1
|
Muhammad A, Sarkadi Z, Mazumder A, Ait Saada A, van Emden T, Capella M, Fekete G, Suma Sreechakram VN, Al-Sady B, Lambert SAE, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. Nucleic Acids Res 2024; 52:13665-13689. [PMID: 39565189 DOI: 10.1093/nar/gkae1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024] Open
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate heterochromatin domain-specific functions, as seen for example for metabolic pathways affecting primarily subtelomere silencing. Moreover, similar phenotypic profiles revealed shared functions for subunits within complexes. We further discovered that the uncharacterized protein Dhm2 plays a crucial role in heterochromatin maintenance, affecting the inheritance of H3K9 methylation and the clonal propagation of the repressed state. Additionally, Dhm2 loss resulted in delayed S-phase progression and replication stress. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Anissia Ait Saada
- Institut Curie, Université PSL, Université Paris-Saclay CNRS UMR3348, 91400 Orsay, France
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0552, USA
| | - Sarah A E Lambert
- Institut Curie, Université PSL, Université Paris-Saclay CNRS UMR3348, 91400 Orsay, France
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Kim HS, Roche B, Bhattacharjee S, Todeschini L, Chang AY, Hammell C, Verdel A, Martienssen RA. Clr4 SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nat Commun 2024; 15:9384. [PMID: 39477922 PMCID: PMC11526040 DOI: 10.1038/s41467-024-53417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Transcriptional silencing by RNAi paradoxically relies on transcription, but how the transition from transcription to silencing is achieved has remained unclear. The Cryptic Loci Regulator complex (CLRC) in Schizosaccharomyces pombe is a cullin-ring E3 ligase required for silencing that is recruited by RNAi. We found that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and mono-ubiquitinates the histone H3K9 methyltransferase Clr4SUV39H1, promoting the transition from co-transcriptional gene silencing (H3K9me2) to transcriptional gene silencing (H3K9me3). Ubiquitination of Clr4 occurs in an intrinsically disordered region (Clr4IDR), which undergoes liquid droplet formation in vitro, along with Swi6HP1 the effector of transcriptional gene silencing. Our data suggests that phase separation is exquisitely sensitive to non-coding RNA (ncRNA) which promotes self-association of Clr4, chromatin association, and di-, but not tri- methylation instead. Ubc4-CLRC also targets the transcriptional co-activator Bdf2BRD4, down-regulating centromeric transcription and small RNA (sRNA) production. The deubiquitinase Ubp3 counteracts both activities.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- University of North Dakota, School of Medicine & Health Sciences, 1301 N Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| | | | - Leila Todeschini
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - An-Yun Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - André Verdel
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
3
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
4
|
Khanduja JS, Joh RI, Perez MM, Paulo JA, Palmieri CM, Zhang J, Gulka AOD, Haas W, Gygi SP, Motamedi M. RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly. Cell 2024; 187:3262-3283.e23. [PMID: 38815580 PMCID: PMC11227895 DOI: 10.1016/j.cell.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.
Collapse
Affiliation(s)
- Jasbeer S Khanduja
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Richard I Joh
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Monica M Perez
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jingyu Zhang
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alex O D Gulka
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Willhelm Haas
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
5
|
Sun W, Dong Q, Li X, Gao J, Ye X, Hu C, Li F, Chen Y. The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B. Nat Commun 2024; 15:4322. [PMID: 38773107 PMCID: PMC11109203 DOI: 10.1038/s41467-024-48418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.
Collapse
Affiliation(s)
- Wenqi Sun
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA.
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
6
|
Muhammad A, Sarkadi Z, van Emden T, Mazumder A, Capella M, Fekete G, Sreechakram VNS, Al-Sady B, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579970. [PMID: 38405799 PMCID: PMC10888830 DOI: 10.1101/2024.02.13.579970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres, and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening, and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate domain-specific functions. For example, decreased mating type silencing was linked to mutations in heterochromatin maintenance genes, while compromised subtelomere silencing was associated with metabolic pathways. Furthermore, similar phenotypic profiles revealed shared functions for subunits within complexes. We also discovered that the uncharacterized protein Dhm2 plays a crucial role in maintaining constitutive and facultative heterochromatin, while its absence caused phenotypes akin to DNA replication-deficient mutants. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Gao J, Sun W, Li J, Ban H, Zhang T, Liao J, Kim N, Lee SH, Dong Q, Madramootoo R, Chen Y, Li F. Rex1BD and the 14-3-3 protein control heterochromatin organization at tandem repeats by linking RNAi and HDAC. Proc Natl Acad Sci U S A 2023; 120:e2309359120. [PMID: 38048463 PMCID: PMC10723143 DOI: 10.1073/pnas.2309359120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Tandem DNA repeats are often organized into heterochromatin that is crucial for genome organization and stability. Recent studies revealed that individual repeats within tandem DNA repeats can behave very differently. How DNA repeats are assembled into distinct heterochromatin structures remains poorly understood. Here, we developed a genome-wide genetic screen using a reporter gene at different units in a repeat array. This screen led to identification of a conserved protein Rex1BD required for heterochromatin silencing. Our structural analysis revealed that Rex1BD forms a four-helix bundle structure with a distinct charged electrostatic surface. Mechanistically, Rex1BD facilitates the recruitment of Clr6 histone deacetylase (HDAC) by interacting with histones. Interestingly, Rex1BD also interacts with the 14-3-3 protein Rad25, which is responsible for recruiting the RITS (RNA-induced transcriptional silencing) complex to DNA repeats. Our results suggest that coordinated action of Rex1BD and Rad25 mediates formation of distinct heterochromatin structure at DNA repeats via linking RNAi and HDAC pathways.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, NY10003
| | - Wenqi Sun
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Jie Li
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai201210, China
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY10003
| | - Tuokai Zhang
- Department of Biology, New York University, New York, NY10003
| | - Junwei Liao
- Department of Biology, New York University, New York, NY10003
| | - Namho Kim
- Department of Biology, New York University, New York, NY10003
| | - Soon Hoo Lee
- Department of Biology, New York University, New York, NY10003
| | - Qianhua Dong
- Department of Biology, New York University, New York, NY10003
| | | | - Yong Chen
- Key Laboratory of Epigenetic Regulation and Intervention, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Fei Li
- Department of Biology, New York University, New York, NY10003
| |
Collapse
|
8
|
Nakamura R, Nakayama JI. Regulation of the SUV39H Family Methyltransferases: Insights from Fission Yeast. Biomolecules 2023; 13:biom13040593. [PMID: 37189341 DOI: 10.3390/biom13040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action of histone methyltransferases and demethylases. The SUV39H family of histone methyltransferases (HMTases) are evolutionarily conserved from fission yeast to humans and play an important role in the formation of higher-order chromatin structures called heterochromatin. The SUV39H family HMTases catalyzes the methylation of histone H3 lysine 9 (H3K9), and this modification serves as a binding site for heterochromatin protein 1 (HP1) to form a higher-order chromatin structure. While the regulatory mechanism of this family of enzymes has been extensively studied in various model organisms, Clr4, a fission yeast homologue, has made an important contribution. In this review, we focus on the regulatory mechanisms of the SUV39H family of proteins, in particular, the molecular mechanisms revealed by the studies of the fission yeast Clr4, and discuss their generality in comparison to other HMTases.
Collapse
|
9
|
Fraser CJ, Whitehall SK. Heterochromatin in the fungal plant pathogen, Zymoseptoria tritici: Control of transposable elements, genome plasticity and virulence. Front Genet 2022; 13:1058741. [DOI: 10.3389/fgene.2022.1058741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that plays key roles in the functional organisation of eukaryotic genomes. In fungal plant pathogens, effector genes that are required for host colonization tend to be associated with heterochromatic regions of the genome that are enriched with transposable elements. It has been proposed that the heterochromatin environment silences effector genes in the absence of host and dynamic chromatin remodelling facilitates their expression during infection. Here we discuss this model in the context of the key wheat pathogen, Zymoseptoria tritici. We cover progress in understanding the deposition and recognition of heterochromatic histone post translational modifications in Z. tritici and the role that heterochromatin plays in control of genome plasticity and virulence.
Collapse
|
10
|
La Rocca G, Cavalieri V. Roles of the Core Components of the Mammalian miRISC in Chromatin Biology. Genes (Basel) 2022; 13:414. [PMID: 35327968 PMCID: PMC8954937 DOI: 10.3390/genes13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
The Argonaute (AGO) and the Trinucleotide Repeat Containing 6 (TNRC6) family proteins are the core components of the mammalian microRNA-induced silencing complex (miRISC), the machinery that mediates microRNA function in the cytoplasm. The cytoplasmic miRISC-mediated post-transcriptional gene repression has been established as the canonical mechanism through which AGO and TNRC6 proteins operate. However, growing evidence points towards an additional mechanism through which AGO and TNRC6 regulate gene expression in the nucleus. While several mechanisms through which miRISC components function in the nucleus have been described, in this review we aim to summarize the major findings that have shed light on the role of AGO and TNRC6 in mammalian chromatin biology and on the implications these novel mechanisms may have in our understanding of regulating gene expression.
Collapse
Affiliation(s)
- Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
11
|
Subtelomeric Chromatin in the Fission Yeast S. pombe. Microorganisms 2021; 9:microorganisms9091977. [PMID: 34576871 PMCID: PMC8466458 DOI: 10.3390/microorganisms9091977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Telomeres play important roles in safeguarding the genome. The specialized repressive chromatin that assembles at telomeres and subtelomeric domains is key to this protective role. However, in many organisms, the repetitive nature of telomeric and subtelomeric sequences has hindered research efforts. The fission yeast S. pombe has provided an important model system for dissection of chromatin biology due to the relative ease of genetic manipulation and strong conservation of important regulatory proteins with higher eukaryotes. Telomeres and the telomere-binding shelterin complex are highly conserved with mammals, as is the assembly of constitutive heterochromatin at subtelomeres. In this review, we seek to summarize recent work detailing the assembly of distinct chromatin structures within subtelomeric domains in fission yeast. These include the heterochromatic SH subtelomeric domains, the telomere-associated sequences (TAS), and ST chromatin domains that assemble highly condensed chromatin clusters called knobs. Specifically, we review new insights into the sequence of subtelomeric domains, the distinct types of chromatin that assemble on these sequences and how histone H3 K36 modifications influence these chromatin structures. We address the interplay between the subdomains of chromatin structure and how subtelomeric chromatin is influenced by both the telomere-bound shelterin complexes and by euchromatic chromatin regulators internal to the subtelomeric domain. Finally, we demonstrate that telomere clustering, which is mediated via the condensed ST chromatin knob domains, does not depend on knob assembly within these domains but on Set2, which mediates H3K36 methylation.
Collapse
|
12
|
Stirpe A, Guidotti N, Northall SJ, Kilic S, Hainard A, Vadas O, Fierz B, Schalch T. SUV39 SET domains mediate crosstalk of heterochromatic histone marks. eLife 2021; 10:62682. [PMID: 34524082 PMCID: PMC8443253 DOI: 10.7554/elife.62682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.
Collapse
Affiliation(s)
- Alessandro Stirpe
- Department of Molecular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nora Guidotti
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah J Northall
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Sinan Kilic
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Hainard
- University Medical Center, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Schalch
- Department of Molecular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland.,Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Weigt M, Gao Q, Ban H, He H, Mastrobuoni G, Kempa S, Chen W, Li F. Rbm10 facilitates heterochromatin assembly via the Clr6 HDAC complex. Epigenetics Chromatin 2021; 14:8. [PMID: 33468217 PMCID: PMC7816512 DOI: 10.1186/s13072-021-00382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/08/2021] [Indexed: 01/13/2023] Open
Abstract
Splicing factors have recently been shown to be involved in heterochromatin formation, but their role in controlling heterochromatin structure and function remains poorly understood. In this study, we identified a fission yeast homologue of human splicing factor RBM10, which has been linked to TARP syndrome. Overexpression of Rbm10 in fission yeast leads to strong global intron retention. Rbm10 also interacts with splicing factors in a pattern resembling that of human RBM10, suggesting that the function of Rbm10 as a splicing regulator is conserved. Surprisingly, our deep-sequencing data showed that deletion of Rbm10 caused only minor effect on genome-wide gene expression and splicing. However, the mutant displays severe heterochromatin defects. Further analyses indicated that the heterochromatin defects in the mutant did not result from mis-splicing of heterochromatin factors. Our proteomic data revealed that Rbm10 associates with the histone deacetylase Clr6 complex and chromatin remodelers known to be important for heterochromatin silencing. Deletion of Rbm10 results in significant reduction of Clr6 in heterochromatin. Our work together with previous findings further suggests that different splicing subunits may play distinct roles in heterochromatin regulation.
Collapse
Affiliation(s)
- Martina Weigt
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Hyoju Ban
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Haijin He
- Department of Biology, New York University, New York, NY, 10003-6688, USA
| | - Guido Mastrobuoni
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology, Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional Genomics and Systems Biology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China. .,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003-6688, USA.
| |
Collapse
|
14
|
Fan Y, Niu X, Huang L, Gross R, Lu H, Hawkins M, Yuan Y, Miao M, Liu Y, Xiao F. A novel BSD domain-containing transcription factor controls vegetative growth, leaf senescence, and fruit quality in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6945-6957. [PMID: 32845982 DOI: 10.1093/jxb/eraa393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BSD (mammalian BTF2-like transcription factors, synapse-associated proteins, and DOS2-like proteins) is a conserved domain that exists in a variety of organisms, but its function has not been well studied. Here, we identified a novel BSD domain-containing protein (SlBSD1) in tomato (Solanum lycopersicum). Biochemical and microscopy assays indicated that SlBSD1 is a functional transcription factor that is predominantly localized in the nucleus. Loss-of-function and overexpression analyses suggested that SlBSD1 is a novel regulator of vegetative growth and leaf senescence in tomato. SlBSD1-knockdown (-KD) plants exhibited retarded vegetative growth and precocious leaf senescence, whereas SlBSD1-overexpression (-OX) plants displayed the opposite phenotypes. The negative role of SlBSD1 in leaf senescence was also supported by RNA-seq analysis comparing leaf tissues from SlBSD1-KD and wild-type plants. In addition, contents of soluble solids were altered in fruits in the SlBSD1-KD and SlBSD1-OX plants. Taken together, our data suggest that the novel transcription factor SlBSD1 plays important roles in controlling fruit quality and other physiological processes in tomato, including vegetative growth and leaf senescence.
Collapse
Affiliation(s)
- Youhong Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Han Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Madigan Hawkins
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
15
|
Oya E, Nakagawa R, Yoshimura Y, Tanaka M, Nishibuchi G, Machida S, Shirai A, Ekwall K, Kurumizaka H, Tagami H, Nakayama J. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep 2019; 20:e48111. [PMID: 31468675 PMCID: PMC6776926 DOI: 10.15252/embr.201948111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity. Affinity-purified CLRC ubiquitylates histone H3, and mass spectrometric and mutation analyses reveal that H3 lysine 14 (H3K14) is the preferred target of the complex. Chromatin immunoprecipitation analysis shows that H3K14 ubiquitylation (H3K14ub) is closely associated with H3K9me-enriched chromatin. Notably, the CLRC-mediated H3 ubiquitylation promotes H3K9me by Clr4, suggesting that H3 ubiquitylation is intimately linked to the establishment and/or maintenance of H3K9me. These findings demonstrate a cross-talk mechanism between histone ubiquitylation and methylation that is involved in heterochromatin assembly.
Collapse
Affiliation(s)
- Eriko Oya
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Faculty of Science and EngineeringChuo UniversityBunkyo‐ku, TokyoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuriko Yoshimura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Mayo Tanaka
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Gohei Nishibuchi
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Present address:
Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Shinichi Machida
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Present address:
Institute of Human GeneticsCNRS UMR 9002MontpellierFrance
| | | | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hitoshi Kurumizaka
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hideaki Tagami
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
| | - Jun‐ichi Nakayama
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Department of Basic BiologySchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| |
Collapse
|
16
|
TASks for subtelomeres: when nucleosome loss and genome instability are favored. Curr Genet 2019; 65:1153-1160. [DOI: 10.1007/s00294-019-00986-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
|
17
|
van Emden TS, Forn M, Forné I, Sarkadi Z, Capella M, Martín Caballero L, Fischer-Burkart S, Brönner C, Simonetta M, Toczyski D, Halic M, Imhof A, Braun S. Shelterin and subtelomeric DNA sequences control nucleosome maintenance and genome stability. EMBO Rep 2018; 20:embr.201847181. [PMID: 30420521 DOI: 10.15252/embr.201847181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022] Open
Abstract
Telomeres and the shelterin complex cap and protect the ends of chromosomes. Telomeres are flanked by the subtelomeric sequences that have also been implicated in telomere regulation, although their role is not well defined. Here, we show that, in Schizosaccharomyces pombe, the telomere-associated sequences (TAS) present on most subtelomeres are hyper-recombinogenic, have metastable nucleosomes, and unusual low levels of H3K9 methylation. Ccq1, a subunit of shelterin, protects TAS from nucleosome loss by recruiting the heterochromatic repressor complexes CLRC and SHREC, thereby linking nucleosome stability to gene silencing. Nucleosome instability at TAS is independent of telomeric repeats and can be transmitted to an intrachromosomal locus containing an ectopic TAS fragment, indicating that this is an intrinsic property of the underlying DNA sequence. When telomerase recruitment is compromised in cells lacking Ccq1, DNA sequences present in the TAS promote recombination between chromosomal ends, independent of nucleosome abundance, implying an active function of these sequences in telomere maintenance. We propose that Ccq1 and fragile subtelomeres co-evolved to regulate telomere plasticity by controlling nucleosome occupancy and genome stability.
Collapse
Affiliation(s)
- Thomas S van Emden
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Marta Forn
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Zsuzsa Sarkadi
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Matías Capella
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Lucía Martín Caballero
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| | - Sabine Fischer-Burkart
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Cornelia Brönner
- Department of Biochemistry, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marco Simonetta
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - David Toczyski
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mario Halic
- Department of Biochemistry, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit (ZfP), BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, BioMedical Center (BMC), Ludwig Maximilians University of Munich, Martinsried, Germany .,International Max Planck Research School for Molecular and Cellular Life Sciences, Martinsried, Germany
| |
Collapse
|
18
|
Heterochromatin and RNAi regulate centromeres by protecting CENP-A from ubiquitin-mediated degradation. PLoS Genet 2018; 14:e1007572. [PMID: 30089114 PMCID: PMC6101405 DOI: 10.1371/journal.pgen.1007572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/20/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023] Open
Abstract
Centromere is a specialized chromatin domain that plays a vital role in chromosome segregation. In most eukaryotes, centromere is surrounded by the epigenetically distinct heterochromatin domain. Heterochromatin has been shown to contribute to centromere function, but the precise role of heterochromatin in centromere specification remains elusive. Centromeres in most eukaryotes, including fission yeast (Schizosaccharomyces pombe), are defined epigenetically by the histone H3 (H3) variant CENP-A. In contrast, the budding yeast Saccharomyces cerevisiae has genetically-defined point centromeres. The transition between regional centromeres and point centromeres is considered as one of the most dramatic evolutionary events in centromere evolution. Here we demonstrated that Cse4, the budding yeast CENP-A homolog, can localize to centromeres in fission yeast and partially substitute fission yeast CENP-ACnp1. But overexpression of Cse4 results in its localization to heterochromatic regions. Cse4 is subject to efficient ubiquitin-dependent degradation in S. pombe, and its N-terminal domain dictates its centromere distribution via ubiquitination. Notably, without heterochromatin and RNA interference (RNAi), Cse4 fails to associate with centromeres. We showed that RNAi-dependent heterochromatin mediates centromeric localization of Cse4 by protecting Cse4 from ubiquitin-dependent degradation. Heterochromatin also contributes to the association of native CENP-ACnp1 with centromeres via the same mechanism. These findings suggest that protection of CENP-A from degradation by heterochromatin is a general mechanism used for centromere assembly, and also provide novel insights into centromere evolution.
Collapse
|
19
|
New insights into donor directionality of mating-type switching in Schizosaccharomyces pombe. PLoS Genet 2018; 14:e1007424. [PMID: 29852001 PMCID: PMC6007933 DOI: 10.1371/journal.pgen.1007424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/19/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
Mating-type switching in Schizosaccharomyces pombe entails programmed gene conversion events regulated by DNA replication, heterochromatin, and the HP1-like chromodomain protein Swi6. The whole mechanism remains to be fully understood. Using a gene deletion library, we screened ~ 3400 mutants for defects in the donor selection step where a heterochromatic locus, mat2-P or mat3-M, is chosen to convert the expressed mat1 locus. By measuring the biases in mat1 content that result from faulty directionality, we identified in total 20 factors required for donor selection. Unexpectedly, these included the histone H3 lysine 4 (H3K4) methyltransferase complex subunits Set1, Swd1, Swd2, Swd3, Spf1 and Ash2, the BRE1-like ubiquitin ligase Brl2 and the Elongator complex subunit Elp6. The mutant defects were investigated in strains with reversed donor loci (mat2-M mat3-P) or when the SRE2 and SRE3 recombination enhancers, adjacent to the donors, were deleted or transposed. Mutants in Set1C, Brl2 or Elp6 altered balanced donor usage away from mat2 and the SRE2 enhancer, towards mat3 and the SRE3 enhancer. The defects in these mutants were qualitatively similar to heterochromatin mutants lacking Swi6, the NAD+-dependent histone deacetylase Sir2, or the Clr4, Raf1 or Rik1 subunits of the histone H3 lysine 9 (H3K9) methyltransferase complex, albeit not as extreme. Other mutants showed clonal biases in switching. This was the case for mutants in the NAD+-independent deacetylase complex subunits Clr1, Clr2 and Clr3, the casein kinase CK2 subunit Ckb1, the ubiquitin ligase component Pof3, and the CENP-B homologue Cbp1, as well as for double mutants lacking Swi6 and Brl2, Pof3, or Cbp1. Thus, we propose that Set1C cooperates with Swi6 and heterochromatin to direct donor choice to mat2-P in M cells, perhaps by inhibiting the SRE3 recombination enhancer, and that in the absence of Swi6 other factors are still capable of imposing biases to donor choice. Effects of chromatin structure on recombination can be studied in the fission yeast S. pombe where two heterochromatic loci, mat2 and mat3, are chosen in a cell-type specific manner to convert the expressed mat1 locus and switch the yeast mating-type. The system has previously revealed the determining role of heterochromatin, histone H3K9 methylation and HP1 family protein Swi6, in donor selection. Here, we find that other chromatin modifiers and protein complexes, including components of the histone H3K4 methyltransferase complex Set1C, the histone H2B ubiquitin ligase HULC and Elongator, also participate in donor selection. Our findings open up new research paths to study mating-type switching in fission yeast and the roles of these complexes in recombination.
Collapse
|
20
|
Jahn LJ, Mason B, Brøgger P, Toteva T, Nielsen DK, Thon G. Dependency of Heterochromatin Domains on Replication Factors. G3 (BETHESDA, MD.) 2018; 8:477-489. [PMID: 29187422 PMCID: PMC5919735 DOI: 10.1534/g3.117.300341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
Abstract
Chromatin structure regulates both genome expression and dynamics in eukaryotes, where large heterochromatic regions are epigenetically silenced through the methylation of histone H3K9, histone deacetylation, and the assembly of repressive complexes. Previous genetic screens with the fission yeast Schizosaccharomyces pombe have led to the identification of key enzymatic activities and structural constituents of heterochromatin. We report here on additional factors discovered by screening a library of deletion mutants for silencing defects at the edge of a heterochromatic domain bound by its natural boundary-the IR-R+ element-or by ectopic boundaries. We found that several components of the DNA replication progression complex (RPC), including Mrc1/Claspin, Mcl1/Ctf4, Swi1/Timeless, Swi3/Tipin, and the FACT subunit Pob3, are essential for robust heterochromatic silencing, as are the ubiquitin ligase components Pof3 and Def1, which have been implicated in the removal of stalled DNA and RNA polymerases from chromatin. Moreover, the search identified the cohesin release factor Wpl1 and the forkhead protein Fkh2, both likely to function through genome organization, the Ssz1 chaperone, the Fkbp39 proline cis-trans isomerase, which acts on histone H3P30 and P38 in Saccharomyces cerevisiae, and the chromatin remodeler Fft3. In addition to their effects in the mating-type region, to varying extents, these factors take part in heterochromatic silencing in pericentromeric regions and telomeres, revealing for many a general effect in heterochromatin. This list of factors provides precious new clues with which to study the spatiotemporal organization and dynamics of heterochromatic regions in connection with DNA replication.
Collapse
Affiliation(s)
| | - Bethany Mason
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Tea Toteva
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Dennis Kim Nielsen
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Genevieve Thon
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| |
Collapse
|
21
|
Abstract
Chromatin-associated proteins play critical roles in many cellular processes, including gene expression, epigenetic regulation, DNA repair, recombination, and replication. Especially, epigenetic landscape, shaped by a variety of chromatin-binding proteins, is dynamic and regulated in a context-dependent manner. In situ chromatin-binding assay is a powerful but simple tool to investigate how proteins, such as epigenetic components, associate with chromatin. This approach relies on the fact that chromatin bound proteins are more resistant to detergent extraction. Here, we describe a protocol for the in situ chromatin-binding assay used in Schizosaccaromyces pombe.
Collapse
|
22
|
Coordinated regulation of heterochromatin inheritance by Dpb3-Dpb4 complex. Proc Natl Acad Sci U S A 2017; 114:12524-12529. [PMID: 29109278 DOI: 10.1073/pnas.1712961114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During DNA replication, chromatin is disrupted ahead of the replication fork, and epigenetic information must be restored behind the fork. How epigenetic marks are inherited through DNA replication remains poorly understood. Histone H3 lysine 9 (H3K9) methylation and histone hypoacetylation are conserved hallmarks of heterochromatin. We previously showed that the inheritance of H3K9 methylation during DNA replication depends on the catalytic subunit of DNA polymerase epsilon, Cdc20. Here we show that the histone-fold subunit of Pol epsilon, Dpb4, interacts an uncharacterized small histone-fold protein, SPCC16C4.22, to form a heterodimer in fission yeast. We demonstrate that SPCC16C4.22 is nonessential for viability and corresponds to the true ortholog of Dpb3. We further show that the Dpb3-Dpb4 dimer associates with histone deacetylases, chromatin remodelers, and histones and plays a crucial role in the inheritance of histone hypoacetylation in heterochromatin. We solve the 1.9-Å crystal structure of Dpb3-Dpb4 and reveal that they form the H2A-H2B-like dimer. Disruption of Dpb3-Dpb4 dimerization results in loss of heterochromatin silencing. Our findings reveal a link between histone deacetylation and H3K9 methylation and suggest a mechanism for how two processes are coordinated during replication. We propose that the Dpb3-Dpb4 heterodimer together with Cdc20 serves as a platform for the recruitment of chromatin modifiers and remodelers that mediate heterochromatin assembly during DNA replication, and ensure the faithful inheritance of epigenetic marks in heterochromatin.
Collapse
|
23
|
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
24
|
Abstract
In this introduction we discuss some basic genetic tools and techniques that are used with the fission yeast Schizosaccharomyces pombe Genes commonly used for selection or as reporters are discussed, with an emphasis on genes that permit counterselection, intragenic complementation, or colony-color assays. S. pombe is most stable as a haploid organism. We describe its mating-type system, how to perform genetic crosses and methods for selecting and propagating diploids. We discuss the relative merits of tetrad dissection and random spore preparation in strain construction and genetic analyses. Finally, we present several types of mutant screens, with an evaluation of their respective strengths and limitations in the light of emerging technologies such as next-generation sequencing.
Collapse
Affiliation(s)
- Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm SE-141 83, Sweden;
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
25
|
Yu Y, Zhou H, Deng X, Wang W, Lu H. Set3 contributes to heterochromatin integrity by promoting transcription of subunits of Clr4-Rik1-Cul4 histone methyltransferase complex in fission yeast. Sci Rep 2016; 6:31752. [PMID: 27538348 PMCID: PMC4990937 DOI: 10.1038/srep31752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023] Open
Abstract
Heterochromatin formation in fission yeast depends on RNAi machinery and histone-modifying enzymes. One of the key histone-modifying complexes is Clr4-Rik1-Cul4 methyltransferase complex (CLRC), which mediates histone H3K9 methylation, a hallmark for heterochromatin. CLRC is composed of the Clr4 histone methyltransferase, Rik1, Raf1, Raf2 and Pcu4. However, transcriptional regulation of the CLRC subunits is not well understood. In this study, we identified Set3, a core subunit of the Set3/Hos2 histone deacetylase complex (Set3C), as a contributor to the integrity and silencing of heterochromatin at centromeres, telomeres and silent mating-type locus. This novel role of Set3 relies on its PHD finger, but is independent of deacetylase activity or structural integrity of Set3C. Set3 is not located to the centromeric region. Instead, Set3 is targeted to the promoters of clr4+ and rik1+, probably through its PHD finger. Set3 promotes transcription of clr4+ and rik1+. Consistently, the protein levels of Clr4 and Rik1 were reduced in the set3Δ mutant. The heterochromatin silencing defect in the set3Δ mutant could be rescued by overexpressing of clr4+ or rik1+. Our study suggests transcriptional activation of essential heterochromatin factors underlies the tight regulation of heterochromatin integrity.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Huan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Xiaolong Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Wenchao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, 200438, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237, China
| |
Collapse
|
26
|
Yang J, Li F. Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet 2016; 63:57-63. [PMID: 27260214 DOI: 10.1007/s00294-016-0619-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/24/2023]
Abstract
Repetitive DNA sequences, comprising up to 50 % of the genome in all eukaryotes, play important roles in a wide range of cellular functions, such as transcriptional regulation, genome stability, and cellular differentiation. However, due to technical difficulties in differentiating their sequences, DNA repeats remain one of the most mysterious parts of eukaryotic genomes. Key questions, such as how repetitive entities behave at individual level and how the internal architecture of these repeats is organized, are still poorly understood. Recent advances from our group reveal unexpected position-dependent variation within tandem DNA repeats in fission yeast. Despite sharing identical DNA sequences, the peri-centromeric repeats are organized into diverse epigenetic states and chromatin structures. We demonstrate that this position-dependent variation requires key heterochromatin factors and condensin. Our works further suggest that the peri-centromeric repeats are organized into distinct higher order structures that ensure a proper positioning of CENP-A, the centromere-specific histone H3 variant, to centromeres. These most recent developments offer insights into the mechanisms underlying the position effect within tandem DNA arrays, and have broad implications in the field of epigenetics and chromatin biology.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, 10003, USA. .,1009 Silver Center, 100 Washington Square East, New York, NY, 10003-6688, USA.
| |
Collapse
|
27
|
Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J, Grewal SIS. Taz1-Shelterin Promotes Facultative Heterochromatin Assembly at Chromosome-Internal Sites Containing Late Replication Origins. Mol Cell 2016; 62:862-874. [PMID: 27264871 DOI: 10.1016/j.molcel.2016.04.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 03/07/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Facultative heterochromatin regulates gene expression, but its assembly is poorly understood. Previously, we identified facultative heterochromatin islands in the fission yeast genome and found that RNA elimination machinery promotes island assembly at meiotic genes. Here, we report that Taz1, a component of the telomere protection complex Shelterin, is required to assemble heterochromatin islands at regions corresponding to late replication origins that are sites of double-strand break formation during meiosis. The loss of Taz1 or other Shelterin subunits, including Ccq1 that interacts with Clr4/Suv39h, abolishes heterochromatin at late origins and causes derepression of associated genes. Moreover, the late-origin regulator Rif1 affects heterochromatin at Taz1-dependent islands and subtelomeric regions. We explore the connection between facultative heterochromatin and replication control and show that heterochromatin machinery affects replication timing. These analyses reveal the role of Shelterin in facultative heterochromatin assembly at late origins, which has important implications for genome stability and gene regulation.
Collapse
Affiliation(s)
- Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah R Smith
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
He H, Zhang S, Wang D, Hochwagen A, Li F. Condensin Promotes Position Effects within Tandem DNA Repeats via the RITS Complex. Cell Rep 2016; 14:1018-1024. [PMID: 26832414 DOI: 10.1016/j.celrep.2016.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 12/29/2015] [Indexed: 11/28/2022] Open
Abstract
Tandem repetitive DNA is highly abundant in eukaryotic genomes and contributes to transcription control and genome stability. However, how the individual sequences within tandem repeats behave remains largely unknown. Here we develop a collection of fission yeast strains with a reporter gene inserted at different units in a tandem repeat array. We show that, contrary to what is usually assumed, transcriptional silencing and replication timing among the individual repeats differ significantly. RNAi-mediated H3K9 methylation is essential for the silencing position effect. A short hairpin RNA of ura4(+) induces silencing in trans within the tandem array in a position-dependent manner. Importantly, the position effect depends on the condensin subunit, cut3(+). Cut3 promotes the position effect via interaction with the RNA-induced transcriptional silencing (RITS) complex. This study reveals variations in silencing within tandem DNA repeats and provides mechanistic insights into how DNA repeats at the individual level are regulated.
Collapse
Affiliation(s)
- Haijin He
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Shu Zhang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Danni Wang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003-6688, USA.
| |
Collapse
|
29
|
Rondinelli B, Rosano D, Antonini E, Frenquelli M, Montanini L, Huang D, Segalla S, Yoshihara K, Amin SB, Lazarevic D, The BT, Verhaak RGW, Futreal PA, Di Croce L, Chin L, Cittaro D, Tonon G. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J Clin Invest 2015; 125:4625-37. [PMID: 26551685 DOI: 10.1172/jci81040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers.
Collapse
|
30
|
Abstract
SUMMARY The involvement of RNA interference (RNAi) in heterochromatin formation has become clear largely through studies in the fission yeast Schizosaccharomyces pombe and plants like Arabidopsis thaliana. This article discusses how heterochromatic small interfering RNAs are produced and how the RNAi machinery participates in the formation and function of heterochromatin.
Collapse
Affiliation(s)
| | - Danesh Moazed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115-5730
| |
Collapse
|
31
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Castel SE, Ren J, Bhattacharjee S, Chang AY, Sánchez M, Valbuena A, Antequera F, Martienssen RA. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 2014; 159:572-83. [PMID: 25417108 DOI: 10.1016/j.cell.2014.09.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
Abstract
Nuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.
Collapse
Affiliation(s)
- Stephane E Castel
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie Ren
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - An-Yun Chang
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Alberto Valbuena
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
33
|
Abstract
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.
Collapse
|
34
|
Ghosh S, Kakumani PK, Kumar A, Malhotra P, Mukherjee SK, Bhatnagar RK. Genome wide screening of RNAi factors of Sf21 cells reveal several novel pathway associated proteins. BMC Genomics 2014; 15:775. [PMID: 25199785 PMCID: PMC4247154 DOI: 10.1186/1471-2164-15-775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Background RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application. Results The genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects. Conclusion The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-775) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Pawan Malhotra
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
35
|
Cho S, Park JS, Kang YK. AGO2 and SETDB1 cooperate in promoter-targeted transcriptional silencing of the androgen receptor gene. Nucleic Acids Res 2014; 42:13545-56. [PMID: 25183519 PMCID: PMC4267665 DOI: 10.1093/nar/gku788] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In mammals, RNA interference is primarily a post-transcriptional mechanism. Evidence has accumulated for additional role in transcriptional gene silencing (TGS) but the question for a good paradigm for small interfering antigene RNA (agRNA)-induced chromatin modification remains unanswered. Here, we show that SETDB1, a histone H3-lysine 9 (H3K9)-specific methyltransferase, cooperates with Argonaute-2 (AGO2) and plays an essential role in agRNA-induced TGS. The androgen receptor (AR) gene was transcriptionally silenced by agRNA targeted to its promoter, and we show that this repression was mitigated by knockdown of SETDB1 or AGO2. Chromatin immunoprecipitation demonstrated that agRNA-driven AGO2 was first targeted to the AR promoter, followed by SETDB1. SIN3A and HDAC1/2, the components of the SIN3-HDAC complex, immunoprecipitated with SETDB1, and localized at the agRNA-targeted promoter. Agreeing with the presence of SETDB1, trimethyl-H3K9 was enriched in the AR promoter. Both EZH2 and trimethyl-H3K27 were also present in the targeted locus; accordingly, EZH2 immunoprecipitated with SETDB1. DNA methylation level was not significantly changed, suggesting the absence of de novo methylating activity in agRNA-induced AR promoter. Our results demonstrate that SETDB1, together with AGO2, plays an essential role in TGS through recruiting chromatin remodeler and/or other modifiers, consequently creating a repressive chromatin milieu at the targeted promoter.
Collapse
Affiliation(s)
- Sunwha Cho
- Development and Differentiation Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, South Korea Department of Functional Genomics, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, 305-333 Daejeon, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, South Korea Department of Functional Genomics, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, 305-333 Daejeon, South Korea
| |
Collapse
|
36
|
White SA, Buscaino A, Sanchez-Pulido L, Ponting CP, Nowicki MW, Allshire RC. The RFTS domain of Raf2 is required for Cul4 interaction and heterochromatin integrity in fission yeast. PLoS One 2014; 9:e104161. [PMID: 25090107 PMCID: PMC4121317 DOI: 10.1371/journal.pone.0104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/11/2014] [Indexed: 11/18/2022] Open
Abstract
Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres.
Collapse
Affiliation(s)
- Sharon A. White
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alessia Buscaino
- School of Biosciences, Kent Fungal Group, University of Kent, Canterbury, Kent, United Kingdom
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew W. Nowicki
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Joh RI, Palmieri CM, Hill IT, Motamedi M. Regulation of histone methylation by noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1385-94. [PMID: 24954181 DOI: 10.1016/j.bbagrm.2014.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Cells can adapt to their environment and develop distinct identities by rewiring their transcriptional networks to regulate the output of key biological pathways without concomitant mutations to the underlying genes. These alterations, called epigenetic changes, persist stably through mitotic or, in some instances, meiotic cell divisions. In eukaryotes, heritable changes to chromatin structure are a prominent, but not exclusive, mechanism by which epigenetic changes are mediated. These changes are initiated by sequence-specific events, which trigger a cascade of molecular interactions resulting in feedback mechanisms, alterations in chromatin structure, histone posttranslational modifications (PTMs), and ultimately establishment of distinct transcriptional states. In recent years, advances in next generation sequencing have led to the discovery of several novel classes of noncoding RNAs (ncRNAs). In addition to their well-established cytoplasmic roles in posttranscriptional regulation of gene expression, ncRNAs have emerged as key regulators of epigenetic changes via chromatin-dependent mechanisms in organisms ranging from yeast to man. They function by affecting chromatin structure, histone PTMs, and the recruitment of transcriptional activating or repressing complexes. Among histone PTMs, lysine methylation serves as the binding substrate for the recruitment of key protein complexes involved in the regulation of genome architecture, stability, and gene expression. In this review, we will outline the known mechanisms by which ncRNAs of different origins regulate histone methylation, and in doing so contribute to a variety of genome regulatory functions in eukaryotes.
Collapse
Affiliation(s)
- Richard I Joh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA
| | - Ian T Hill
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School,149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
38
|
DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere. Protein Cell 2014; 5:411-9. [PMID: 24691906 PMCID: PMC4026425 DOI: 10.1007/s13238-014-0049-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/30/2023] Open
Abstract
Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.
Collapse
|
39
|
CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. Proc Natl Acad Sci U S A 2014; 111:1795-800. [PMID: 24449894 DOI: 10.1073/pnas.1313096111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Repressive histone H3 lysine 9 methylation (H3K9me) and its recognition by HP1 proteins are necessary for pericentromeric heterochromatin formation. In Schizosaccharomyces pombe, H3K9me deposition depends on the RNAi pathway. Cryptic loci regulator 4 (Clr4), the only known H3K9 methyltransferase in this organism, is a subunit of the Clr4 methyltransferase complex (CLRC), whose composition is reminiscent of a CRL4 type cullin-RING ubiquitin ligase (CRL) including its cullin Cul4, the RING-box protein Pip1, the DNA damage binding protein 1 homolog Rik1, and the DCAF-like protein delocalization of Swi6 1 (Dos1). Dos2 and Stc1 have been proposed to be part of the complex but do not bear similarity to canonical ubiquitin ligase components. CLRC is an active E3 ligase in vitro, and this activity is necessary for heterochromatin assembly in vivo. The similarity between CLRC and the CRLs suggests that the WD repeat protein Dos1 will act to mediate target recognition and substrate specificity for CLRC. Here, we present a pairwise interaction screen that confirms a CRL4-like subunit arrangement and further identifies Dos2 as a central component of the complex and recruiter of Stc1. We determined the crystal structure of the Dos1 WD repeat domain, revealing an eight-bladed β-propeller fold. Functional mapping of the putative target-binding surface of Dos1 identifies key residues required for heterochromatic silencing, consistent with Dos1's role as the specificity factor for the E3 ubiquitin ligase.
Collapse
|
40
|
Aramayo R, Selker EU. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 2013; 5:a017921. [PMID: 24086046 DOI: 10.1101/cshperspect.a017921] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The filamentous fungus Neurospora crassa has provided a rich source of knowledge on epigenetic phenomena that would have been difficult or impossible to gain from other systems. Neurospora sports features found in higher eukaryotes but absent in both budding and fission yeast, including DNA methylation and H3K27 methylation, and also has distinct RNA interference (RNAi)-based silencing mechanisms operating in mitotic and meiotic cells. This has provided an unexpected wealth of information on gene silencing systems. One silencing mechanism, named repeat-induced point mutation (RIP), has both epigenetic and genetic aspects and provided the first example of a homology-based genome defense system. A second silencing mechanism, named quelling, is an RNAi-based mechanism that results in silencing of transgenes and their native homologs. A third, named meiotic silencing, is also RNAi-based but is distinct from quelling in its time of action, targets, and apparent purpose.
Collapse
Affiliation(s)
- Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | | |
Collapse
|
41
|
Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 2013; 32:2321-35. [PMID: 23771057 PMCID: PMC3770337 DOI: 10.1038/emboj.2013.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/23/2013] [Indexed: 01/20/2023] Open
Abstract
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4-mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4-mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi-deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly. The demonstration that H3K14 deacetylation promotes recruitment of the Clr4 histone methyltransferase establishes a new function for the Sir2 deacetylase in de novo heterochromatin formation.
Collapse
|
42
|
Structural analysis of Stc1 provides insights into the coupling of RNAi and chromatin modification. Proc Natl Acad Sci U S A 2013; 110:E1879-88. [PMID: 23613586 DOI: 10.1073/pnas.1212155110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Noncoding RNAs can modulate gene expression by directing modifications to histones that alter chromatin structure. In fission yeast, siRNAs produced via the RNAi pathway direct modifications associated with heterochromatin formation. siRNAs associate with the RNAi effector protein Argonaute 1 (Ago1), targeting the Ago1-containing RNA-induced transcriptional silencing (RITS) complex to homologous nascent transcripts. This promotes recruitment of the Clr4 complex (CLRC), which mediates methylation of histone H3 on lysine 9 (H3K9me) in cognate chromatin. A key question is how the RNAi and chromatin modification machineries are connected. Stc1 is a small protein recently shown to associate with both Ago1 and CLRC and to play a pivotal role in mediating the RNAi-dependent recruitment of CLRC to chromatin. To understand its mode of action, we have performed a detailed structural and functional analysis of the Stc1 protein. Our analyses reveal that the conserved N-terminal region of Stc1 represents an unusual tandem zinc finger domain, with similarities to common LIM domains but distinguished by a lack of preferred relative orientation of the two zinc fingers. We demonstrate that this tandem zinc finger domain is involved in binding Ago1, whereas the nonconserved C-terminal region mediates association with CLRC. These findings elucidate the molecular basis for the coupling of RNAi to chromatin modification in fission yeast.
Collapse
|
43
|
Abstract
The coordinated replication and transcription of pericentromeric repeats enable RNA interference (RNAi)-mediated transmission of pericentromeric heterochromatin in fission yeast, which is essential for the proper function of centromeres. Rad3/ATR kinase phosphorylates histone H2A on serine-128/-129 to create γH2A in pericentromeric heterochromatin during S phase, which recruits Brc1 through its breast cancer gene 1 protein (BRCA1) C-terminal (BRCT) domains. Brc1 prevents the collapse of stalled replication forks; however, it is unknown whether this activity influences centromere function. Here, we show that Brc1 localizes in pericentromeric heterochromatin during S phase, where it enhances Clr4/Suv39-mediated H3 lysine-9 dimethylation (H3K9me2) and gene silencing. Loss of Brc1 increases sensitivity to the microtubule-destabilizing drug thiabendazole (TBZ) and increases chromosome missegregation in the presence of TBZ. Brc1 retains significant function even when it cannot bind γH2A. However, elimination of the serine-121 site on histone H2A, a target of Bub1 spindle assembly checkpoint kinase, sensitizes γH2A-deficient and brc1Δ cells to replication stress and microtubule destabilization. Collective results suggest that Brc1-mediated stabilization of stalled replication forks is necessary for fully efficient transmission of pericentromeric heterochromatin, which is required for accurate chromosome segregation during mitosis.
Collapse
|
44
|
Cell cycle-dependent deposition of CENP-A requires the Dos1/2-Cdc20 complex. Proc Natl Acad Sci U S A 2012; 110:606-11. [PMID: 23267073 DOI: 10.1073/pnas.1214874110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Centromeric histone CENP-A, a variant of canonical histone H3, plays a central role in proper chromosome segregation. Loading of CENP-A at centromeres is cell cycle-regulated: parental CENP-A is deposited at centromeres during S phase, whereas newly synthesized CENP-A is deposited during later stages of the cell cycle. The mechanisms involved in deposition of CENP-A at centromeres during S phase remain poorly understood. In fission yeast, loading of CENP-A during S phase is regulated by the GATA-type factor, Ams2. Here we show that the Dos1/2-Cdc20 complex, previously characterized as a silencing complex essential for inheritance of H3K9 methylation during S phase, is also required for localization of CENP-A(cnp1) at centromeres at this stage. Disruption of Dos1 (also known as Raf1/Clr8/Cmc1), Dos2 (also known as Raf2/Clr7/Cmc2), or Cdc20, a DNA polymerase epsilon subunit, results in dissociation of CENP-A from centromeres and mislocalization of the protein to noncentromeric sites. All three mutants display spindle disorganization and mitotic defects. Inactivation of Dos1 or Cdc20 also results in accumulation of noncoding RNA transcripts from centromeric cores, a feature common to mutants affecting kinetochore integrity. We further find that Dos1 physically associates with Ams2 and is required for the association of Ams2 with centromeric cores during S phase. Finally, we show that Dos2 associates with centromeric cores during S phase and that its recruitment to centromeric cores depends on Cdc20. This study identifies a physical link between DNA replication and CENP-A assembly machinery and provides mechanistic insight into how CENP-A is faithfully inherited during S phase.
Collapse
|
45
|
Alper BJ, Lowe BR, Partridge JF. Centromeric heterochromatin assembly in fission yeast--balancing transcription, RNA interference and chromatin modification. Chromosome Res 2012; 20:521-34. [PMID: 22733402 DOI: 10.1007/s10577-012-9288-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Distinct regions of the eukaryotic genome are packaged into different types of chromatin, with euchromatin representing gene rich, transcriptionally active regions and heterochromatin more condensed and gene poor. The assembly and maintenance of heterochromatin is important for many aspects of genome control, including silencing of gene transcription, suppression of recombination, and to ensure proper chromosome segregation. The precise mechanisms underlying heterochromatin establishment and maintenance are still unclear, but much progress has been made towards understanding this process during the last few years, particularly from studies performed in fission yeast. In this review, we hope to provide a conceptual model of centromeric heterochromatin in fission yeast that integrates our current understanding of the competing forces of transcription, replication, and RNA decay that influence its assembly and propagation.
Collapse
Affiliation(s)
- Benjamin J Alper
- Department of Biochemistry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | |
Collapse
|
46
|
Thorsen M, Hansen H, Venturi M, Holmberg S, Thon G. Mediator regulates non-coding RNA transcription at fission yeast centromeres. Epigenetics Chromatin 2012; 5:19. [PMID: 23171760 PMCID: PMC3541127 DOI: 10.1186/1756-8935-5-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background In fission yeast, centromeric heterochromatin is necessary for the fidelity of chromosome segregation. Propagation of heterochromatin in dividing cells requires RNA interference (RNAi) and transcription of centromeric repeats by RNA polymerase II during the S phase of the cell cycle. Results We found that the Med8-Med18-Med20 submodule of the Mediator complex is required for the transcriptional regulation of native centromeric dh and dg repeats and for the silencing of reporter genes inserted in centromeric heterochromatin. Mutations in the Med8-Med18-Med20 submodule did not alter Mediator occupancy at centromeres; however, they led to an increased recruitment of RNA polymerase II to centromeres and reduced levels of centromeric H3K9 methylation accounting for the centromeric desilencing. Further, we observed that Med18 and Med20 were required for efficient processing of dh transcripts into siRNA. Consistent with defects in centromeric heterochromatin, cells lacking Med18 or Med20 displayed elevated rates of mitotic chromosome loss. Conclusions Our data demonstrate a role for the Med8-Med18-Med20 Mediator submodule in the regulation of non-coding RNA transcription at Schizosaccharomyces pombe centromeres. In wild-type cells this submodule limits RNA polymerase II access to the heterochromatic DNA of the centromeres. Additionally, the submodule may act as an assembly platform for the RNAi machinery or regulate the activity of the RNAi pathway. Consequently, Med8-Med18-Med20 is required for silencing of centromeres and proper mitotic chromosome segregation.
Collapse
Affiliation(s)
- Michael Thorsen
- Department of Biology, University of Copenhagen, BioCenter, Ole Maaløes vej 5, 2200, Copenhagen, N, Denmark.
| | | | | | | | | |
Collapse
|
47
|
Braun S, Madhani HD. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep 2012; 13:619-30. [PMID: 22688965 DOI: 10.1038/embor.2012.78] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022] Open
Abstract
The organization of eukaryotic chromosomes into transcriptionally active euchromatin and repressed heterochromatin requires mechanisms that establish, maintain and distinguish these canonical chromatin domains. Post-translational modifications are fundamental in these processes. Monoubiquitylation of histones was discovered more than three decades ago, but its precise function has been enigmatic until recently. It is now appreciated that the spectrum of chromatin ubiquitylation is not restricted to monoubiquitylation of histones, but includes degradatory ubiquitylation of histones, histone-modifying enzymes and non-histone chromatin factors. These occur in a spatially and temporally controlled manner. In this review, we summarize our understanding of these mechanisms with a particular emphasis on how ubiquitylation shapes the physical landscape of chromatin.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Biochemistry & Biophysics, University of California, 600 16th Street, San Francisco, California 94158 2200, USA.
| | | |
Collapse
|
48
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
49
|
Abstract
Pericentromeric heterochromatin formation is mediated by repressive histone H3 lysine 9 methylation (H3K9Me) and its recognition by HP1 proteins. Intriguingly, in many organisms, RNAi is coupled to this process through poorly understood mechanisms. In Schizosaccharomyces pombe, the H3-K9 methyltransferase Clr4 and the heterochromatin protein 1 (HP1) ortholog Swi6 are critical for RNAi, whereas RNAi stimulates H3K9Me. In addition to the endoribonuclease Dcr1, RNAi in S. pombe requires two interacting protein complexes, the RITS complex, which contains an Argonaute subunit, and the RDRC complex, which contains an RNA-dependent RNA polymerase subunit. We previously identified Ers1 (essential for RNAi-dependent silencing) as an orphan protein that genetically acts in the RNAi pathway. Using recombinant proteins, we show here that Ers1 directly and specifically interacts with HP1/Swi6. Two-hybrid assays indicate that Ers1 also directly interacts with several RNAi factors. Consistent with these interactions, Ers1 associates in vivo with the RITS complex, the RDRC complex, and Dcr1, and it promotes interactions between these factors. Ers1, like Swi6, is also required for RNAi complexes to associate with pericentromeric noncoding RNAs. Overexpression of Ers1 results in a dominant-negative phenotype that can be specifically suppressed by increasing levels of the RDRC subunit Hrr1 or of Dcr1, further supporting a functional role for Ers1 in promoting the assembly of the RNAi machinery. Through the interactions described here, Ers1 may promote RNAi by tethering the corresponding enzyme complexes to HP1-coated chromatin, thereby placing them in proximity to the nascent noncoding RNA substrate.
Collapse
|
50
|
Buscaino A, White SA, Houston DR, Lejeune E, Simmer F, de Lima Alves F, Diyora PT, Urano T, Bayne EH, Rappsilber J, Allshire RC. Raf1 Is a DCAF for the Rik1 DDB1-like protein and has separable roles in siRNA generation and chromatin modification. PLoS Genet 2012; 8:e1002499. [PMID: 22319459 PMCID: PMC3271066 DOI: 10.1371/journal.pgen.1002499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Non-coding transcription can trigger histone post-translational modifications forming specialized chromatin. In fission yeast, heterochromatin formation requires RNAi and the histone H3K9 methyltransferase complex CLRC, composed of Clr4, Raf1, Raf2, Cul4, and Rik1. CLRC mediates H3K9 methylation and siRNA production; it also displays E3-ubiquitin ligase activity in vitro. DCAFs act as substrate receptors for E3 ligases and may couple ubiquitination with histone methylation. Here, structural alignment and mutation of signature WDxR motifs in Raf1 indicate that it is a DCAF for CLRC. We demonstrate that Raf1 promotes H3K9 methylation and siRNA amplification via two distinct, separable functions. The association of the DCAF Raf1 with Cul4-Rik1 is critical for H3K9 methylation, but dispensable for processing of centromeric transcripts into siRNAs. Thus the association of a DCAF, Raf1, with its adaptor, Rik1, is required for histone methylation and to allow RNAi to signal to chromatin.
Collapse
Affiliation(s)
- Alessia Buscaino
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sharon A. White
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas R. Houston
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erwan Lejeune
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Femke Simmer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Piyush T. Diyora
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Takeshi Urano
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Japan
| | - Elizabeth H. Bayne
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|