1185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Micronutrients and cell death have a strong relationship and both are essential for human to maintain good body health. Dysregulation of any micronutrients causes metabolic or chronic diseases, including obesity, cardiometabolic condition, neurodegeneration, and cancer. The nematode Caenorhabditis elegans is an ideal genetic organism for researching the mechanisms of micronutrients in metabolism, healthspan, and lifespan. For example, C. elegans is a haem auxotroph, and the research of this special haem trafficking pathway contributes important reference to mammal study. Also, C. elegans characteristics including anatomy simply, clear cell lineage, well-defined genetics, and easily differentiated cell forms make it a powerful tool for studying the mechanisms of cell death including apoptosis, necrosis, autophagy, and ferroptosis. Here, we describe the understanding of micronutrient metabolism currently and also sort out the fundamental mechanisms of different kinds of cell death. A thorough understanding of these physiological processes not only builds a foundation for developing better treatments for various micronutrient disorders but also provides key insights into human health and aging.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianke Gong
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Sammi SR, Syeda T, Conrow KD, Leung MCK, Cannon JR. Complementary biological and computational approaches identify distinct mechanisms of chlorpyrifos versus chlorpyrifos-oxon-induced dopaminergic neurotoxicity. Toxicol Sci 2023; 191:163-178. [PMID: 36269219 PMCID: PMC9887671 DOI: 10.1093/toxsci/kfac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Organophosphate (OP) pesticides are widely used in agriculture. While acute cholinergic toxicity has been extensively studied, chronic effects on other neurons are less understood. Here, we demonstrated that the OP pesticide chlorpyrifos (CPF) and its oxon metabolite are dopaminergic neurotoxicants in Caenorhabditis elegans. CPF treatment led to inhibition of mitochondrial complex II, II + III, and V in rat liver mitochondria, while CPF-oxon did not (complex II + III and IV inhibition observed only at high doses). While the effect on C. elegans cholinergic behavior was mostly reversible with toxicant washout, dopamine-associated deficits persisted, suggesting dopaminergic neurotoxicity was irreversible. CPF reduced the mitochondrial content in a dose-dependent manner and the fat modulatory genes cyp-35A2 and cyp-35A3 were found to have a key role in CPF neurotoxicity. These findings were consistent with in vitro effects of CPF and CPF-oxon on nuclear receptor signaling and fatty acid/steroid metabolism observed in ToxCast assays. Two-way hierarchical analysis revealed in vitro effects on estrogen receptor, pregnane X receptor, and peroxisome proliferator-activated receptor gamma pathways as well as neurotoxicity of CPF, malathion, and diazinon, whereas these effects were not detected in malaoxon and diazoxon. Taken together, our study suggests that mitochondrial toxicity and metabolic effects of CPF, but not CPF-oxon, have a key role of CPF neurotoxicity in the low-dose, chronic exposure. Further mechanistic studies are needed to examine mitochondria as a common target for all OP pesticide parent compounds, because this has important implications on cumulative pesticide risk assessment.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Kendra D Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Stahl-Meyer K, Bilgin M, Holland LKK, Stahl-Meyer J, Kirkegaard T, Petersen NHT, Maeda K, Jäättelä M. Galactosyl- and glucosylsphingosine induce lysosomal membrane permeabilization and cell death in cancer cells. PLoS One 2022; 17:e0277058. [PMID: 36409725 PMCID: PMC9678304 DOI: 10.1371/journal.pone.0277058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022] Open
Abstract
Isomeric lysosphingolipids, galactosylsphingosine (GalSph) and glucosylsphingosine (GlcSph), are present in only minute levels in healthy cells. Due to defects in their lysosomal hydrolysis, they accumulate at high levels and cause cytotoxicity in patients with Krabbe and Gaucher diseases, respectively. Here, we show that GalSph and GlcSph induce lysosomal membrane permeabilization, a hallmark of lysosome-dependent cell death, in human breast cancer cells (MCF7) and primary fibroblasts. Supporting lysosomal leakage as a causative event in lysosphingolipid-induced cytotoxicity, treatment of MCF7 cells with lysosome-stabilizing cholesterol prevented GalSph- and GlcSph-induced cell death almost completely. In line with this, fibroblasts from a patient with Niemann-Pick type C disease, which is caused by defective lysosomal cholesterol efflux, were significantly less sensitive to lysosphingolipid-induced lysosomal leakage and cell death. Prompted by the data showing that MCF7 cells with acquired resistance to lysosome-destabilizing cationic amphiphilic drugs (CADs) were partially resistant to the cell death induced by GalSph and GlcSph, we compared these cell death pathways with each other. Like CADs, GalSph and GlcSph activated the cyclic AMP (cAMP) signalling pathway, and cAMP-inducing forskolin sensitized cells to cell death induced by low concentrations of lysosphingolipids. Contrary to CADs, lysosphingolipid-induced cell death was independent of lysosomal Ca2+ efflux through P2X purinerigic receptor 4. These data reveal GalSph and GlcSph as lysosome-destabilizing lipids, whose putative use in cancer therapy should be further investigated. Furthermore, the data supports the development of lysosome stabilizing drugs for the treatment of Krabbe and Gaucher diseases and possibly other sphingolipidoses.
Collapse
Affiliation(s)
- Kamilla Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Orphazyme A/S, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lya K. K. Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- * E-mail: (MJ); (KM)
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MJ); (KM)
| |
Collapse
|
4
|
Ding F, Zhao Y. Astaxanthin Induces Transcriptomic Responses Associated with Lifespan Extension in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:2115. [PMID: 36358487 PMCID: PMC9687064 DOI: 10.3390/antiox11112115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Astaxanthin is a marine xanthophyll carotenoid which effectively prevents intracellular oxidative stress and has beneficial effects against various human diseases. It has been shown that astaxanthin protects Caenorhabditis elegans (C. elegans) from oxidative damages and extends the lifespan of C. elegans possibly by modulating genes involved in insulin/insulin-like growth factor (IGF) signaling (IIS) and the oxidoreductase system, although the exact mechanisms remain elusive. In this study, RNA sequencing analyses were employed to identify the differentially expressed genes in C. elegans in response to astaxanthin treatment. A total of 190 mRNAs and 6 microRNAs (miRNAs) were significantly changed by astaxanthin treatment in C. elegans. Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the mRNAs and miRNAs significantly altered by astaxanthin mainly function in innate immunity, lipid metabolism and stress responses, a significant portion of which are related to lifespan regulation in C. elegans. The study revealed novel mRNA and miRNA targets of astaxanthin, providing new insights for understanding the anti-aging mechanisms and the biological function of astaxanthin.
Collapse
Affiliation(s)
- Feng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
5
|
Shi W, Hu R, Zhao R, Zhu J, Shen H, Li H, Wang L, Yang Z, Jiang Q, Qiao Y, Jiang G, Cheng J, Wan X. Transcriptome analysis of hepatopancreas and gills of Palaemon gravieri under salinity stress. Gene 2022; 851:147013. [DOI: 10.1016/j.gene.2022.147013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
6
|
Horikiri S, Harada M, Asada R, J Sakamoto J, Furuta M, Tsuchido T. Low Temperature Heating-Induced Death and Vacuole Injury in Cladosporium sphaerospermum Conidia. Biocontrol Sci 2022; 27:107-115. [PMID: 35753793 DOI: 10.4265/bio.27.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanism of thermal death of mold conidia has not been understood in detail. The purpose of this study is to analyze the death kinetics of heated conidia of Cladosporium sphaerospermum and to ascertain the expectant cell injury responsible for the death. The death of the dormant (resting) conidia of Cladosporium sphaerospermum was examined at temperatures of between 43 and 54℃ with the conventional colony count method. The death reaction apparently followed the first order kinetics, but the Arrhenius plot of the death rate constant demonstrated seemingly a break. The linearity at temperatures higher than that at the break was lost at lower temperatures, suggesting the involvement of an unusual mechanism in the latter temperatures. In the cell morphology, we observed with quinacrine staining the vacuole rupture at a lower temperature but not at a high temperature. Interestingly, the vacuole rupture by low-temperature heating was found to correlate with the viability loss. Furthermore, active protease originally locating in vacuoles was detected in the cytoplasm of the conidia after heated at a low temperature. The results obtained suggest the involvement of potent autophagic cell death induced by low temperature heating of C. sphaerospermum conidia.
Collapse
Affiliation(s)
- Shigetoshi Horikiri
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Panasonic Ecology Systems Co., Ltd
| | - Mami Harada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - Ryoko Asada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Research Center of Microorganism Control, Organization for Research Promotion
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion.,Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University.,Research Center of Microorganism Control, Organization for Research Promotion
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion
| |
Collapse
|
7
|
Reza RN, Serra ND, Detwiler AC, Hanna-Rose W, Crook M. Noncanonical necrosis in 2 different cell types in a Caenorhabditis elegans NAD+ salvage pathway mutant. G3 (BETHESDA, MD.) 2022; 12:jkac033. [PMID: 35143646 PMCID: PMC8982427 DOI: 10.1093/g3journal/jkac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.
Collapse
Affiliation(s)
- Rifath N Reza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matt Crook
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA
| |
Collapse
|
8
|
Kounakis K, Tavernarakis N. Assessment of Neuronal Cell Death in Caenorhabditis elegans. Methods Mol Biol 2022; 2515:309-317. [PMID: 35776360 DOI: 10.1007/978-1-0716-2409-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The nematode Caenorhabditis elegans is a powerful experimental platform for cell biology studies. The molecular mechanisms that mediate cell death and neurodegeneration have been characterized extensively in the nematode. In addition, the availability of a wide arsenal of genetic and molecular tools and methodologies renders C. elegans an organism of choice for modeling human neurodegenerative diseases. Indeed, neuronal necrosis can readily be observed and examined in vivo, in the worm. In this chapter, we describe the two main approaches that are routinely used for monitoring and quantifying neuronal cell death in C. elegans. The first is based on direct visualization of dying cells via Nomarski differential interference contrast (DiC) microscopy, and the second on the assessment of neuronal survival by fluorescence microscopy.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas , Crete, Greece
| | - Nektarios Tavernarakis
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Crete, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas , Crete, Greece.
| |
Collapse
|
9
|
Santra P, Amack JD. Loss of vacuolar-type H+-ATPase induces caspase-independent necrosis-like death of hair cells in zebrafish neuromasts. Dis Model Mech 2021; 14:dmm048997. [PMID: 34296747 PMCID: PMC8319552 DOI: 10.1242/dmm.048997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that regulates cellular pH. V-ATPase activity modulates several cellular processes, but cell-type-specific functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but the underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt the formation of zebrafish neuromasts, which serve as a model to investigate hearing loss. V-ATPase mutant neuromasts are small and contain pyknotic nuclei that denote dying cells. Molecular markers and live imaging show that loss of V-ATPase induces mechanosensory hair cells in neuromasts, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding the causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in promoting survival of a specific cell type in vivo.
Collapse
Affiliation(s)
- Peu Santra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY 13244, USA
| |
Collapse
|
10
|
Furuta Y, Pena-Ramos O, Li Z, Chiao L, Zhou Z. Calcium ions trigger the exposure of phosphatidylserine on the surface of necrotic cells. PLoS Genet 2021; 17:e1009066. [PMID: 33571185 PMCID: PMC7904182 DOI: 10.1371/journal.pgen.1009066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/24/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Intracellular Ca2+ level is under strict regulation through calcium channels and storage pools including the endoplasmic reticulum (ER). Mutations in certain ion channel subunits, which cause mis-regulated Ca2+ influx, induce the excitotoxic necrosis of neurons. In the nematode Caenorhabditis elegans, dominant mutations in the DEG/ENaC sodium channel subunit MEC-4 induce six mechanosensory (touch) neurons to undergo excitotoxic necrosis. These necrotic neurons are subsequently engulfed and digested by neighboring hypodermal cells. We previously reported that necrotic touch neurons actively expose phosphatidylserine (PS), an “eat-me” signal, to attract engulfing cells. However, the upstream signal that triggers PS externalization remained elusive. Here we report that a robust and transient increase of cytoplasmic Ca2+ level occurs prior to the exposure of PS on necrotic touch neurons. Inhibiting the release of Ca2+ from the ER, either pharmacologically or genetically, specifically impairs PS exposure on necrotic but not apoptotic cells. On the contrary, inhibiting the reuptake of cytoplasmic Ca2+ into the ER induces ectopic necrosis and PS exposure. Remarkably, PS exposure occurs independently of other necrosis events. Furthermore, unlike in mutants of DEG/ENaC channels, in dominant mutants of deg-3 and trp-4, which encode Ca2+ channels, PS exposure on necrotic neurons does not rely on the ER Ca2+ pool. Our findings indicate that high levels of cytoplasmic Ca2+ are necessary and sufficient for PS exposure. They further reveal two Ca2+-dependent, necrosis-specific pathways that promote PS exposure, a “two-step” pathway initiated by a modest influx of Ca2+ and further boosted by the release of Ca2+ from the ER, and another, ER-independent, pathway. Moreover, we found that ANOH-1, the worm homolog of mammalian phospholipid scramblase TMEM16F, is necessary for efficient PS exposure in thapsgargin-treated worms and trp-4 mutants, like in mec-4 mutants. We propose that both the ER-mediated and ER-independent Ca2+ pathways promote PS externalization through activating ANOH-1. Necrosis is a type of cell death that exhibits distinct morphological features such as cell and organelle swelling. Necrotic cells expose phosphatidylserine (PS)–a type of phospholipid—on their outer surfaces. Receptor molecules on phagocytes detect PS on necrotic cells and subsequently initiate the engulfment process. As necrosis is associated with stroke, cancer, neurodegenerative diseases, and heart diseases, studying necrotic cell clearance has important medical relevance. In the model organism the nematode C. elegans, we previously identified membrane proteins that promote the exposure of PS on necrotic cell surfaces by studying neurons that are induced to undergo necrosis by dominant mutations in ion channels. Here, in C. elegans, we have discovered that the necrotic insults trigger an increase of the cytoplasmic calcium ion (Ca2+), which in turn promotes PS externalization on necrotic cell surfaces. Furthermore, we have identified two different mechanisms that increase cytoplasmic Ca2+ levels, one dependent on the Ca2+ contribution from the endoplasmic reticulum (ER), the other independent of the ER. The Ca2+ signal targets ANOH-1, a worm homolog of mammalian proteins capable of externalizing PS, for promoting PS exposure on necrotic cells. Our findings reveal novel upstream regulatory mechanisms that promote necrotic cell clearance in animals.
Collapse
Affiliation(s)
- Yoshitaka Furuta
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Omar Pena-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zao Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
13
|
Arndt DA, Oostveen EK, Triplett J, Butterfield DA, Tsyusko OV, Collin B, Starnes DL, Cai J, Klein JB, Nass R, Unrine JM. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:1-10. [PMID: 28888877 DOI: 10.1016/j.cbpc.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.
Collapse
Affiliation(s)
- Devrah A Arndt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Judy Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Blanche Collin
- CNRS, IRD, Coll. France, CEREGE, Aix Marseille Université, Aix-en-Provence, France
| | - Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jian Cai
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Jon B Klein
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
14
|
Chen X, Bisschops MMM, Agarwal NR, Ji B, Shanmugavel KP, Petranovic D. Interplay of Energetics and ER Stress Exacerbates Alzheimer's Amyloid-β (Aβ) Toxicity in Yeast. Front Mol Neurosci 2017; 10:232. [PMID: 28798664 PMCID: PMC5529408 DOI: 10.3389/fnmol.2017.00232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration. Oligomers of amyloid-β peptides (Aβ) are thought to play a pivotal role in AD pathogenesis, yet the mechanisms involved remain unclear. Two major isoforms of Aβ associated with AD are Aβ40 and Aβ42, the latter being more toxic and prone to form oligomers. Here, we took a systems biology approach to study two humanized yeast AD models which expressed either Aβ40 or Aβ42 in bioreactor cultures. Strict control of oxygen availability and culture pH, strongly affected chronological lifespan and reduced variations during cell growth. Reduced growth rates and biomass yields were observed upon Aβ42 expression, indicating a redirection of energy from growth to maintenance. Quantitative physiology analyses furthermore revealed reduced mitochondrial functionality and ATP generation in Aβ42 expressing cells, which matched with observed aberrant mitochondrial structures. Genome-wide expression level analysis showed that Aβ42 expression triggered strong ER stress and unfolded protein responses. Equivalent expression of Aβ40, however, induced only mild ER stress, which resulted in hardly affected physiology. Using AD yeast models in well-controlled cultures strengthened our understanding on how cells translate different Aβ toxicity signals into particular cell fate programs, and further enhance their potential as a discovery platform to identify possible therapies.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Markus M. M. Bisschops
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Nisha R. Agarwal
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Boyang Ji
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Kumaravel P. Shanmugavel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
15
|
Wani S, Kuroyanagi H. An emerging model organism Caenorhabditis elegans for alternative pre-mRNA processing in vivo. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28703462 DOI: 10.1002/wrna.1428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Abstract
A nematode Caenorhabditis elegans is an intron-rich organism and up to 25% of its pre-mRNAs are estimated to be alternatively processed. Its compact genomic organization enables construction of fluorescence splicing reporters with intact genomic sequences and visualization of alternative processing patterns of interest in the transparent living animals with single-cell resolution. Genetic analysis with the reporter worms facilitated identification of trans-acting factors and cis-acting elements, which are highly conserved in mammals. Analysis of unspliced and partially spliced pre-mRNAs in vivo raised models for alternative splicing regulation relying on specific order of intron excision. RNA-seq analysis of splicing factor mutants and CLIP-seq analysis of the factors allow global search for target genes in the whole animal. An mRNA surveillance system is not essential for its viability or fertility, allowing analysis of unproductively spliced noncoding mRNAs. These features offer C. elegans as an ideal model organism for elucidating alternative pre-mRNA processing mechanisms in vivo. Examples of isoform-specific functions of alternatively processed genes are summarized. WIREs RNA 2017, 8:e1428. doi: 10.1002/wrna.1428 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shotaro Wani
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehito Kuroyanagi
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Chen PL, Chen YW, Ou CC, Lee TM, Wu CJ, Ko WC, Chen CS. A Disease Model of Muscle Necrosis Caused by Aeromonas dhakensis Infection in Caenorhabditis elegans. Front Microbiol 2017; 7:2058. [PMID: 28101079 PMCID: PMC5209350 DOI: 10.3389/fmicb.2016.02058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
A variety of bacterial infections cause muscle necrosis in humans. Caenorhabditis elegans has epidermis and bands of muscle that resemble soft-tissue structures in mammals and humans. Here, we developed a muscle necrosis model caused by Aeromonas dhakensis infection in C. elegans. Our data showed that A. dhakensis infected and killed C. elegans rapidly. Characteristic muscle damage in C. elegans induced by A. dhakensis was demonstrated in vivo. Relative expression levels of host necrosis-associated genes, asp-3, asp-4, and crt-1 increased significantly after A. dhakensis infection. The RNAi sensitive NL2099 rrf-3 (pk1426) worms with knockdown of necrosis genes of crt-1 and asp-4 by RNAi showed prolonged survival after A. dhakensis infection. Specifically knockdown of crt-1 and asp-4 by RNAi in WM118 worms, which restricted RNAi only to the muscle cells, conferred significant resistance to A. dhakensis infection. In contrast, the severity of muscle damage and toxicity produced by the A. dhakensis hemolysin-deletion mutant is attenuated. In another example, shiga-like toxin-producing enterohemorrhagic E. coli (EHEC) known to elicit toxicity to C. elegans with concomitant enteropathogenicty, did not cause muscle necrosis as A. dhakensis did. Taken together, these results show that Aeromonas infection induces muscle necrosis and rapid death of infected C. elegans, which are similar to muscle necrosis in humans, and then validate the value of the C. elegans model with A. dhakensis infection in studying Aeromonas pathogenicity.
Collapse
Affiliation(s)
- Po-Lin Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Internal Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yi-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Chun-Chun Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Tzer-Min Lee
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Chi-Jung Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesTainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Internal Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chang-Shi Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
17
|
Majdi A, Mahmoudi J, Sadigh-Eteghad S, Golzari SE, Sabermarouf B, Reyhani-Rad S. Permissive role of cytosolic pH acidification in neurodegeneration: A closer look at its causes and consequences. J Neurosci Res 2016; 94:879-87. [DOI: 10.1002/jnr.23757] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Javad Mahmoudi
- Neurosciences Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Samad E.J. Golzari
- Cardiovascular Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Babak Sabermarouf
- Neurosciences Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Siamak Reyhani-Rad
- Department of Laboratory Sciences; Marand Branch, Islamic Azad University; Marand Iran
| |
Collapse
|
18
|
Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway. PLoS Genet 2016; 12:e1005823. [PMID: 26828939 PMCID: PMC4734690 DOI: 10.1371/journal.pgen.1005823] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022] Open
Abstract
The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.
Collapse
Affiliation(s)
- Scott A. Keith
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah K. Maddux
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Yayu Zhong
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Meghna N. Chinchankar
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arjumand Ghazi
- Rangos Research Center, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alfred L. Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- San Antonio GRECC, South Texas VA Healthcare System, San Antonio, Texas, United States of America
| |
Collapse
|
19
|
Yan M, Zhu W, Zheng X, Li Y, Tang L, Lu B, Chen W, Qiu P, Leng T, Lin S, Yan G, Yin W. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons. Mol Med Rep 2016; 13:2499-505. [PMID: 26821268 PMCID: PMC4768955 DOI: 10.3892/mmr.2016.4819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK-801 and the calcium chelator ethylene glycolbis (2-aminoethylether)-N, N, N′, N′-tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal-associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α-fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N-Acetyl-L-cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity.
Collapse
Affiliation(s)
- Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tiandong Leng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
20
|
Kim A, Cunningham KW. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 2015; 26:4631-45. [PMID: 26510498 PMCID: PMC4678020 DOI: 10.1091/mbc.e15-08-0581] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
The controlled permeabilization of lysosomes and vacuoles may represent an ancient manner of programmed cell death. It is shown that TORC1 is required for lysosomal membrane permeabilization and death of yeast cells that have been exposed to antifungals, and that a novel FYVE-domain protein regulates TORC1 signaling in these conditions. Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts.
Collapse
Affiliation(s)
- Adam Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
21
|
Hu YB, Dammer EB, Ren RJ, Wang G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 2015; 4:18. [PMID: 26448863 PMCID: PMC4596472 DOI: 10.1186/s40035-015-0041-1] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
The endosomal-lysosomal system is made up of a set of intracellular membranous compartments that dynamically interconvert, which is comprised of early endosomes, recycling endosomes, late endosomes, and the lysosome. In addition, autophagosomes execute autophagy, which delivers intracellular contents to the lysosome. Maturation of endosomes and/or autophagosomes into a lysosome creates an unique acidic environment within the cell for proteolysis and recycling of unneeded cellular components into usable amino acids and other biomolecular building blocks. In the endocytic pathway, gradual maturation of endosomes into a lysosome and acidification of the late endosome are accompanied by vesicle trafficking, protein sorting and targeted degradation of some sorted cargo. Two opposing sorting systems are operating in these processes: the endosomal sorting complex required for transport (ESCRT) supports targeted degradation and the retromer supports retrograde retrieval of certain cargo. The endosomal-lysosomal system is emerging as a central player in a host of neurodegenerative diseases, demonstrating potential roles which are likely to be revealed in pathogenesis and for viable therapeutic strategies. Here we focus on the physiological process of endosomal-lysosomal maturation, acidification and sorting systems along the endocytic pathway, and further discuss relationships between abnormalities in the endosomal-lysosomal system and neurodegenerative diseases, especially Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Yong-Bo Hu
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
22
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
23
|
Abstract
Similar to other organisms, necrotic cell death in the nematode Caenorhabditis elegans is manifested as the catastrophic collapse of cellular homeostasis, in response to overwhelming stress that is inflicted either in the form of extreme environmental stimuli or by intrinsic insults such as the expression of proteins carrying deleterious mutations. Remarkably, necrotic cell death in C. elegans and pathological cell death in humans share multiple fundamental features and mechanistic aspects. Therefore, mechanisms mediating necrosis are also conserved across the evolutionary spectrum and render the worm a versatile tool, with the capacity to facilitate studies of human pathologies. Here, we overview necrotic paradigms that have been characterized in the nematode and outline the cellular and molecular mechanisms that mediate this mode of cell demise. In addition, we discuss experimental approaches that utilize C. elegans to elucidate the molecular underpinnings of devastating human disorders that entail necrosis.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| |
Collapse
|
24
|
Abstract
The nematode Caenorhabditis elegans has served as a fruitful setting for cell death research for over three decades. A conserved pathway of four genes, egl-1/BH3-only, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase, coordinates most developmental cell deaths in C. elegans. However, other cell death forms, programmed and pathological, have also been described in this animal. Some of these share morphological and/or molecular similarities with the canonical apoptotic pathway, while others do not. Indeed, recent studies suggest the existence of an entirely novel mode of programmed developmental cell destruction that may also be conserved beyond nematodes. Here, we review evidence for these noncanonical pathways. We propose that different cell death modalities can function as backup mechanisms for apoptosis, or as tailor-made programs that allow specific dying cells to be efficiently cleared from the animal.
Collapse
Affiliation(s)
- Maxime J Kinet
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
25
|
Abstract
To use Caenorhabditis elegans to study the mechanisms for initiation and execution of necrosis, the experimentalist should be familiar with the established models of necrosis in C. elegans and the genetic and molecular tools available. We present a summary of two contrasting models for studying necrosis in C. elegans and outline the methods for scoring necrosis in each. These methods are useful for the study of necrosis under other conditions in C. elegans and for comparative studies both between established and new necrosis models. We also present a list of the genetic and drug tools available for perturbing pathways known to be important for initiation or execution of necrosis and describe their use in C. elegans. Specifically, we outline methods to inhibit autophagy, to perturb calcium homeostasis, and to disrupt lysosomal function in the C. elegans system.
Collapse
Affiliation(s)
- Matt Crook
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
26
|
Surana S, Krishnan Y. A method to map spatiotemporal pH changes in a multicellular living organism using a DNA nanosensor. Methods Mol Biol 2013; 991:9-23. [PMID: 23546654 DOI: 10.1007/978-1-62703-336-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Environmental pH has a determining role in the structure of biomolecules, thus playing an important role in regulating cellular activities. Eukaryotic cells must, therefore, strive to stringently regulate pH in various intracellular organelles so as to confer normal functioning at the level of whole organism. Several pH-sensitive probes have been reported, each of which can be used to map the pH dependence of an in vivo process. However, these probes suffer from some inherent drawbacks. Here we demonstrate the utility of an externally introduced, pH-triggered DNA nanomachine inside the multicellular eukaryote Caenorhabditis elegans. The nanomachine uses FRET to effectively map spatiotemporal pH changes associated with endocytosis in coelomocytes of wild type as well as mutant worms, in a variety of genetic backgrounds. It shows highest dynamic range in the pH regime 5.3-6.6 and has a half-life of ~8 h, thus positioning it well to interrogate a variety of pH-correlated biological phenomena in vivo.
Collapse
Affiliation(s)
- Sunaina Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
27
|
Troulinaki K, Tavernarakis N. Necrotic cell death and neurodegeneration: The involvement of endocytosis and intracellular trafficking. WORM 2013; 1:176-81. [PMID: 24058844 PMCID: PMC3670410 DOI: 10.4161/worm.20457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Necrosis, one of the two main types of cell death, contributes critically in many devastating pathological conditions in human, including stroke, ischemia, trauma and neurodegenerative diseases. However, unlike apoptosis, the molecular mechanisms underlying necrotic cell death and neurodegeneration are poorly understood. Caenorhabditis elegans offers a powerful platform for a thorough and systematic dissection of the molecular basis of necrotic cell death. Similarly to humans, neuronal necrosis can be induced by several well-characterized genetic lesions and by adverse environmental conditions in the nematode. The availability of precisely-defined C. elegans neurodegeneration models provides a unique opportunity for comprehensive delineation of the cellular and molecular mechanisms mediating necrotic cell death. Through genetic dissection of such models, we recently uncovered an unexpected requirement for specific proteins involved in endocytosis and intracellular trafficking, in the execution of necrosis. Moreover, initiation of necrotic cell death is accompanied by a sharp increase in the formation of early and recycling endosomes, which subsequently disintegrate during the final stage of cell death. These findings implicate endocytic and intracellular trafficking processes in the cellular destruction during necrosis. Indeed, endocytosis synergizes with two other essential cellular processes, autophagy and lysosomal proteolysis to facilitate necrotic neurodegeneration. In this commentary, we consider the contribution of endocytosis and intracellular trafficking to cell injury and discuss the crosstalk between these processes and other molecular mechanisms that mediate necrosis.
Collapse
Affiliation(s)
- Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research and Technology; Heraklion, Crete Greece
| | | |
Collapse
|
28
|
Chen H, Workman JJ, Tenga A, Laribee RN. Target of rapamycin signaling regulates high mobility group protein association to chromatin, which functions to suppress necrotic cell death. Epigenetics Chromatin 2013; 6:29. [PMID: 24044743 PMCID: PMC3766136 DOI: 10.1186/1756-8935-6-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The target of rapamycin complex 1 (TORC1) is an evolutionarily conserved signal transduction pathway activated by environmental nutrients that regulates gene transcription to control cell growth and proliferation. How TORC1 modulates chromatin structure to control gene expression, however, is largely unknown. Because TORC1 is a major transducer of environmental information, defining this process has critical implications for both understanding environmental effects on epigenetic processes and the role of aberrant TORC1 signaling in many diseases, including cancer, diabetes, and cardiovascular disease. RESULTS To elucidate the role of TORC1 signaling in chromatin regulation, we screened a budding yeast histone H3 and H4 mutant library using the selective TORC1 inhibitor rapamycin to identify histone residues functionally connected to TORC1. Intriguingly, we identified histone H3 lysine 37 (H3K37) as a residue that is essential during periods of limited TORC1 activity. An H3K37A mutation resulted in cell death by necrosis when TORC1 signaling was simultaneously impaired. The induction of necrosis was linked to alterations in high mobility group (HMG) protein binding to chromatin. Furthermore, the necrotic phenotype could be recapitulated in wild-type cells by deregulating the model HMG proteins, Hmo1 or Ixr1, thus implicating a direct role for HMG protein deregulation as a stimulus for inducing necrosis. CONCLUSIONS This study identifies histone H3 and H4 residues functionally required for TORC1-dependent cell growth and proliferation that are also candidate epigenetic pathways regulated by TORC1 signaling. It also demonstrates a novel role for H3K37 and TORC1 in regulating the binding of select HMG proteins to chromatin and that HMG protein deregulation can initiate a necrotic cell death response. Overall, the results from this study suggest a possible model by which chromatin anchors HMG proteins during periods of limited TORC1 signaling, such as that which occurs during conditions of nutrient stress, to suppress necrotic cell death.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
29
|
Coburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, Matthijssens F, Araiz C, Mandel A, Vlachos M, Edwards SA, Fischer G, Davidson A, Pryor RE, Stevens A, Slack FJ, Tavernarakis N, Braeckman BP, Schroeder FC, Nehrke K, Gems D. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol 2013; 11:e1001613. [PMID: 23935448 PMCID: PMC3720247 DOI: 10.1371/journal.pbio.1001613] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 06/13/2013] [Indexed: 12/29/2022] Open
Abstract
Death of the nematode Caenorhabditis elegans involves a conserved necrotic cell death cascade which generates endogenous blue anthranilate fluorescence, allowing death to be visualized. For cells the passage from life to death can involve a regulated, programmed transition. In contrast to cell death, the mechanisms of systemic collapse underlying organismal death remain poorly understood. Here we present evidence of a cascade of cell death involving the calpain-cathepsin necrosis pathway that can drive organismal death in Caenorhabditis elegans. We report that organismal death is accompanied by a burst of intense blue fluorescence, generated within intestinal cells by the necrotic cell death pathway. Such death fluorescence marks an anterior to posterior wave of intestinal cell death that is accompanied by cytosolic acidosis. This wave is propagated via the innexin INX-16, likely by calcium influx. Notably, inhibition of systemic necrosis can delay stress-induced death. We also identify the source of the blue fluorescence, initially present in intestinal lysosome-related organelles (gut granules), as anthranilic acid glucosyl esters—not, as previously surmised, the damage product lipofuscin. Anthranilic acid is derived from tryptophan by action of the kynurenine pathway. These findings reveal a central mechanism of organismal death in C. elegans that is related to necrotic propagation in mammals—e.g., in excitotoxicity and ischemia-induced neurodegeneration. Endogenous anthranilate fluorescence renders visible the spatio-temporal dynamics of C. elegans organismal death. In the nematode Caenorhabditis elegans, intestinal lysosome-related organelles (or “gut granules”) contain a bright blue fluorescent substance of unknown identity. This has similar spectral properties to lipofuscin, a product of oxidative damage known to accumulate with age in postmitotic mammalian cells. Blue fluorescence seems to increase in aging worm populations, and lipofuscin has been proposed to be the source. To analyze this further, we measure fluorescence levels after exposure to oxidative stress and during aging in individually tracked worms. Surprisingly, neither of these conditions increases fluorescence levels; instead blue fluorescence increases in a striking and rapid burst at death. Such death fluorescence (DF) also appears in young worms when killed, irrespective of age or cause of death. We chemically identify DF as anthranilic acid glucosyl esters derived from tryptophan, and not lipofuscin. In addition, we show that DF generation in the intestine is dependent upon the necrotic cell death cascade, previously characterized as a driver of neurodegeneration. We find that necrosis spreads in a rapid wave along the intestine by calcium influx via innexin ion channels, accompanied by cytosolic acidosis. Inhibition of necrosis pathway components can delay stress-induced death, supporting its role as a driver of organismal death. This necrotic cascade provides a model system to study neurodegeneration and organismal death.
Collapse
Affiliation(s)
- Cassandra Coburn
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Erik Allman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Parag Mahanti
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Alexandre Benedetto
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Filipe Cabreiro
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | | | - Caroline Araiz
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Abraham Mandel
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Manolis Vlachos
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Crete, Greece
| | - Sally-Anne Edwards
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Grahame Fischer
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alexander Davidson
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Rosina E. Pryor
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ailsa Stevens
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Crete, Greece
| | | | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Keith Nehrke
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Neuronal necrosis and spreading death in a Drosophila genetic model. Cell Death Dis 2013; 4:e723. [PMID: 23846225 PMCID: PMC3730406 DOI: 10.1038/cddis.2013.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/22/2023]
Abstract
Brain ischemia often results in neuronal necrosis, which may spread death to neighboring cells. However, the molecular events of neuronal necrosis and the mechanisms of this spreading death are poorly understood due to the limited genetic tools available for deciphering complicated responses in mammalian brains. Here, we engineered a Drosophila model of necrosis in a sub-population of neurons by expressing a leaky cation channel in the Drosophila eye. Expression of this channel caused necrosis in defined neurons as well as extensive spreading of cell death. Jun N-terminal kinase (JNK)-mediated, caspase-independent apoptosis was the primary mechanism of cell death in neurons, while caspase-dependent apoptosis was primarily involved in non-neuronal cell death. Furthermore, the JNK activation in surrounding neurons was triggered by reactive oxygen species (ROS) and Eiger (Drosophila tumor necrosis factor α (TNFα)) released from necrotic neurons. Because the Eiger/ROS/JNK signaling was also required for cell death induced by hypoxia and oxidative stress, our fly model of spreading death may be similar to brain ischemia in mammals. We performed large-scale genetic screens to search for novel genes functioning in necrosis and/or spreading death, from which we identified several classes of genes. Among them, Rho-associated kinase (ROCK) had been reported as a promising drug target for stroke treatment with undefined mechanisms. Our data indicate that ROCK and the related trafficking pathway genes regulate neuronal necrosis. We propose the suppression of the function of the trafficking system, ROS and cytokines, such as TNFα, as translational applications targeting necrosis and spreading death.
Collapse
|
31
|
Clancey LF, Beirl AJ, Linbo TH, Cooper CD. Maintenance of melanophore morphology and survival is cathepsin and vps11 dependent in zebrafish. PLoS One 2013; 8:e65096. [PMID: 23724125 PMCID: PMC3664566 DOI: 10.1371/journal.pone.0065096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
Here, we characterize a Danio rerio zebrafish pigment cell mutant (melanophore integrity mutant), which displays a defect in maintenance of melanophore and iridophore number. Mapping and candidate gene analysis links the melanophore integrity mutant mutation to the vacuolar protein sorting 11 (vps11(w66)) gene. Quantification of vps11(w66) chromatophores during larval stages suggests a decrease in number as compared to wildtype siblings. TUNEL analysis and treatment with the caspase inhibitor, zVAD-fmk, indicate that vps11(w66) chromatophore death is caspase independent. Western blot analysis of PARP-1 cleavage patterns in mutant lysates suggests that increases in pH dependent cathepsin activity is involved in the premature chromatophore death observed in vps11(w66) mutants. Consistently, treatment with ALLM and Bafilomycin A1 (cathepsin/calpain and vacuolar-type H+-ATPase inhibitors, respectively), restore normal melanophore morphology and number in vps11(w66) mutants. Last, LC3B western blot analysis indicates an increase in autophagosome marker, LC3B II in vps11(w66) mutants as compared to wildtype control, but not in ALLM or Bafilomycin A1 treated mutants. Taken together, these data suggest that vps11 promotes normal melanophore morphology and survival by inhibiting cathepsin release and/or activity.
Collapse
Affiliation(s)
- Lauren F. Clancey
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, Washington, United States of America
| | - Alisha J. Beirl
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, Washington, United States of America
| | - Tor H. Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Cynthia D. Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Schönichen A, Webb BA, Jacobson MP, Barber DL. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 2013; 42:289-314. [PMID: 23451893 DOI: 10.1146/annurev-biophys-050511-102349] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Collapse
Affiliation(s)
- André Schönichen
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
33
|
Kuroyanagi H, Watanabe Y, Hagiwara M. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003337. [PMID: 23468662 PMCID: PMC3585155 DOI: 10.1371/journal.pgen.1003337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 12/19/2022] Open
Abstract
An enormous number of alternative pre–mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the Caenorhabditis elegans uncoordinated (unc)-32 gene, encoding the a subunit of V0 complex of vacuolar-type H+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA–binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive exons of the unc-32 gene. Tissue-specific and mutually exclusive alternative pre–mRNA splicing is a challenging model for elucidating regulation mechanisms. We previously demonstrated that evolutionarily conserved RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a muscle-specific RNA–binding protein SUP-12 cooperatively direct muscle-specific selection of exon 5B of the C. elegans egl-15 gene. Here we demonstrate that two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the unc-32 gene are regulated in tissue-specific manners and that ASD-1 and FOX-1, expressed in a variety of tissues, can regulate the neuron-specific selection of unc-32 exon 7a in combination with the neuron-specific CELF family RNA–binding protein UNC-75. We determine the cis-elements for the RBFOX family and UNC-75, which separately reside in intron 7b and intron 7a, respectively. By analyzing the partially spliced RNA species, we propose the orders of intron removal and the sites of action for the RBFOX family and UNC-75 in the mutually exclusive selection of exon 7a and exon 7b. We also demonstrate that UNC-75 regulates the neuron-specific selection of exon 4b and propose the models of the mutually exclusive selection of exons 4a, 4b, and 4c. These studies thus provide novel modes of regulation for tissue-specific and mutually exclusive alternative splicing in vivo.
Collapse
Affiliation(s)
- Hidehito Kuroyanagi
- Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
34
|
Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 2013; 430:670-5. [DOI: 10.1016/j.bbrc.2012.11.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/20/2012] [Indexed: 12/31/2022]
|
35
|
Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu XQ, Shen HM. (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 2012; 7:e46749. [PMID: 23056433 PMCID: PMC3466311 DOI: 10.1371/journal.pone.0046749] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
(−)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium. The cytosolic vacuolization observed in EGCG-treated cells was most probably caused by lysosomal dilation. Interestingly, EGCG was able to disrupt autophagic flux at the degradation stage by impairment of lysosomal function, and EGCG-induced cell death was independent of Atg5 or autophagy. The key finding of this study is that EGCG is able to trigger LMP, as evidenced by Lyso-Tracker Red staining, cathepsin D cytosolic translocation and cytosolic acidification. Consistently, a lysosomotropic agent, chloroquine, effectively rescues the cell death via suppressing LMP-caused cytosolic acidification. Lastly, we found that EGCG promotes production of intracellular ROS upstream of LMP and cell death, as evidenced by increased level of ROS in cells treated with EGCG and the protective effects of antioxidant N-acetylcysteine (NAC) against EGCG-mediated LMP and cell death. Taken together, data from our study reveal a novel mechanism underlying EGCG-induced cell death involving ROS and LMP. Therefore, understanding this lysosome-associated cell death pathway shed new lights on the anti-cancer effects of EGCG.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nai-Di Yang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Zhou
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Ting Shen
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Ting Duan
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Jing Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yin Shi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Qiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
- * E-mail: (XQZ); (HMS)
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (XQZ); (HMS)
| |
Collapse
|
36
|
Kim H, Kim A, Cunningham KW. Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem 2012; 287:19029-39. [PMID: 22511765 DOI: 10.1074/jbc.m112.363390] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress in the endoplasmic reticulum caused by tunicamycin, dithiothreitol, and azole-class antifungal drugs can induce nonapoptotic cell death in yeasts that can be blocked by the action of calcineurin (Cn), a Ca(2+)-dependent serine/threonine protein phosphatase. To identify additional factors that regulate nonapoptotic cell death in yeast, a collection of gene knock-out mutants was screened for mutants exhibiting altered survival rates. The screen revealed an endocytic protein (Ede1) that can function upstream of Ca(2+)/calmodulin-dependent protein kinase 2 (Cmk2) to suppress cell death in parallel to Cn. The screen also revealed the vacuolar H(+)-ATPase (V-ATPase), which acidifies the lysosome-like vacuole. The V-ATPase performed its death-promoting functions very soon after imposition of the stress and was not required for later stages of the cell death program. Cn did not inhibit V-ATPase activities but did block vacuole membrane permeabilization (VMP), which occurred at late stages of the cell death program. All of the other nondying mutants identified in the screens blocked steps before VMP. These findings suggest that VMP is the lethal event in dying yeast cells and that fungi may employ a mechanism of cell death similar to the necrosis-like cell death of degenerating neurons.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
37
|
Developmental genetics of secretory vesicle acidification during Caenorhabditis elegans spermatogenesis. Genetics 2012; 191:477-91. [PMID: 22446317 DOI: 10.1534/genetics.112.139618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Secretory vesicles are used during spermatogenesis to deliver proteins to the cell surface. In Caenorhabditis elegans, secretory membranous organelles (MO) fuse with the plasma membrane to transform spermatids into fertilization-competent spermatozoa. We show that, like the acrosomal vesicle of mammalian sperm, MOs undergo acidification during development. Treatment of spermatids with the V-ATPase inhibitor bafilomycin blocks both MO acidification and formation of functional spermatozoa. There are several spermatogenesis-defective mutants that cause defects in MO morphogenesis, including spe-5. We determined that spe-5, which is on chromosome I, encodes one of two V-ATPase B paralogous subunits. The spe-5 null mutant is viable but sterile because it forms arrested, multi-nucleate spermatocytes. Immunofluorescence with a SPE-5-specific monoclonal antibody shows that SPE-5 expression begins in spermatocytes and is found in all subsequent stages of spermatogenesis. Most SPE-5 is discarded into the residual body during spermatid budding, but a small amount remains in budded spermatids where it localizes to MOs as a discrete dot. The other V-ATPase B subunit is encoded by vha-12, which is located on the X chromosome. Usually, spe-5 mutants are self-sterile in a wild-type vha-12 background. However, an extrachromosomal transgene containing wild-type vha-12 driven by its own promoter allows spe-5 mutant hermaphrodites to produce progeny, indicating that VHA-12 can at least partially substitute for SPE-5. Others have shown that the X chromosome is transcriptionally silent in the male germline, so expression of the autosomally located spe-5 gene ensures that a V-ATPase B subunit is present during spermatogenesis.
Collapse
|
38
|
Temmerman L, Bogaerts A, Meelkop E, Cardoen D, Boerjan B, Janssen T, Schoofs L. A proteomic approach to neuropeptide function elucidation. Peptides 2012; 34:3-9. [PMID: 21920396 DOI: 10.1016/j.peptides.2011.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.
Collapse
Affiliation(s)
- L Temmerman
- Functional Genomics and Proteomics, Naamsestraat 59, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T. Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem 2012; 120:574-85. [DOI: 10.1111/j.1471-4159.2011.07550.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
|
41
|
Troulinaki K, Tavernarakis N. Endocytosis and intracellular trafficking contribute to necrotic neurodegeneration in C. elegans. EMBO J 2011; 31:654-66. [PMID: 22157748 DOI: 10.1038/emboj.2011.447] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/09/2011] [Indexed: 11/09/2022] Open
Abstract
Unlike apoptosis, necrotic cell death is characterized by marked loss of plasma membrane integrity. Leakage of cytoplasmic material to the extracellular space contributes to cell demise, and is the cause of acute inflammatory responses, which typically accompany necrosis. The mechanisms underlying plasma membrane damage during necrotic cell death are not well understood. We report that endocytosis is critically required for the execution of necrosis. Depletion of the key endocytic machinery components dynamin, synaptotagmin and endophilin suppresses necrotic neurodegeneration induced by diverse genetic and environmental insults in C. elegans. We used genetically encoded fluorescent markers to monitor the formation and fate of specific types of endosomes during cell death in vivo. Strikingly, we find that the number of early and recycling endosomes increases sharply and transiently upon initiation of necrosis. Endosomes subsequently coalesce around the nucleus and disintegrate during the final stage of necrosis. Interfering with kinesin-mediated endosome trafficking impedes cell death. Endocytosis synergizes with autophagy and lysosomal proteolytic mechanisms to facilitate necrotic neurodegeneration. These findings demonstrate a prominent role for endocytosis in cellular destruction during neurodegeneration, which is likely conserved in metazoans.
Collapse
Affiliation(s)
- Kostoula Troulinaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | | |
Collapse
|
42
|
Zhou Q, Li H, Xue D. Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans. Cell Res 2011; 21:1662-9. [PMID: 22105480 DOI: 10.1038/cr.2011.182] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell biological analyses indicate that in wild-type animals paternal mitochondria and mtDNA are destroyed within two hours after fertilization. In animals with compromised lysosomes, paternal mitochondria persist until late embryonic stages. Therefore, the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization. Our study indicates that C. elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.
Collapse
Affiliation(s)
- Qinghua Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
43
|
Knight AJ, Behm CA. Minireview: the role of the vacuolar ATPase in nematodes. Exp Parasitol 2011; 132:47-55. [PMID: 21959022 DOI: 10.1016/j.exppara.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022]
Abstract
The vacuolar ATPase enzyme complex (V-ATPase) pumps protons across membranes, energised by hydrolysis of ATP. It is involved in many physiological processes and has been implicated in many different diseases. While the broader functions of V-ATPases have been reviewed extensively, the role of this complex in nematodes specifically has not. Here, the essential role of the V-ATPase in nematode nutrition, osmoregulation, synthesis of the cuticle, neurobiology and reproduction is discussed. Based on the requirement of V-ATPase activity, or components of the V-ATPase, for these processes, the potential of the V-ATPase as a drug target for nematode parasites, which cause a significant burden to human health and agriculture, is also discussed. The V-ATPase has all the characteristics of a suitable drug target against nematodes, however the challenge will be to develop a high-throughput assay with which to test potential inhibitors.
Collapse
Affiliation(s)
- Alison J Knight
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra ACT 0200, Australia
| | | |
Collapse
|
44
|
van der Nest MA, Steenkamp ET, Slippers B, Mongae A, van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Gene expression associated with vegetative incompatibility in Amylostereum areolatum. Fungal Genet Biol 2011; 48:1034-43. [PMID: 21889597 DOI: 10.1016/j.fgb.2011.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022]
Abstract
In filamentous fungi, vegetative compatibility among individuals of the same species is determined by the genes encoded at the heterokaryon incompatibility (het) loci. The hyphae of genetically similar individuals that share the same allelic specificities at their het loci are able to fuse and intermingle, while different allelic specificities at the het loci result in cell death of the interacting hyphae. In this study, suppression subtractive hybridization (SSH) followed by pyrosequencing and quantitative reverse transcription PCR were used to identify genes that are selectively expressed when vegetatively incompatible individuals of Amylostereum areolatum interact. The SSH library contained genes associated with various cellular processes, including cell-cell adhesion, stress and defence responses, as well as cell death. Some of the transcripts encoded proteins that were previously implicated in the stress and defence responses associated with vegetative incompatibility. Other transcripts encoded proteins known to be associated with programmed cell death, but have not previously been linked with vegetative incompatibility. Results of this study have considerably increased our knowledge of the processes underlying vegetative incompatibility in Basidiomycetes in general and A. areolatum in particular.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
It is well known that apoptosis is an actively mediated cell suicide process. In contrast, necrosis, a morphologically distinct form of cell death, has traditionally been regarded as passive and unregulated. Over the past decade, however, experiments in Caenorhabditis elegans and mammalian cells have revealed that a significant proportion of necrotic death is, in fact, actively mediated by the doomed cell. Although a comprehensive understanding of necrosis is still lacking, some key molecular events have come into focus. Cardiac myocyte apoptosis and necrosis are prominent features of the major cardiac syndromes. Accordingly, the recognition of necrosis as a regulated process mandates a reexamination of cell death in the heart. This review discusses pathways that mediate programmed necrosis, how they intersect with apoptotic pathways, roles of necrosis in heart disease, and new therapeutic opportunities that the regulated nature of necrosis presents.
Collapse
Affiliation(s)
- Gloria Kung
- Wilf Family Cardiovascular Research Institute, Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
46
|
Kumsta C, Thamsen M, Jakob U. Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. Antioxid Redox Signal 2011; 14:1023-37. [PMID: 20649472 PMCID: PMC3052275 DOI: 10.1089/ars.2010.3203] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accumulation of reactive oxygen species has been implicated in various diseases and aging. However, the precise physiological effects of accumulating oxidants are still largely undefined. Here, we applied a short-term peroxide stress treatment to young Caenorhabditis elegans and measured behavioral, physiological, and cellular consequences. We discovered that exposure to peroxide stress causes a number of immediate changes, including loss in mobility, decreased growth rate, and decreased cellular adenosine triphosphate levels. Many of these alterations, which are highly reminiscent of changes in aging animals, are reversible, suggesting the presence of effective antioxidant systems in young C. elegans. One of these antioxidant systems involves the highly abundant protein peroxiredoxin 2 (PRDX-2), whose gene deletion causes phenotypes symptomatic of chronic peroxide stress and shortens lifespan. Applying the quantitative redox proteomic technique OxICAT to oxidatively stressed wild-type and prdx-2 deletion worms, we identified oxidation-sensitive cysteines in 40 different proteins, including proteins involved in mobility and feeding (e.g., MYO-2 and LET-75), protein translation and homeostasis (e.g., elongation factor 1 [EFT-1] and heat shock protein 1), and adenosine triphosphate regeneration (e.g., nucleoside diphosphate kinase). The oxidative modification of some of these redox-sensitive cysteines may contribute to the physiological and behavioral changes observed in oxidatively stressed animals.
Collapse
Affiliation(s)
- Caroline Kumsta
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
47
|
McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol 2011; 22:882-8. [PMID: 20889324 DOI: 10.1016/j.ceb.2010.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 01/24/2023]
Abstract
Necrosis has been thought to be an accidental or uncontrolled type of cell death rather than programmed. Recent studies from diverse organisms show that necrosis follows a stereotypical series of cellular and molecular events: swelling of organelles, increases in reactive oxygen species and cytoplasmic calcium, a decrease in ATP, activation of calpain and cathepsin proteases, and finally rupture of organelles and plasma membrane. Genetic and chemical manipulations demonstrate that necrosis can be inhibited, indicating that necrosis can indeed be controlled and follows a specific 'program.' This review highlights recent findings from C. elegans, yeast, Dictyostelium, Drosophila, and mammals that collectively provide evidence for conserved mechanisms of necrosis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, Madeo F, Kroemer G. Programmed necrosis from molecules to health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:1-35. [PMID: 21749897 DOI: 10.1016/b978-0-12-386039-2.00001-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During the past decade, cell death researchers have witnessed a gradual but deep conceptual revolution: it has been unequivocally shown that necrosis, which for long had been considered as a purely accidental cell death mode, can also be induced by finely regulated signal transduction pathways. In particular, when caspases are inhibited by pharmacological or genetic means, the ligation of death receptors such as the tumor necrosis factor receptor 1 (TNFR1) can lead to the assembly of a supramolecular complex containing the receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) that delivers a pronecrotic signal. Such complex has recently been dubbed necrosome and mediates the execution of a specific instance of regulated necrosis, necroptosis. Soon, it turned out that programmed necrosis occurs in nonmammalian model organisms and that it is implicated in human diseases including ischemia and viral infection. In this review, we first describe the historical evolution of the concept of programmed necrosis and the molecular mechanisms that underlie necroptosis initiation and execution. We then provide evidence suggesting that necroptosis represents an ancient and evolutionarily conserved cell death modality that may be targeted for drug development.
Collapse
|
49
|
Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J 2010; 5:1261-76. [PMID: 21154667 DOI: 10.1002/biot.201000183] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 01/15/2023]
Abstract
Genes linked to human diseases often function in evolutionarily conserved pathways, which can be readily dissected in simple model organisms. Because of its short lifespan and well-known biology, coupled with a completely sequenced genome that shares extensive homology with that of mammals, Caenorhabditis elegans is one of the most versatile and powerful model organisms. Research in C. elegans has been instrumental for the elucidation of molecular pathways implicated in many human diseases. In this review, we introduce C. elegans as a model organism for biomedical research and we survey recent relevant findings that shed light on the basic molecular determinants of human disease pathophysiology. The nematode holds promise of providing clear leads towards the identification of potential targets for the development of new therapeutic interventions against human diseases.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | | |
Collapse
|
50
|
Abstract
The simple nematode worm Caenorhabditis elegans has been instrumental in deciphering the molecular mechanisms underlying apoptosis. Beyond apoptosis, several paradigms of non-apoptotic cell death, either genetically or extrinsically triggered, have also been described in C. elegans. Remarkably, non-apoptotic cell death in worms and pathological cell death in humans share numerous key features and mechanistic aspects. Such commonalities suggest that similarly to apoptosis, non-apoptotic cell death mechanisms are also conserved, and render the worm a useful organism, in which to model and dissect human pathologies. Indeed, the genetic malleability and the sophisticated molecular tools available for C. elegans have contributed decisively to advance our understanding of non-apoptotic cell death. Here, we review the literature on the various types of non-apoptotic cell death in C. elegans and discuss the implications, relevant to pathological conditions in humans.
Collapse
Affiliation(s)
- Manolis Vlachos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | |
Collapse
|