1
|
Moore T. X centromeric drive may explain the prevalence of polycystic ovary syndrome and other conditions: Genomic structure of the human X chromosome pericentromeric region is consistent with meiotic drive associated with PCOS and other conditions. Bioessays 2024; 46:e2400056. [PMID: 39072829 DOI: 10.1002/bies.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.
Collapse
Affiliation(s)
- Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Shi LY, Wang Y, Yang YJ, Li Q, Yang ZX, Sun LH, Luo FQ, He YH, Zhang SP, Su N, Liu JQ, He Y, Guan YC, Wei ZL, Cao YX, Zhang D. NLRP4E regulates actin cap formation through SRC and CDC42 during oocyte meiosis. Cell Mol Biol Lett 2024; 29:68. [PMID: 38730334 PMCID: PMC11088158 DOI: 10.1186/s11658-024-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.
Collapse
Affiliation(s)
- Li-Ya Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, 551 Pudong South Road, Shanghai, 200120, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Yan-Jie Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Qian Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Tianfei Lane, Nanjing, 210018, China
| | - Zhi-Xia Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Hua Sun
- Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, 551 Pudong South Road, Shanghai, 200120, China
| | - Fu-Qiang Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yu-Hao He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Shu-Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Ning Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Jia-Qi Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Ye He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Chun Guan
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450000, Henan, China.
| | - Zhao-Lian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
3
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Hoshino Y, Uchida T. Prolyl Isomerase, Pin1, Controls Meiotic Progression in Mouse Oocytes. Cells 2022; 11:cells11233772. [PMID: 36497033 PMCID: PMC9739419 DOI: 10.3390/cells11233772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During meiotic maturation, accurate progression of meiosis is ensured by multiple protein kinases and by signal transduction pathways they are involved in. However, the mechanisms regulating the functions of phosphorylated proteins are unclear. Herein, we investigated the role of Pin1, a peptidyl-prolyl cis-trans isomerase family member that regulates protein functions by altering the structure of the peptide bond of proline in phosphorylated proteins in meiosis. First, we analyzed changes in the expression of Pin1 during meiotic maturation and found that although its levels were constant, its localization was dynamic in different stages of meiosis. Furthermore, we confirmed that the spindle rotates near the cortex when Pin1 is inhibited by juglone during meiotic maturation, resulting in an error in the extrusion of the first polar body. In Pin1-/- mice, frequent polar body extrusion errors were observed in ovulation, providing insights into the mechanism underlying the errors in the extrusion of the polar body. Although multiple factors and mechanisms might be involved, Pin1 functions in meiosis progression via actin- and microtubule-associated phosphorylated protein targets. Our results show that functional regulation of Pin1 is indispensable in oocyte production and should be considered while developing oocyte culture technologies for reproductive medicine and animal breeding.
Collapse
Affiliation(s)
- Yumi Hoshino
- Laboratory of Animal Reproduction, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima 739-8528, Japan
- Laboratory of Reproductive Biology, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan
- Correspondence:
| | - Takafumi Uchida
- Laboratory of Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555, Japan
| |
Collapse
|
5
|
Mo G, Li R, Swider Z, Leblanc J, Bement WM, Liu XJ. A localized calcium transient and polar body abscission. Cell Cycle 2022; 21:2239-2254. [PMID: 35775922 DOI: 10.1080/15384101.2022.2092815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Polar body emission is a special form of cytokinesis in oocyte meiosis that ensures the correct number of chromosomes in reproduction-competent eggs. The molecular mechanism of the last step, polar body abscission, is poorly understood. While it has been proposed that Ca2+ signaling plays important roles in embryonic cytokinesis, to date transient increases in intracellular free Ca2+ have been difficult to document in oocyte meiosis except for the global Ca2+ wave induced by sperm at fertilization. Here, we find that microinjection of the calcium chelator dibromo-BAPTA inhibits polar body abscission in Xenopus laevis oocytes. Using a novel, microtubule-targeted ratio-metric calcium sensor, we detected a calcium transient that is focused at the contractile ring-associated plasma membrane and which occurred after anaphase and constriction of the contractile ring but prior to abscission. This calcium transient was confirmed by mobile calcium probes. Further, the Ca2+-sensitive protein kinase Cβ C2 domain transiently translocated to the contractile ring-associated membrane simultaneously with the calcium transient. Collectively, these results demonstrate that a calcium transient, apparently originating at the contractile ring-associated plasma membrane, promotes polar body abscission.
Collapse
Affiliation(s)
- Guolong Mo
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruizhen Li
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Zachary Swider
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Leblanc
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - William M Bement
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - X Johné Liu
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Mei Q, Li H, Liu Y, Wang X, Xiang W. Advances in the study of CDC42 in the female reproductive system. J Cell Mol Med 2021; 26:16-24. [PMID: 34859585 PMCID: PMC8742232 DOI: 10.1111/jcmm.17088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
CDC42 is a member of the Rho‐GTPase family and is involved in a variety of cellular functions including regulation of cell cycle progression, constitution of the actin backbone and membrane transport. In particular, CDC42 plays a key role in the establishment of polarity in female vertebrate oocytes, and essential to this major regulatory role is its local occupation of specific regions of the cell to ensure that the contractile ring is assembled at the right time and place to ensure proper gametogenesis. The multifactor controlled ‘inactivation‐activation’ process of CDC42 also allows it to play an important role in the multilevel signalling network, and the synergistic regulation of multiple genes ensures maximum precision during gametogenesis. The purpose of this paper is to review the role of CDC42 in the control of gametogenesis and to explore its related mechanisms, with the aim of further understanding the great research potential of CDC42 in female vertebrate germ cells and its future clinical translation.
Collapse
Affiliation(s)
- Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Mu H, Zhang T, Yang Y, Zhang D, Gao J, Li J, Yue L, Gao D, Shi B, Han Y, Zhong L, Chen X, Wang ZB, Lin Z, Tong MH, Sun QY, Yang YG, Han J. METTL3-mediated mRNA N 6-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis 2021; 12:989. [PMID: 34689175 PMCID: PMC8542036 DOI: 10.1038/s41419-021-04272-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Proper follicle development is very important for the production of mature oocytes, which is essential for the maintenance of female fertility. This complex biological process requires precise gene regulation. The most abundant modification of mRNA, N6-methyladenosine (m6A), is involved in many RNA metabolism processes, including RNA splicing, translation, stability, and degradation. Here, we report that m6A plays essential roles during oocyte and follicle development. Oocyte-specific inactivation of the key m6A methyltransferase Mettl3 with Gdf9-Cre caused DNA damage accumulation in oocytes, defective follicle development, and abnormal ovulation. Mechanistically, combined RNA-seq and m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) data from oocytes revealed, that we found METTL3 targets Itsn2 for m6A modification and then enhances its stability to influence the oocytes meiosis. Taken together, our findings highlight the crucial roles of mRNA m6A modification in follicle development and coordination of RNA stabilization during oocyte growth.
Collapse
Affiliation(s)
- Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ting Zhang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danru Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Yue
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dengfeng Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingbo Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Han
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, Hebei, 050051, China
| | - Xinze Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Bo Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,China National Center for Bioinformation, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Van Essen D, Alcaraz AJG, Miller JGP, Jones PD, Doering JA, Wiseman S. The brominated flame retardant, TBCO, impairs oocyte maturation in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105929. [PMID: 34375885 DOI: 10.1016/j.aquatox.2021.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), has been shown to decrease fecundity in Japanese medaka (Oryzias latipes) and there is indirect evidence from analysis of the transcriptome and proteome that this effect might be due to impaired oogenesis. An assay for disruption of oocyte maturation by chemical stressors has not been developed in Japanese medaka. Thus, using zebrafish (Danio rerio) as a model, objectives of the present study were to determine whether exposure to TBCO has effects on maturation of oocytes and to investigate potential mechanisms. Sexually mature female zebrafish were given a diet of 35.3 or 628.8 μg TBCO / g food for 14 days after which, stage IV oocytes were isolated to assess maturation in response to maturation inducing hormone. To explore potential molecular mechanisms, abundances of mRNAs of a suite of genes that regulate oocyte maturation were quantified by use of quantitative real-time PCR, and abundances of microRNAs were determined by use of miRNAseq. Ex vivo maturation of oocytes from fish exposed to TBCO was significantly less than maturation of oocytes from control fish. The percentage of oocytes which matured from control fish and those exposed to low and high TBCO were 89, 71, and 67%, respectively. Among the suite of genes known to regulate oocyte maturation, mRNA abundance of insulin like growth factor-3 was decreased by 1.64- and 3.44-fold in stage IV oocytes from females given the low and high concentrations of TBCO, respectively, compared to the control group. Abundances of microRNAs regulating the expression of proteins that regulate oocyte maturation, including processes related to insulin-like growth factor, were significantly different in stage IV oocytes from fish exposed to TBCO. Overall, results of this study indicated that impaired oocyte maturation might be a mechanism of reduced reproductive performance in TBCO-exposed fish. Results also suggested that effects of TBCO on oocyte maturation might be due to molecular perturbations on insulin-like growth factor signaling and expression of microRNAs.
Collapse
Affiliation(s)
- Darren Van Essen
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | | | - Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA), Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, G1K 9A9, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA), Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, G1K 9A9, Canada; Water Institute for Sustainable Environments, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
9
|
Role of PB1 Midbody Remnant Creating Tethered Polar Bodies during Meiosis II. Genes (Basel) 2020; 11:genes11121394. [PMID: 33255457 PMCID: PMC7760350 DOI: 10.3390/genes11121394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/30/2023] Open
Abstract
Polar body (PB) formation is an extreme form of unequal cell division that occurs in oocytes due to the eccentric position of the small meiotic spindle near the oocyte cortex. Prior to PB formation, a chromatin-centered process causes the cortex overlying the meiotic chromosomes to become polarized. This polarized cortical subdomain marks the site where a cortical protrusion or outpocket forms at the oocyte surface creating the future PBs. Using ascidians, we observed that PB1 becomes tethered to the fertilized egg via PB2, indicating that the site of PB1 cytokinesis directed the precise site for PB2 emission. We therefore studied whether the midbody remnant left behind following PB1 emission was involved, together with the egg chromatin, in defining the precise cortical site for PB2 emission. During outpocketing of PB2 in ascidians, we discovered that a small structure around 1 µm in diameter protruded from the cortical outpocket that will form the future PB2, which we define as the “polar corps”. As emission of PB2 progressed, this small polar corps became localized between PB2 and PB1 and appeared to link PB2 to PB1. We tested the hypothesis that this small polar corps on the surface of the forming PB2 outpocket was the midbody remnant from the previous round of PB1 cytokinesis. We had previously discovered that Plk1::Ven labeled midbody remnants in ascidian embryos. We therefore used Plk1::Ven to follow the dynamics of the PB1 midbody remnant during meiosis II. Plk1::Ven strongly labeled the small polar corps that formed on the surface of the cortical outpocket that created PB2. Following emission of PB2, this polar corps was rich in Plk1::Ven and linked PB2 to PB1. By labelling actin (with TRITC-Phalloidin) we also demonstrated that actin accumulates at the midbody remnant and also forms a cortical cap around the midbody remnant in meiosis II that prefigured the precise site of cortical outpocketing during PB2 emission. Phalloidin staining of actin and immunolabelling of anti-phospho aPKC during meiosis II in fertilized eggs that had PB1 removed suggested that the midbody remnant remained within the fertilized egg following emission of PB1. Dynamic imaging of microtubules labelled with Ens::3GFP, MAP7::GFP or EB3::3GFP showed that one pole of the second meiotic spindle was located near the midbody remnant while the other pole rotated away from the cortex during outpocketing. Finally, we report that failure of the second meiotic spindle to rotate can lead to the formation of two cortical outpockets at anaphase II, one above each set of chromatids. It is not known whether the midbody remnant of PB1 is involved in directing the precise location of PB2 since our data are correlative in ascidians. However, a review of the literature indicates that PB1 is tethered to the egg surface via PB2 in several species including members of the cnidarians, lophotrochozoa and echinoids, suggesting that the midbody remnant formed during PB1 emission may be involved in directing the precise site of PB2 emission throughout the invertebrates.
Collapse
|
10
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
11
|
Parra-Forero LY, Veloz-Contreras A, Vargas-Marín S, Mojica-Villegas MA, Alfaro-Pedraza E, Urióstegui-Acosta M, Hernández-Ochoa I. Alterations in oocytes and early zygotes following oral exposure to di(2-ethylhexyl) phthalate in young adult female mice. Reprod Toxicol 2019; 90:53-61. [PMID: 31442482 DOI: 10.1016/j.reprotox.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Because di(2-ethylhexyl) phthalate (DEHP) toxicity on ovarian function is incomplete, effects of DEHP oocyte fertilization and the resulting zygotes were investigated. Further, an analysis characterizing the stage of zygote arrest was performed. Female CD1 mice were dosed orally with DEHP (0, 20, 200 and 2000 μg/kg/day) for 30 days. Following an in vivo mating post-dosing, DEHP-treated females exhibited fewer oocytes/zygotes, fewer oocytes displaying the polar body extrusion, fewer 1-cell zygotes having 2-pronuclei, more unfertilized oocytes, and decreased number of zygotes at every stage of development. DEHP induced blastomere fragmentation in zygotes. DNA replication in zygotes directly assessed by the 5-Ethynyl-2'-deoxyuridine (5-EdU) incorporation assay and indirectly by dosing mice with 5-fluorouracil (5-FU) suggested that DEHP inhibits DNA replication. Our data suggest that DEHP at doses found in 'every-day' (200 μg/Kg/day) or occupational (2000 μg/Kg/day) environments induces zygote fragmentation and arrests its development from the 2-cell stage potentially impairing DNA replication.
Collapse
Affiliation(s)
- Lyda Yuliana Parra-Forero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Arlet Veloz-Contreras
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Shirley Vargas-Marín
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - María Angelica Mojica-Villegas
- Laboratorio de Toxicología de la Reproducción-Fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-IPN, Col. San Pedro Zacatenco, Ciudad de México, 2508, Mexico
| | - Elim Alfaro-Pedraza
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico.
| |
Collapse
|
12
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Klughammer N, Bischof J, Schnellbächer ND, Callegari A, Lénárt P, Schwarz US. Cytoplasmic flows in starfish oocytes are fully determined by cortical contractions. PLoS Comput Biol 2018; 14:e1006588. [PMID: 30439934 PMCID: PMC6264906 DOI: 10.1371/journal.pcbi.1006588] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/29/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic flows are an ubiquitous feature of biological systems, in particular in large cells, such as oocytes and eggs in early animal development. Here we show that cytoplasmic flows in starfish oocytes, which can be imaged well with transmission light microscopy, are fully determined by the cortical dynamics during surface contraction waves. We first show that the dynamics of the oocyte surface is highly symmetric around the animal-vegetal axis. We then mathematically solve the Stokes equation for flows inside a deforming sphere using the measured surface displacements as boundary conditions. Our theoretical predictions agree very well with the intracellular flows quantified by particle image velocimetry, proving that during this stage the starfish cytoplasm behaves as a simple Newtonian fluid on the micrometer scale. We calculate the pressure field inside the oocyte and find that its gradient is too small as to explain polar body extrusion, in contrast to earlier suggestions. Myosin II inhibition by blebbistatin confirms this conclusion, because it diminishes cell shape changes and hydrodynamic flow, but does not abolish polar body formation. As already noted by Aristotle, life is motion. On the molecular scale, thermal motion leads to diffusive transport. On cellular scales, however, diffusion starts to become inefficient, due to the general property of random walks that their spatial excursions grow less than linear with time. Therefore more directed transport processes are needed on cellular scales, including transport by molecular motors or by hydrodynamic flows. This is especially true for oocytes and eggs in early animal development, which often have to be large in order to store sufficient amounts of nutrients. Here we use starfish oocytes as a convenient model system to investigate the nature and function of cytoplasmic flows in early development. These cells are very large and optically transparent, and therefore ideal for live cell imaging that here we combine with image processing and mathematical modelling. This approach allows us to demonstrate that the experimentally observed cytoplasmic flows during early development are a direct consequence of surface contraction waves that deform the soft and contractile eggs. Additionally we show that despite its microscopic complexity, the cytoplasm behaves like a Newtonian fluid on the cellular scale. Our findings impose strong physical limits on the potential biological function of these flows and suggest that also other cellular systems that are soft and contractile might experience large cytoplasmic flows upon cell shape changes, for example during cell migration or division.
Collapse
Affiliation(s)
- Nils Klughammer
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Johanna Bischof
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Andrea Callegari
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
14
|
Sharma A, Tiwari M, Gupta A, Pandey AN, Yadav PK, Chaube SK. Journey of oocyte from metaphase-I to metaphase-II stage in mammals. J Cell Physiol 2018; 233:5530-5536. [PMID: 29331044 DOI: 10.1002/jcp.26467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
In mammals, journey from metaphase-I (M-I) to metaphase-II (M-II) is important since oocyte extrude first polar body (PB-I) and gets converted into haploid gamete. The molecular and cellular changes associated with meiotic cell cycle progression from M-I to M-II stage and extrusion of PB-I remain ill understood. Several factors drive oocyte meiosis from M-I to M-II stage. The mitogen-activated protein kinase3/1 (MAPK3/1), signal molecules and Rho family GTPases act through various pathways to drive cell cycle progression from M-I to M-II stage. The down regulation of MOS/MEK/MAPK3/1 pathway results in the activation of anaphase-promoting complex/cyclosome (APC/C). The active APC/C destabilizes maturation promoting factor (MPF) and induces meiotic resumption. Several signal molecules such as, c-Jun N-terminal kinase (JNK2), SENP3, mitotic kinesin-like protein 2 (MKlp2), regulator of G-protein signaling (RGS2), Epsin2, polo-like kinase 1 (Plk1) are directly or indirectly involved in chromosomal segregation. Rho family GTPase is another enzyme that along with cell division cycle (Cdc42) to form actomyosin contractile ring required for chromosomal segregation. In the presence of origin recognition complex (ORC4), eccentrically localized haploid set of chromosomes trigger cortex differentiation and determine the division site for polar body formation. The actomyosin contractile activity at the site of division plane helps to form cytokinetic furrow that results in the formation and extrusion of PB-I. Indeed, oocyte journey from M-I to M-II stage is coordinated by several factors and pathways that enable oocyte to extrude PB-I. Quality of oocyte directly impact fertilization rate, early embryonic development, and reproductive outcome in mammals.
Collapse
Affiliation(s)
- Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Varjabedian A, Kita A, Bement W. Living Xenopus oocytes, eggs, and embryos as models for cell division. Methods Cell Biol 2018; 144:259-285. [PMID: 29804672 PMCID: PMC6050073 DOI: 10.1016/bs.mcb.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenopus laevis has long been a popular model for studies of development and, based on the use of cell-free extracts derived from its eggs, as a model for reconstitution of cell cycle regulation and other basic cellular processes. However, work over the last several years has shown that intact Xenopus eggs and embryos are also powerful models for visualization and characterization of cell cycle-regulated cytoskeletal dynamics. These findings were something of a surprise, given that the relatively low opacity of Xenopus eggs and embryos was assumed to make them poor subjects for live-cell imaging. In fact, however, the high tolerance for light exposure, the development of new imaging approaches, new probes for cytoskeletal components and cytoskeletal regulators, and the ease of microinjection make the Xenopus oocytes, eggs, and embryos one of the most useful live-cell imaging models among the vertebrates. In this review, we describe the basics of using X. laevis as a model organism for studying cell division and outline experimental approaches for imaging cytoskeletal components in vivo in X. laevis embryos and eggs.
Collapse
Affiliation(s)
- Ani Varjabedian
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Kita
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - William Bement
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
17
|
Flynn JR, McNally FJ. A casein kinase 1 prevents expulsion of the oocyte meiotic spindle into a polar body by regulating cortical contractility. Mol Biol Cell 2017; 28:2410-2419. [PMID: 28701347 PMCID: PMC5576904 DOI: 10.1091/mbc.e17-01-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 01/20/2023] Open
Abstract
During female meiosis, haploid eggs are generated from diploid oocytes. This reduction in chromosome number occurs through two highly asymmetric cell divisions, resulting in one large egg and two small polar bodies. Unlike mitosis, where an actomyosin contractile ring forms between the sets of segregating chromosomes, the meiotic contractile ring forms on the cortex adjacent to one spindle pole, then ingresses down the length of the spindle to position itself at the exact midpoint between the two sets of segregating chromosomes. Depletion of casein kinase 1 gamma (CSNK-1) in Caenorhabditis elegans led to the formation of large polar bodies that contain all maternal DNA, because the contractile ring ingressed past the spindle midpoint. Depletion of CSNK-1 also resulted in the formation of deep membrane invaginations during meiosis, suggesting an effect on cortical myosin. Both myosin and anillin assemble into dynamic rho-dependent cortical patches that rapidly disassemble in wild-type embryos. CSNK-1 was required for disassembly of both myosin patches and anillin patches. Disassembly of anillin patches was myosin independent, suggesting that CSNK-1 prevents expulsion of the entire meiotic spindle into a polar body by negatively regulating the rho pathway rather than through direct inhibition of myosin.
Collapse
Affiliation(s)
- Jonathan R Flynn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
18
|
Zhang J, Ma R, Li L, Wang L, Hou X, Han L, Ge J, Li M, Wang Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway. FASEB J 2017. [PMID: 28626024 DOI: 10.1096/fj.201700179r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intersectins (ITSNs), an evolutionarily conserved adaptor protein family, have been implicated in multiple biologic processes; however, their functions in mammalian oocytes have not been addressed. Here, we report delayed meiotic resumption and defective cytokinesis upon specific depletion of ITSN2 in mouse oocytes. In particular, abnormal spindle, misaligned chromosomes, and loss of cortical actin cap are readily observed in ITSN2-depleted oocytes. Similarly, a small molecule that targets the Cdc42-ITSN interaction also disrupts oocyte maturation and actin polymerization. Moreover, we find that ITSN2 depletion reduces the activity of Cdc42 in oocytes and, of note, that forced expression of the dominant-positive mutant of Cdc42, in part, prevents the effects of ITSN2 knockdown on actin cap formation. In addition, the localization of WASP and Arp2, the downstream effector proteins of Cdc42, is altered in ITSN2-depleted oocytes accordingly. In summary, our data support a model in which ITSN2 depletion induces the inactivation of Cdc42, which, in turn, influences the distribution and function of Arp2/3 and WASP, consequently disrupting oocyte polarity establishment and meiotic division.-Zhang, J., Ma, R., Li, L., Wang, L., Hou, X., Han, L., Ge, J., Li, M., Wang, Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Wang
- Key Laboratory of Birth Defects Prevention, National Health and Family Planning Commission, Zhengzhou, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China;
| |
Collapse
|
19
|
Zhuravlev Y, Hirsch SM, Jordan SN, Dumont J, Shirasu-Hiza M, Canman JC. CYK-4 regulates Rac, but not Rho, during cytokinesis. Mol Biol Cell 2017; 28:1258-1270. [PMID: 28298491 PMCID: PMC5415020 DOI: 10.1091/mbc.e17-01-0020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
The roles of the Rho-family GAP CYK-4 and small GTPase Rac during cytokinesis are examined in Caenorhabditis elegans embryos. CYK-4 opposes Rac (and potentially Cdc42) activity during cytokinesis. There is no evidence that CYK-4 is upstream of Rho activity or that Rac disruption is a general suppressor of cytokinesis failure. Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis.
Collapse
Affiliation(s)
- Yelena Zhuravlev
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Sophia M Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
20
|
Jia RX, Duan X, Song SJ, Sun SC. LIMK1/2 inhibitor LIMKi 3 suppresses porcine oocyte maturation. PeerJ 2016; 4:e2553. [PMID: 27761340 PMCID: PMC5068415 DOI: 10.7717/peerj.2553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
LIMKi 3 is a specific selective LIMK inhibitor against LIMK1 and LIMK2, while LIMK1 and LIMK2 are the main regulators of actin cytoskeleton to participate in many cell activities. However, the effect of LIMKi 3 in porcine oocyte meiosis is still unclear. The present study was designed to investigate the effects of LIMKi 3 and potential regulatory role of LIMK1/2 on porcine oocyte meiotic maturation. Immunofluorescent staining of p-LIMK1/2 antibody showed that LIMK1/2 was localized mainly to the cortex of porcine oocyte, which co-localized with actin. After LIMKi 3 treatment, the diffusion of COCs became weak and the rate of polar body extrusion was decreased. This could be rescued by moving oocytes to fresh medium. After prolonging the culture time of oocytes, the maturation rate of porcine oocyte increased in LIMKi 3 groups, indicating that LIMKi 3 may suppress the cell cycle during porcine oocyte maturation. We also found that after LIMKi 3 treatment actin distribution was significantly disturbed at porcine oocyte membranes and cytoplasm, indicating the conserved roles of LIMK1/2 on actin dynamics. Next we examined the meiotic spindle positioning in porcine oocyte, and the results showed that a majority of spindles were not attached to the cortex of porcine oocyte, indicating that LIMKi 3 may affect actin-mediated spindle positioning. Taken together, these results showed that LIMK1/2 inhibitor LIMKi 3 had a repressive role on porcine oocyte meiotic maturation.
Collapse
Affiliation(s)
- Ru-Xia Jia
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Xing Duan
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Si-Jing Song
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
21
|
Li R, Leblanc J, He K, Liu XJ. Spindle function in Xenopus oocytes involves possible nanodomain calcium signaling. Mol Biol Cell 2016; 27:3273-3283. [PMID: 27582389 PMCID: PMC5170860 DOI: 10.1091/mbc.e16-05-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 11/11/2022] Open
Abstract
Injection of dibromo-BAPTA caused immediate collapse of meiotic spindles in frog oocytes. In contrast, EGTA had no effect on the spindle or polar body emission. The disruption of spindle integrity by the fast but not slow calcium chelators suggests that meiotic spindle function in the oocytes involves nanodomain calcium signaling. Intracellular calcium transients are a universal phenomenon at fertilization and are required for egg activation, but the exact role of Ca2+ in second-polar-body emission remains unknown. On the other hand, similar calcium transients have not been demonstrated during oocyte maturation, and yet, manipulating intracellular calcium levels interferes with first-polar-body emission in mice and frogs. To determine the precise role of calcium signaling in polar body formation, we used live-cell imaging coupled with temporally precise intracellular calcium buffering. We found that BAPTA-based calcium chelators cause immediate depolymerization of spindle microtubules in meiosis I and meiosis II. Surprisingly, EGTA at similar or higher intracellular concentrations had no effect on spindle function or polar body emission. Using two calcium probes containing permutated GFP and the calcium sensor calmodulin (Lck-GCaMP3 and GCaMP3), we demonstrated enrichment of the probes at the spindle but failed to detect calcium increase during oocyte maturation at the spindle or elsewhere. Finally, endogenous calmodulin was found to colocalize with spindle microtubules throughout all stages of meiosis. Our results—most important, the different sensitivities of the spindle to BAPTA and EGTA—suggest that meiotic spindle function in frog oocytes requires highly localized, or nanodomain, calcium signaling.
Collapse
Affiliation(s)
- Ruizhen Li
- Ottawa Hospital Research Institute, Ottawa Hospital-General Campus, Ottawa, ON K1H 8L6, Canada
| | - Julie Leblanc
- Ottawa Hospital Research Institute, Ottawa Hospital-General Campus, Ottawa, ON K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin He
- Ottawa Hospital Research Institute, Ottawa Hospital-General Campus, Ottawa, ON K1H 8L6, Canada
| | - X Johné Liu
- Ottawa Hospital Research Institute, Ottawa Hospital-General Campus, Ottawa, ON K1H 8L6, Canada .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
22
|
Wang ZB, Ma XS, Hu MW, Jiang ZZ, Meng TG, Dong MZ, Fan LH, Ouyang YC, Snapper SB, Schatten H, Sun QY. Oocyte-specific deletion of N-WASP does not affect oocyte polarity, but causes failure of meiosis II completion. Mol Hum Reprod 2016; 22:613-21. [PMID: 27401749 DOI: 10.1093/molehr/gaw046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/02/2016] [Indexed: 01/04/2023] Open
Abstract
STUDY QUESTION There is an unexplored physiological role of N-WASP (neural Wiskott-Aldrich syndrome protein) in oocyte maturation that prevents completion of second meiosis. SUMMARY ANSWER In mice, N-WASP deletion did not affect oocyte polarity and asymmetric meiotic division in first meiosis, but did impair midbody formation and second meiosis completion. WHAT IS KNOWN ALREADY N-WASP regulates actin dynamics and participates in various cell activities through the RHO-GTPase-Arp2/3 (actin-related protein 2/3 complex) pathway, and specifically the Cdc42 (cell division cycle 42)-N-WASP-Arp2/3 pathway. Differences in the functions of Cdc42 have been obtained from in vitro compared to in vivo studies. STUDY DESIGN, SAMPLES/MATERIALS, METHODS By conditional knockout of N-WASP in mouse oocytes, we analyzed its in vivo functions by employing a variety of different methods including oocyte culture, immunofluorescent staining and live oocyte imaging. Each experiment was repeated at least three times, and data were analyzed by paired-samples t-test. MAIN RESULTS AND THE ROLE OF CHANCE Oocyte-specific deletion of N-WASP did not affect the process of oocyte maturation including spindle formation, spindle migration, polarity establishment and maintenance, and homologous chromosome or sister chromatid segregation, but caused failure of cytokinesis completion during second meiosis (P < 0.001 compared to control). Further analysis showed that a defective midbody may be responsible for the failure of cytokinesis completion. LIMITATIONS, REASONS FOR CAUTION The present study did not include a detailed analysis of the mechanisms underlying the results, which will require more extensive further investigations. WIDER IMPLICATIONS OF THE FINDINGS N-WASP may play an important role in mediating and co-ordinating the activity of the spindle (midbody) and actin (contractile ring constriction) when cell division occurs. The findings are important for understanding the regulation of oocyte meiosis completion and failures in this process that affect oocyte quality. LARGE SCALE DATA None. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the National Basic Research Program of China (No. 2012CB944404) and the National Natural Science Foundation of China (Nos 30930065, 31371451, 31272260 and 31530049). There are no potential conflicts of interests.
Collapse
Affiliation(s)
- Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zong-Zhe Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Scott B Snapper
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
23
|
Wei B, Hercyk BS, Mattson N, Mohammadi A, Rich J, DeBruyne E, Clark MM, Das M. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis. Mol Biol Cell 2016; 27:1235-45. [PMID: 26941334 PMCID: PMC4831878 DOI: 10.1091/mbc.e15-10-0700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, andscd1Δcells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Brian S Hercyk
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Mattson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Ahmad Mohammadi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Julie Rich
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Erica DeBruyne
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mikayla M Clark
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Maitreyi Das
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
24
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
25
|
Zhang Y, Duan X, Cao R, Liu HL, Cui XS, Kim NH, Rui R, Sun SC. Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle 2015; 13:3390-403. [PMID: 25485583 DOI: 10.4161/15384101.2014.952967] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mammalian oocyte maturation is distinguished by asymmetric division that is regulated primarily by cytoskeleton, including microtubules and microfilaments. Small Rho GTPase RhoA is a key regulator of cytoskeletal organization which regulates cell polarity, migration, and division. In this study, we investigated the roles of RhoA in mammalian oocyte meiosis and early embryo cleavage. (1) Disrupting RhoA activity or knock down the expression of RhoA caused the failure of polar body emission. This may have been due to decreased actin assembly and subsequent spindle migration defects. The involvement of RhoA in this process may have been though its regulation of actin nucleators ROCK, p-Cofilin, and ARP2 expression. (2) In addition, spindle morphology was also disrupted and p-MAPK expression decreased in RhoA inhibited or RhoA KD oocytes, which indicated that RhoA also regulated MAPK phosphorylation for spindle formation. (3) Porcine embryo development was also suppressed by inhibiting RhoA activity. Two nuclei were observed in one blastomere, and actin expression was reduced, which indicated that RhoA regulated actin-based cytokinesis of porcine embryo. Thus, our results demonstrated indispensable roles for RhoA in regulating porcine oocyte meiosis and cleavage during early embryo development.
Collapse
Affiliation(s)
- Yu Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Duman JG, Mulherkar S, Tu YK, X Cheng J, Tolias KF. Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses. Neurosci Lett 2015; 601:4-10. [PMID: 26003445 DOI: 10.1016/j.neulet.2015.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
Abstract
Synapses mediate information flow between neurons and undergo plastic changes in response to experience, which is critical for learning and memory. Conversely, synaptic defects impair information processing and underlie many brain pathologies. Rho-family GTPases control synaptogenesis by transducing signals from extracellular stimuli to the cytoskeleton and nucleus. The Rho-GTPases Rac1 and Cdc42 promote synapse development and the growth of axons and dendrites, while RhoA antagonizes these processes. Despite its importance, many aspects of Rho-GTPase signaling remain relatively unknown. Rho-GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). Though the number of both GEFs and GAPs greatly exceeds that of Rho-GTPases, loss of even a single GEF or GAP often has profound effects on cognition and behavior. Here, we explore how the actions of specific GEFs and GAPs give rise to the precise spatiotemporal activation patterns of Rho-GTPases in neurons. We consider the effects of coupling GEFs and GAPs targeting the same Rho-GTPase and the modular pathways that connect specific cellular stimuli with a given Rho-GTPase via different GEFs. We discuss how the creation of sharp borders between Rho-GTPase activation zones is achieved by pairing a GEF for one Rho-GTPase with a GAP for another and the extensive crosstalk between different Rho-GTPases. Given the importance of synapses for cognition and the fundamental roles that Rho-GTPases play in regulating them, a detailed understanding of Rho-GTPase signaling is essential to the progress of neuroscience.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yen-Kuei Tu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program,Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jinxuan X Cheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program,Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Wang F, An GY, Zhang Y, Liu HL, Cui XS, Kim NH, Sun SC. Arp2/3 complex inhibition prevents meiotic maturation in porcine oocytes. PLoS One 2014; 9:e87700. [PMID: 24498171 PMCID: PMC3909225 DOI: 10.1371/journal.pone.0087700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Arp2/3 complex regulates actin nucleation, which is critical for a wide range of cellular processes, such as cell polarity, cell locomotion, and endocytosis. In the present study, we investigated the possible roles of the Arp2/3 complex in porcine oocytes during meiotic maturation. Immunofluorescent staining showed the Arp2/3 complex to localize mainly to the cortex of porcine oocytes, colocalizing with actin. Treatment with an Arp2/3 complex specific inhibitor, CK666, resulted in a decrease in Arp2/3 complex localization at the oocyte cortex. The maturation rate of porcine oocytes decreased significantly after CK666 treatment, concomitant with the failure of cumulus cell expansion and oocyte polar body extrusion. The fluorescence intensity of F-actin decreased in the cytoplasm, and CK666 also disrupted actin cap formation. In summary, our results illustrate that the Arp2/3 complex is required for the meiotic maturation of porcine oocytes and that actin nucleation is critical for meiotic maturation.
Collapse
Affiliation(s)
- Fei Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ga-Young An
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Yu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Shao-Chen Sun
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
28
|
Bement WM, von Dassow G. Single cell pattern formation and transient cytoskeletal arrays. Curr Opin Cell Biol 2013; 26:51-9. [PMID: 24529246 DOI: 10.1016/j.ceb.2013.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/28/2022]
Abstract
A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized.
Collapse
Affiliation(s)
- William M Bement
- Laboratory of Cell and Molecular Biology and Department of Zoology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA; Oregon Institute of Marine Biology, University of Oregon, P.O. Box 5389, Charleston, OR 97420, USA.
| | - George von Dassow
- Laboratory of Cell and Molecular Biology and Department of Zoology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, Wisconsin 53706, USA.
| |
Collapse
|
29
|
Wang ZB, Jiang ZZ, Zhang QH, Hu MW, Huang L, Ou XH, Guo L, Ouyang YC, Hou Y, Brakebusch C, Schatten H, Sun QY. Specific deletion of Cdc42 does not affect meiotic spindle organization/migration and homologous chromosome segregation but disrupts polarity establishment and cytokinesis in mouse oocytes. Mol Biol Cell 2013; 24:3832-41. [PMID: 24131996 PMCID: PMC3861080 DOI: 10.1091/mbc.e13-03-0123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oocyte-specific deletion of Cdc42 has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to loss of polarized Arp2/3 accumulation and actin cap formation, and thus the defective contract ring. Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation of a polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap formation; thus the defective contract ring. In addition, we correlate active Cdc42 dynamics with its function during polar body emission and find a relationship between Cdc42 and polarity, as well as polar body emission, in mouse oocytes.
Collapse
Affiliation(s)
- Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China Molecular Pathology Section, Department of Biomedical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun SC, Kim NH. Molecular mechanisms of asymmetric division in oocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:883-897. [PMID: 23764118 DOI: 10.1017/s1431927613001566] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In contrast to symmetric division in mitosis, mammalian oocyte maturation is characterized by asymmetric cell division that produces a large egg and a small polar body. The asymmetry results from oocyte polarization, which includes spindle positioning, migration, and cortical reorganization, and this process is critical for fertilization and the retention of maternal components for early embryo development. Although actin dynamics are involved in this process, the molecular mechanism underlying this remained unclear until the use of confocal microscopy and live cell imaging became widespread in recent years. Information obtained through a PubMed database search of all articles published in English between 2000 and 2012 that included the phrases "oocyte, actin, spindle migration," "oocyte, actin, polar body," or "oocyte, actin, asymmetric division" was reviewed. The actin nucleation factor actin-related protein 2/3 complex and its nucleation-promoting factors, formins and Spire, and regulators such as small GTPases, partitioning-defective/protein kinase C, Fyn, microRNAs, cis-Golgi apparatus components, myosin/myosin light-chain kinase, spindle stability regulators, and spindle assembly checkpoint regulators, play critical roles in asymmetric cell division in oocytes. This review summarizes recent findings on these actin-related regulators in mammalian oocyte asymmetric division and outlines a complete signaling pathway.
Collapse
Affiliation(s)
- Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | | |
Collapse
|
31
|
Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY. The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol Aspects Med 2013; 38:54-85. [PMID: 23796757 DOI: 10.1016/j.mam.2013.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
It is well known that maternal ageing not only causes increased spontaneous abortion and reduced fertility, but it is also a high genetic disease risk. Although assisted reproductive technologies (ARTs) have been widely used to treat infertility, the overall success is still low. The main reasons for age-related changes include reduced follicle number, compromised oocyte quality especially aneuploidy, altered reproductive endocrinology, and increased reproductive tract defect. Various approaches for improving or treating infertility in aged women including controlled ovarian hyperstimulation with intrauterine insemination (IUI), IVF/ICSI-ET, ovarian reserve testing, preimplantation genetic diagnosis and screening (PGD/PGS), oocyte selection and donation, oocyte and ovary tissue cryopreservation before ageing, miscarriage prevention, and caloric restriction are summarized in this review. Future potential reproductive techniques for infertile older women including oocyte and zygote micromanipulations, derivation of oocytes from germ stem cells, ES cells, and iPS cells, as well as through bone marrow transplantation are discussed.
Collapse
Affiliation(s)
- Jie Qiao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Huai-Liang Feng
- Department of Laboratory Medicine, and Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY, USA
| | - Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Qiang Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Yan-Chang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Yan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Wei-Hua Wang
- Houston Fertility Institute, Tomball Regional Hospital, Tomball, TX 77375, USA
| | - Wei Shen
- Laboratory of Germ Cell Biology, Department of Animal Science, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Shao-Chen Sun
- Department of Animal Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
32
|
Shao H, Li R, Ma C, Chen E, Liu XJ. Xenopus oocyte meiosis lacks spindle assembly checkpoint control. ACTA ACUST UNITED AC 2013; 201:191-200. [PMID: 23569212 PMCID: PMC3628510 DOI: 10.1083/jcb.201211041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to the situation in mammalian oocytes, the metaphase-to-anaphase transition in frog oocytes is not regulated by a spindle assembly checkpoint. The spindle assembly checkpoint (SAC) functions as a surveillance mechanism to detect chromosome misalignment and to delay anaphase until the errors are corrected. The SAC is thought to control mitosis and meiosis, including meiosis in mammalian eggs. However, it remains unknown if meiosis in the eggs of nonmammalian vertebrate species is also regulated by SAC. Using a novel karyotyping technique, we demonstrate that complete disruption of spindle microtubules in Xenopus laevis oocytes did not affect the bivalent-to-dyad transition at the time oocytes are undergoing anaphase I. These oocytes also acquired the ability to respond to parthenogenetic activation, which indicates proper metaphase II arrest. Similarly, oocytes exhibiting monopolar spindles, via inhibition of aurora B or Eg5 kinesin, underwent monopolar anaphase on time and without additional intervention. Therefore, the metaphase-to-anaphase transition in frog oocytes is not regulated by SAC.
Collapse
Affiliation(s)
- Hua Shao
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario K1H BL6, Canada
| | | | | | | | | |
Collapse
|
33
|
Dehapiot B, Carrière V, Carroll J, Halet G. Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev Biol 2013; 377:202-12. [PMID: 23384564 PMCID: PMC3690527 DOI: 10.1016/j.ydbio.2013.01.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/22/2012] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
Asymmetric meiotic divisions in mammalian oocytes rely on the eccentric positioning of the spindle and the remodeling of the overlying cortex, resulting in the formation of small polar bodies. The mechanism of this cortical polarization, exemplified by the formation of a thick F-actin cap, is poorly understood. Cdc42 is a major player in cell polarization in many systems; however, the spatio-temporal dynamics of Cdc42 activation during oocyte meiosis, and its contribution to mammalian oocyte polarization, have remained elusive. In this study, we investigated Cdc42 activation (Cdc42–GTP), dynamics and role during mouse oocyte meiotic divisions. We show that Cdc42–GTP accumulates in restricted cortical regions overlying meiotic chromosomes or chromatids, in a Ran–GTP-dependent manner. This polarized activation of Cdc42 is required for the recruitment of N-WASP and the formation of F-actin-rich protrusions during polar body formation. Cdc42 inhibition in MII oocytes resulted in the release of N-WASP into the cytosol, a loss of the polarized F-actin cap, and a failure to protrude the second polar body. Cdc42 inhibition also resulted in central spindle defects in activated MII oocytes. In contrast, emission of the first polar body during oocyte maturation could occur in the absence of a functional Cdc42/N-WASP pathway. Therefore, Cdc42 is a new protagonist in chromatin-induced cortical polarization in mammalian oocytes, with an essential role in meiosis II completion, through the recruitment and activation of N-WASP, downstream of the chromatin-centered Ran–GTP gradient.
Collapse
Affiliation(s)
- Benoit Dehapiot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
| | | | | | | |
Collapse
|
34
|
Simon CM, Vaughan EM, Bement WM, Edelstein-Keshet L. Pattern formation of Rho GTPases in single cell wound healing. Mol Biol Cell 2012; 24:421-32. [PMID: 23264464 PMCID: PMC3564532 DOI: 10.1091/mbc.e12-08-0634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A mathematical model is developed to explain segregation and maintenance of Rho and Cdc42 activity zones during wound healing. The model replicates basic features of zone segregation and dynamics, reveals that Rho and Cdc42 activities represent spatially modulated bistability, and makes nonintuitive predictions confirmed by experiment. The Rho GTPases—Rho, Rac, and Cdc42—control an enormous variety of processes, many of which reflect activation of these GTPases in spatially confined and mutually exclusive zones. By using mathematical models and experimental results to establish model parameters, we analyze the formation and segregation of Rho and Cdc42 zones during Xenopus oocyte wound repair and the role played by Abr, a dual guanine nucleotide exchange factor–GTPase-activating protein, in this process. The Rho and Cdc42 zones are found to be best represented as manifestations of spatially modulated bistability, and local positive feedback between Abr and Rho can account for the maintenance and dynamic properties of the Rho zone. In contrast, the invocation of an Abr-independent positive feedback loop is required to account for Cdc42 spatial bistability. In addition, the model replicates the results of previous in vivo experiments in which Abr activity is manipulated. Further, simulating the model with two closely spaced wounds made nonintuitive predictions about the Rho and Cdc42 patterns; these predictions were confirmed by experiment. We conclude that the model is a useful tool for analysis of Rho GTPase signaling and that the Rho GTPases can be fruitfully considered as components of intracellular pattern formation systems.
Collapse
Affiliation(s)
- Cory M Simon
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
35
|
Jordan SN, Canman JC. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 2012; 69:919-30. [PMID: 23047851 DOI: 10.1002/cm.21071] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
Rho GTPases are molecular switches that elicit distinct effects on the actomyosin cytoskeleton to accurately promote cytokinesis. Although they represent less than 1% of the human genome, Rho GTPases exert disproportionate control over cell division. Crucial to this master regulatory role is their localized occupation of specific domains of the cell to ensure the assembly of a contractile ring at the proper time and place. RhoA occupies the division plane and is the central positive Rho family regulator of cytokinesis. Rac1 is a negative regulator of cytokinesis and is inactivated within the division plane while active Rac1 occupies the cell poles. Cdc42 regulation during cytokinesis is less studied, but thus far a clear role has only been shown during polar body emission. Here we review what is known about the function of Rho family GTPases during cell division, as well as their upstream regulators and known downstream cytokinetic effectors.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
36
|
Maddox AS, Azoury J, Dumont J. Polar body cytokinesis. Cytoskeleton (Hoboken) 2012; 69:855-68. [PMID: 22927361 DOI: 10.1002/cm.21064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
Polar body cytokinesis is the physical separation of a small polar body from a larger oocyte or ovum. This maternal meiotic division shares many similarities with mitotic and spermatogenic cytokinesis, but there are several distinctions, which will be discussed in this review. We synthesize results from many different model species, including those popular for their genetics and several that are more obscure in modern cell biology. The site of polar body division is determined before anaphase, by the eccentric, cortically associated meiotic spindle. Depending on the species, either the actin or microtubule cytoskeleton is required for spindle anchoring. Chromatin is necessary and sufficient to elicit differentiation of the associated cortex, via Ran-based signaling. The midzone of the anaphase spindle serves as a hub for regulatory complexes that elicit Rho activation, and ultimately actomyosin contractile ring assembly and contraction. Polar body cytokinesis uniquely requires another Rho family GTPase, Cdc42, for dynamic reorganization of the polar cortex. This is perhaps due to the considerable asymmetry of this division, wherein the polar body and the oocyte/ovum have distinct fates and very different sizes. Thus, maternal meiotic cytokinesis appears to occur via simultaneous polar relaxation and equatorial contraction, since the polar body is extruded from the spherical oocyte through the nascent contractile ring. As such, polar body cytokinesis is an interesting and important variation on the theme of cell division.
Collapse
Affiliation(s)
- Amy Shaub Maddox
- Institut de recherche en immunology et en cancerologie (IRIC), Université de Montréal, Montréal, Quebec, Canada.
| | | | | |
Collapse
|
37
|
Actin cytoskeleton in cell polarity and asymmetric division during mouse oocyte maturation. Cytoskeleton (Hoboken) 2012; 69:727-37. [DOI: 10.1002/cm.21048] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 12/22/2022]
|
38
|
Shao H, Ma C, Zhang X, Li R, Miller AL, Bement WM, Liu XJ. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes. Cell Cycle 2012; 11:2672-80. [PMID: 22751439 DOI: 10.4161/cc.21016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine(122) is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.
Collapse
Affiliation(s)
- Hua Shao
- Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu XJ. Polar body emission. Cytoskeleton (Hoboken) 2012; 69:670-85. [PMID: 22730245 DOI: 10.1002/cm.21041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022]
Abstract
Generation of a haploid female germ cell, the egg, consists of two rounds of asymmetric cell division (meiosis I and meiosis II), yielding two diminutive and nonviable polar bodies and a large haploid egg. Animal eggs are also unique in the lack of centrioles and therefore form meiotic spindles without the pre-existence of the two dominant microtubule organizing centers (centrosomes) found in mitosis. Meiotic spindle assembly is further complicated by the unique requirement of sister chromatid mono-oriented in meiosis I. Nonetheless, the eggs appear to adopt many of the same proteins and mechanisms described in mitosis, with necessary modifications to accommodate their special needs. Unraveling these special modifications will not only help understanding animal reproduction, but should also enhance our understanding of cell division in general.
Collapse
Affiliation(s)
- X Johné Liu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada.
| |
Collapse
|
40
|
Leblond GG, Sarazin H, Li R, Suzuki M, Ueno N, Liu XJ. Translation of incenp during oocyte maturation is required for embryonic development in Xenopus laevis. Biol Reprod 2012; 86:161, 1-8. [PMID: 22378760 DOI: 10.1095/biolreprod.111.097972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chromosome passenger complex (CPC) consists of Aurora-B kinase and several other subunits. One of these, incenp, binds Aurora-B and regulates its kinase activity. During Xenopus oocyte maturation, incenp accumulates through translation, contributing to aurora-b activation. A previous study has demonstrated that inhibition of incenp translation during oocyte maturation diminishes aurora-b activation but does not interfere with oocyte maturation, characterized by normal maturation-specific cyclin-b phosphorylation, degradation, and resynthesis. Here we have extended these findings, showing that inhibition of incenp translation during oocyte maturation did not interfere with meiosis I or II, as indicated by the normal emission of the first polar body and metaphase II arrest, followed by the successful emission of the second polar body upon parthenogenetic egg activation. Most importantly, however, when transferred to host frogs and subsequently ovulated, the incenp-deficient eggs were fertilized but failed to undergo mitotic cleavage. Thus, translation of incenp during oocyte maturation appears to be part of oocyte cytoplasmic maturation, preparing the egg for the rapid mitosis following fertilization.
Collapse
|
41
|
Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol 2012; 22:241-9. [PMID: 22480579 DOI: 10.1016/j.tcb.2012.02.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/24/2022]
Abstract
The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte meiosis is error prone and underlies most birth aneuploidies. Here, we review recent work on acentrosomal spindle formation and chromosome alignment/separation during oocyte meiosis in different animal models.
Collapse
|
42
|
Sakamori R, Das S, Yu S, Feng S, Stypulkowski E, Guan Y, Douard V, Tang W, Ferraris RP, Harada A, Brakebusch C, Guo W, Gao N. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice. J Clin Invest 2012; 122:1052-65. [PMID: 22354172 DOI: 10.1172/jci60282] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023] Open
Abstract
The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases Cdc42 and Rab8a are critical regulators of these processes in mice. Conditional ablation of Cdc42 in the mouse intestinal epithelium resulted in the formation of large intracellular vacuolar structures containing microvilli (microvillus inclusion bodies) in epithelial enterocytes, a phenotype reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells, and increased apoptosis. Cdc42 deficiency impaired Rab8a activation and its association with multiple effectors, and prevented trafficking of Rab8a vesicles to the midbody. This impeded cytokinesis, triggering crypt apoptosis and disrupting epithelial morphogenesis. Rab8a was also required for Cdc42-GTP activity in the intestinal epithelium, where continued cell division takes place. Furthermore, mice haploinsufficient for both Cdc42 and Rab8a in the intestine demonstrated abnormal crypt morphogenesis and epithelial transporter physiology, further supporting their functional interaction. These data suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition.
Collapse
Affiliation(s)
- Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Manneville JB, Etienne-Manneville S. Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol Cell 2012; 98:557-65. [PMID: 16907664 DOI: 10.1042/bc20060017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Centrosome positioning is tightly controlled throughout the cell cycle and probably shares common regulatory mechanisms with spindle-pole positioning. In this article, we detail the possible mechanisms controlling centrosome and spindle positioning in various organisms both in interphase and mitotic cells, and discuss recent findings showing how microtubule plus-end-associated proteins interact with the cell cortex. We suggest that microtubule plus-end complexes simultaneously regulate microtubule dynamics and microtubule anchoring at the cell periphery to allow proper centrosome and spindle-pole positioning.
Collapse
|
44
|
Kloc M, Ghobrial RM, Borsuk E, Kubiak JZ. Polarity and asymmetry during mouse oogenesis and oocyte maturation. Results Probl Cell Differ 2012; 55:23-44. [PMID: 22918799 DOI: 10.1007/978-3-642-30406-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity and asymmetry play a fundamental role in embryo development. The unequal segregation of determinants, cues, and activities is the major event in the differentiation of cell fate and function in all multicellular organisms. In oocytes, polarity and asymmetry in the distribution of different molecules are prerequisites for the progression and proper outcome of embryonic development. The mouse oocyte, like the oocytes of other mammals, seems to apply a less stringent strategy of polarization than other vertebrates. The mouse embryo undergoes a regulative type of development, which permits the full rectification of development even if the embryo loses up to half of its cells or its size is experimentally doubled during the early stages of embryogenesis. Such pliability is strongly related to the proper oocyte polarization before fertilization. Thus, the molecular mechanisms leading to the development and maintenance of oocyte polarity must be included in any fundamental understanding of the principles of embryo development. In this chapter, we provide an overview of current knowledge regarding the development and maintenance of polarity and asymmetry in the distribution of organelles and molecules in the mouse oocyte. Curiously, the mouse oocyte becomes polarized at least twice during ontogenesis; the question of how this phenomenon is achieved and what role it might play is addressed in this chapter.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, Department of Surgery, Houston, TX, USA.
| | | | | | | |
Collapse
|
45
|
Evans JP, Robinson DN. The spatial and mechanical challenges of female meiosis. Mol Reprod Dev 2011; 78:769-77. [PMID: 21774026 PMCID: PMC3196790 DOI: 10.1002/mrd.21358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/15/2011] [Indexed: 12/31/2022]
Abstract
Recent work shows that cytokinesis and other cellular morphogenesis events are tuned by an interplay among biochemical signals, cell shape, and cellular mechanics. In cytokinesis, this includes cross-talk between the cortical cytoskeleton and the mitotic spindle in coordination with cell cycle control, resulting in characteristic changes in cellular morphology and mechanics through metaphase and cytokinesis. The changes in cellular mechanics affect not just overall cell shape, but also mitotic spindle morphology and function. This review will address how these principles apply to oocytes undergoing the asymmetric cell divisions of meiosis I and II. The biochemical signals that regulate cell cycle timing during meiotic maturation and egg activation are crucial for temporal control of meiosis. Spatial control of the meiotic divisions is also important, ensuring that the chromosomes are segregated evenly and that meiotic division is clearly asymmetric, yielding two daughter cells - oocyte and polar body - with enormous volume differences. In contrast to mitotic cells, the oocyte does not undergo overt changes in cell shape with its progression through meiosis, but instead maintains a relatively round morphology with the exception of very localized changes at the time of polar body emission. Placement of the metaphase-I and -II spindles at the oocyte periphery is clearly important for normal polar body emission, although this is likely not the only control element. Here, consideration is given to how cellular mechanics could contribute to successful mammalian female meiosis, ultimately affecting egg quality and competence to form a healthy embryo.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
46
|
Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex. Dev Biol 2011; 359:137-148. [PMID: 21889938 DOI: 10.1016/j.ydbio.2011.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Accepted: 08/17/2011] [Indexed: 11/20/2022]
Abstract
Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole.
Collapse
|
47
|
Brockmann C, Huarte J, Dugina V, Challet L, Rey E, Conne B, Swetloff A, Nef S, Chaponnier C, Vassalli JD. Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes. Biol Reprod 2011; 85:1025-39. [PMID: 21778137 DOI: 10.1095/biolreprod.111.091736] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammals, female meiosis consists of two asymmetric cell divisions, which generate a large haploid oocyte and two small polar bodies. Asymmetric partitioning of the cytoplasm results from migration of the meiotic spindle toward the cortex and requires actin filaments. However, the subcellular localization and the role of the existing two cytoplasmic actin (CYA) isoforms, beta and gamma, have not been characterized. We show that beta- and gamma-CYA are differentially distributed in the maturing oocyte from late metaphase I as well as in preimplantation embryos. Gamma-CYA is preferentially enriched in oocyte cortices and is absent from all cell-cell contact areas from metaphase II until the blastocyst stage. Beta-CYA is enriched in contractile structures, at cytokinesis, at cell-cell contacts, and around the forming blastocoel. Alteration of beta- or gamma-CYA function by isoform-specific antibody microinjection suggests that gamma-CYA holds a major and specific role in the establishment and/or maintenance of asymmetry in meiosis I and in the maintenance of overall cortical integrity. In contrast, beta- and gamma-CYA, together, appear to participate in the formation and the cortical anchorage of the second meiotic spindle in waiting for fertilization. Finally, differences in gamma-CYA expression are amongst the earliest markers of cell fate determination in development.
Collapse
Affiliation(s)
- Céline Brockmann
- Departments of Genetic Medicine and Development and Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leblanc J, Zhang X, McKee D, Wang ZB, Li R, Ma C, Sun QY, Liu XJ. The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization. Mol Hum Reprod 2011; 17:305-16. [PMID: 21511720 DOI: 10.1093/molehr/gar026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Polar body emission is a specialized cell division throughout the animal kingdom, serving to reduce chromosome ploidy while preserving the egg cytoplasm. Critical to polar body emission are the asymmetric positioning of the meiotic spindle prior to anaphase, with one pole attached to the oocyte cortex, and the simultaneous membrane protrusion during subsequent cytokinesis. We have shown that, during Xenopus oocyte maturation, the small GTPase Cdc42 promotes membrane protrusion while a classical RhoA contractile ring forms and constricts at the base of the protrusion. We report here that treating oocytes with low concentrations of nocodazole diminished the size of metaphase I spindles and prevented polar body emission, and yet an active Cdc42 cap of correspondingly diminished size still developed, on time, atop of the spindle pole. Conversely, treating oocytes with low concentrations of taxol resulted in a spindle with multiple poles attached to the cortex, but still each of these poles were associated with activated cortical Cdc42 at the appropriate time. Therefore, the asymmetric positioning of the meiotic spindle with one pole anchored to the cortex is a prerequisite for Cdc42 activation. Furthermore, we demonstrated that the Cdc42-regulated F-actin nucleator ARP2/3 complex was similarly localized at the cortex of the protruding polar body membrane, suggesting that Cdc42 promotes membrane protrusion through an F-actin meshwork mechanism. Finally, we demonstrated that Cdc42 and RhoA formed similarly complementary activity zones during egg activation and that inhibition of Cdc42 prevented second polar body emission. Therefore, Cdc42 activation likely promotes membrane protrusion during polar body emission in widespread systems.
Collapse
Affiliation(s)
- J Leblanc
- Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun SC, Wang ZB, Xu YN, Lee SE, Cui XS, Kim NH. Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS One 2011; 6:e18392. [PMID: 21494665 PMCID: PMC3072972 DOI: 10.1371/journal.pone.0018392] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Mammalian oocyte meiotic maturation involves oocyte polarization and a unique asymmetric division, but until now, the underlying mechanisms have been poorly understood. Arp2/3 complex has been shown to regulate actin nucleation and is widely involved in a diverse range of processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Whether Arp2/3 complex participates in oocyte polarization and asymmetric division is unknown. The present study investigated the expression and functions of Arp2/3 complex during mouse oocyte meiotic maturation. Immunofluorescent staining showed that the Arp2/3 complex was restricted to the cortex, with a thickened cap above the meiotic apparatus, and that this localization pattern was depended on actin. Disruption of Arp2/3 complex by a newly-found specific inhibitor CK666, as well as by Arpc2 and Arpc3 RNAi, resulted in a range of effects. These included the failure of asymmetric division, spindle migration, and the formation and completion of oocyte cytokinesis. The formation of the actin cap and cortical granule-free domain (CGFD) was also disrupted, which further confirmed the disruption of spindle migration. Our data suggest that the Arp2/3 complex probably regulates oocyte polarization through its effect on spindle migration, asymmetric division and cytokinesis during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Shao-Chen Sun
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong-Nan Xu
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Eun Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
- * E-mail:
| |
Collapse
|
50
|
Vaughan EM, Miller AL, Yu HYE, Bement WM. Control of local Rho GTPase crosstalk by Abr. Curr Biol 2011; 21:270-7. [PMID: 21295482 DOI: 10.1016/j.cub.2011.01.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/31/2010] [Accepted: 01/05/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The Rho GTPases-Rho, Rac, and Cdc42-regulate the dynamics of F-actin (filamentous actin) and myosin-2 with considerable subcellular precision. Consistent with this ability, active Rho and Cdc42 occupy mutually exclusive zones during single-cell wound repair and asymmetric cytokinesis, suggesting the existence of mechanisms for local crosstalk, but how local Rho GTPase crosstalk is controlled is unknown. RESULTS Using a candidate screen approach for Rho GTPase activators (guanine nucleotide exchange factors; GEFs) and Rho GTPase inactivators (GTPase-activating proteins; GAPs), we find that Abr, a protein with both GEF and GAP activity, regulates Rho and Cdc42 during single-cell wound repair. Abr is targeted to the Rho activity zone via active Rho. Within the Rho zone, Abr promotes local Rho activation via its GEF domain and controls local crosstalk via its GAP domain, which limits Cdc42 activity within the Rho zone. Depletion of Abr attenuates Rho activity and wound repair. CONCLUSIONS Abr is the first identified Rho GTPase regulator of single-cell wound healing. Its novel mode of targeting by interaction with active Rho allows Abr to rapidly amplify local increases in Rho activity using its GEF domain while its ability to inactivate Cdc42 using its GAP domain results in sharp segregation of the Rho and Cdc42 zones. Similar mechanisms of local Rho GTPase activation and segregation enforcement may be employed in other processes that exhibit local Rho GTPase crosstalk.
Collapse
Affiliation(s)
- Emily M Vaughan
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|