1
|
Fricke LC, Lindsey ARI. Identification of Parthenogenesis-Inducing Effector Proteins in Wolbachia. Genome Biol Evol 2024; 16:evae036. [PMID: 38530785 PMCID: PMC11019157 DOI: 10.1093/gbe/evae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 yr ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine-rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model Saccharomyces cerevisiae. We suggest that these proteins are parthenogenesis-inducing factors and our results indicate that this would be made possible by a novel mechanism of bacterial-host interaction.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
2
|
Fricke LC, Lindsey ARI. Identification of parthenogenesis-inducing effector proteins in Wolbachia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569668. [PMID: 38076953 PMCID: PMC10705499 DOI: 10.1101/2023.12.01.569668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis-induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 years ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex-determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model, Saccharomyces cerevisiae. We suggest these proteins are parthenogenesis-inducing factors and our results indicate this would be made possible by a novel mechanism of bacterial-host interaction.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Amelia RI Lindsey
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
3
|
Snyman M, Xu S. Transcriptomics and the origin of obligate parthenogenesis. Heredity (Edinb) 2023; 131:119-129. [PMID: 37280308 PMCID: PMC10382572 DOI: 10.1038/s41437-023-00628-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Despite the presence of obligately parthenogenetic (OP) lineages derived from sexual ancestors in diverse phylogenetic groups, the genetic mechanisms giving rise to the OP lineages remain poorly understood. The freshwater microcrustacean Daphnia pulex typically reproduces via cyclical parthenogenesis. However, some populations of OP D. pulex have emerged due to ancestral hybridization and introgression events between two cyclically parthenogenetic (CP) species D. pulex and D. pulicaria. These OP hybrids produce both subitaneous and resting eggs parthenogenetically, deviating from CP isolates where resting eggs are produced via conventional meiosis and mating. This study examines the genome-wide expression and alternative splicing patterns of early subitaneous versus early resting egg production in OP D. pulex isolates to gain insight into the genes and mechanisms underlying this transition to obligate parthenogenesis. Our differential expression and functional enrichment analyses revealed a downregulation of meiosis and cell cycle genes during early resting egg production, as well as divergent expression patterns of metabolism, biosynthesis, and signaling pathways between the two reproductive modes. These results provide important gene candidates for future experimental verification, including the CDC20 gene that activates the anaphase-promoting complex in meiosis.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
5
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
7
|
Dalla Benetta E, Akbari OS, Ferree PM. Mechanistically comparing reproductive manipulations caused by selfish chromosomes and bacterial symbionts. Heredity (Edinb) 2021; 126:707-716. [PMID: 33649572 PMCID: PMC8102561 DOI: 10.1038/s41437-021-00410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Insects naturally harbor a broad range of selfish agents that can manipulate their reproduction and development, often leading to host sex ratio distortion. Such effects directly benefit the spread of the selfish agents. These agents include two broad groups: bacterial symbionts and selfish chromosomes. Recent studies have made steady progress in uncovering the cellular targets of these agents and their effector genes. Here we highlight what is known about the targeted developmental processes, developmental timing, and effector genes expressed by several selfish agents. It is now becoming apparent that: (1) the genetic toolkits used by these agents to induce a given reproductive manipulation are simple, (2) these agents target sex-specific cellular processes very early in development, and (3) in some cases, similar processes are targeted. Knowledge of the molecular underpinnings of these systems will help to solve long-standing puzzles and provide new tools for controlling insect pests.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711 USA ,grid.266100.30000 0001 2107 4242Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, CA 92093 USA
| | - Omar S. Akbari
- grid.266100.30000 0001 2107 4242Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, CA 92093 USA
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711 USA
| |
Collapse
|
8
|
Abstract
The absence of a paternal contribution in an unfertilized ovum presents two developmental constraints against the evolution of parthenogenesis. We discuss the constraint caused by the absence of a centrosome and the one caused by the missing set of chromosomes and how they have been broken in specific taxa. They are examples of only a few well-underpinned examples of developmental constraints acting at macro-evolutionary scales in animals. Breaking of the constraint of the missing chromosomes is the best understood and generally involves rare occasions of drastic changes of meiosis. These drastic changes can be best explained by having been induced, or at least facilitated, by sudden cytological events (e.g., repeated rounds of hybridization, endosymbiont infections, and contagious infections). Once the genetic and developmental machinery is in place for regular or obligate parthenogenesis, shifts to other types of parthenogenesis can apparently rather easily evolve, for example, from facultative to obligate parthenogenesis, or from pseudoarrhenotoky to haplodiploidy. We argue that the combination of the two developmental constraints forms a near-absolute barrier against the gradual evolution from sporadic to obligate or regular facultative parthenogenesis, which can probably explain why the occurrence of the highly advantageous mode of regular facultative parthenogenesis is so rare and entirely absent in vertebrates.
Collapse
|
9
|
Quan H, Arsala D, Lynch JA. Transcriptomic and functional analysis of the oosome, a unique form of germ plasm in the wasp Nasonia vitripennis. BMC Biol 2019; 17:78. [PMID: 31601213 PMCID: PMC6785909 DOI: 10.1186/s12915-019-0696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The oosome is the germline determinant in the wasp Nasonia vitripennis and is homologous to the polar granules of Drosophila. Despite a common evolutionary origin and developmental role, the oosome is morphologically quite distinct from polar granules. It is a solid sphere that migrates within the cytoplasm before budding out and forming pole cells. RESULTS To gain an understanding of both the molecular basis of oosome development and the conserved essential features of germ plasm, we quantified and compared transcript levels between embryo fragments that contained the oosome and those that did not. The identity of the differentially localized transcripts indicated that Nasonia uses a distinct set of molecules to carry out conserved germ plasm functions. In addition, functional testing of a sample of localized transcripts revealed potentially novel mechanisms of ribonucleoprotein assembly and pole cell cellularization in the wasp. CONCLUSIONS Our results demonstrate that the composition of germ plasm varies significantly within Holometabola, as very few mRNAs share localization to the oosome and polar granules. Some of this variability appears to be related to the unique properties of the oosome relative to the polar granules in Drosophila, and some may be related to differences in pole formation between species. This work will serve as the basis for further investigation into the patterns of germline determinant evolution among insects, the molecular basis of the unique properties of the oosome, and the incorporation of novel components into developmental networks.
Collapse
Affiliation(s)
- Honghu Quan
- Department of Pathology and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
10
|
Ferree PM, Aldrich JC, Jing XA, Norwood CT, Van Schaick MR, Cheema MS, Ausió J, Gowen BE. Spermatogenesis in haploid males of the jewel wasp Nasonia vitripennis. Sci Rep 2019; 9:12194. [PMID: 31434920 PMCID: PMC6704150 DOI: 10.1038/s41598-019-48332-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/29/2019] [Indexed: 01/11/2023] Open
Abstract
Males of hymenopteran insects, which include ants, bees and wasps, develop as haploids from unfertilized eggs. In order to accommodate their lack of homologous chromosome pairs, some hymenopterans such as the honeybee have been shown to produce haploid sperm through an abortive meiosis. We employed microscopic approaches to visualize landmark aspects of spermatogenesis in the jewel wasp Nasonia vitripennis, a model for hymenopteran reproduction and development. Our work demonstrates that N. vitripennis, like other examined hymenopterans, exhibits characteristics indicative of an abortive meiosis, including slight enlargement of spermatocytes preceding meiotic initiation. However, we saw no evidence of cytoplasmic buds containing centrioles that are produced from the first abortive meiotic division, which occurs in the honeybee. In contrast to other previously studied hymenopterans, N. vitripennis males produce sperm in bundles that vary widely from 16 to over 200, thus reflecting a range of cellular divisions. Our results highlight interesting variations in spermatogenesis among the hymenopteran insects, and together with previous studies, they suggest a pattern of progression from meiosis to a more mitotic state in producing sperm.
Collapse
Affiliation(s)
- Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.
| | - John C Aldrich
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Xueyuan A Jing
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Christopher T Norwood
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mary R Van Schaick
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W-3P6, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W-3P6, Canada
| | - Brent E Gowen
- Department of Biology, University of Victoria, Victoria, BC, V8W-3P6, Canada
| |
Collapse
|
11
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
12
|
Shahid U, Singh P. Emerging Picture of Deuterosome-Dependent Centriole Amplification in MCCs. Cells 2018; 7:E152. [PMID: 30262752 PMCID: PMC6210342 DOI: 10.3390/cells7100152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Multiciliated cells (MCCs) have several hair-like structures called cilia, which are required to propel substances on their surface. A cilium is organized from a basal body which resembles a hollow microtubule structure called a centriole. In terminally differentiated MCCs, hundreds of new basal bodies/centrioles are formed via two parallel pathways: the centriole- and deuterosome-dependent pathways. The deuterosome-dependent pathway is also referred to as "de novo" because unlike the centriole-dependent pathway which requires pre-existing centrioles, in the de novo pathway multiple new centrioles are organized around non-microtubule structures called deuterosomes. In the last five years, some deuterosome-specific markers have been identified and concurrent advancements in the super-resolution techniques have significantly contributed to gaining insights about the major stages of centriole amplification during ciliogenesis. Altogether, a new picture is emerging which also challenges the previous notion that deuterosome pathway is de novo. This review is primarily focused on studies that have contributed towards the better understanding of deuterosome-dependent centriole amplification and presents a developing model about the major stages identified during this process.
Collapse
Affiliation(s)
- Umama Shahid
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagour Road, Karwar 342037, India.
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagour Road, Karwar 342037, India.
| |
Collapse
|
13
|
Inoue D, Wittbrodt J, Gruss OJ. Loss and Rebirth of the Animal Microtubule Organizing Center: How Maternal Expression of Centrosomal Proteins Cooperates with the Sperm Centriole in Zygotic Centrosome Reformation. Bioessays 2018. [PMID: 29522658 DOI: 10.1002/bies.201700135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Centrosomes are the main microtubule organizing centers in animal cells. In particular during embryogenesis, they ensure faithful spindle formation and proper cell divisions. As metazoan centrosomes are eliminated during oogenesis, they have to be reassembled upon fertilization. Most metazoans use the sperm centrioles as templates for new centrosome biogenesis while the egg's cytoplasm re-prepares all components for on-going centrosome duplication in rapidly dividing embryonic cells. We discuss our knowledge and the experimental challenges to analyze zygotic centrosome reformation, which requires genetic experiments to enable scrutinizing respective male and female contributions. Male and female knockout animals and mRNA injection to mimic maternal expression of centrosomal proteins could point a way to the systematic molecular dissection of the process. The most recent data suggest that timely expression of centrosome components in oocytes is the key to zygotic centrosome reformation that uses male sperm as coordinators for de novo centrosome production.
Collapse
Affiliation(s)
- Daigo Inoue
- Dr. D. Inoue, Prof. Dr. J. Wittbrodt, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- Dr. D. Inoue, Prof. Dr. J. Wittbrodt, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Oliver J Gruss
- Prof. Dr. O. J. Gruss, Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str.13, 53115 Bonn, Germany
| |
Collapse
|
14
|
Gorgoń S, Wardas A, Krodkiewska M, Świątek P. Oogenesis in three species of Naidinae (Annelida, Clitellata) is extraovarian of the Stylaria type. ZOOLOGY 2017; 121:111-124. [DOI: 10.1016/j.zool.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/27/2023]
|
15
|
Riparbelli MG, Gottardo M, Callaini G. Parthenogenesis in Insects: The Centriole Renaissance. Results Probl Cell Differ 2017; 63:435-479. [PMID: 28779329 DOI: 10.1007/978-3-319-60855-6_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
16
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
17
|
Meunier A, Spassky N. Centriole continuity: out with the new, in with the old. Curr Opin Cell Biol 2016; 38:60-7. [PMID: 26924800 DOI: 10.1016/j.ceb.2016.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 01/11/2023]
Abstract
Centrioles are essential microtubule-based organelles, typically present in pairs, which organize cilia and centrosomes. Their mode of biogenesis is unique for a subcellular organelle since, during cell division, each pre-existing centriole guides the formation of a new one, a process that is coordinated with DNA replication. After centriole duplication, the new centrosomes migrate in opposite direction and localize at each pole of the mitotic spindle. This singular dynamics led to think that centrioles were permanent self-replicating structures coordinating cytoplasm and nuclear division. This vision then fell gradually into disuse when centrioles were shown to be capable to form de novo, in the absence of a pre-existing structure, and to be actually dispensable for cell division. However, new data, which are reviewed here, have breathed new life into the old ideas.
Collapse
Affiliation(s)
- Alice Meunier
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France; CNRS, UMR8197, F-75005 Paris, France; Inserm, U1024, F-75005 Paris, France.
| | - Nathalie Spassky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France; CNRS, UMR8197, F-75005 Paris, France; Inserm, U1024, F-75005 Paris, France
| |
Collapse
|
18
|
Identification of Genes Uniquely Expressed in the Germ-Line Tissues of the Jewel Wasp Nasonia vitripennis. G3-GENES GENOMES GENETICS 2015; 5:2647-53. [PMID: 26464360 PMCID: PMC4683638 DOI: 10.1534/g3.115.021386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The jewel wasp Nasonia vitripennis is a rising model organism for the study of haplo-diploid reproduction characteristic of hymenopteran insects, which include all wasps, bees, and ants. We performed transcriptional profiling of the ovary, the female soma, and the male soma of N. vitripennis to complement a previously existing transcriptome of the wasp testis. These data were deposited into an open-access genome browser for visualization of transcripts relative to their gene models. We used these data to identify the assemblies of genes uniquely expressed in the germ-line tissues. We found that 156 protein-coding genes are expressed exclusively in the wasp testis compared with only 22 in the ovary. Of the testis-specific genes, eight are candidates for male-specific DNA packaging proteins known as protamines. We found very similar expression patterns of centrosome associated genes in the testis and ovary, arguing that de novo centrosome formation, a key process for development of unfertilized eggs into males, likely does not rely on large-scale transcriptional differences between these tissues. In contrast, a number of meiosis-related genes show a bias toward testis-specific expression, despite the lack of true meiosis in N. vitripennis males. These patterns may reflect an unexpected complexity of male gamete production in the haploid males of this organism. Broadly, these data add to the growing number of genomic and genetic tools available in N. vitripennis for addressing important biological questions in this rising insect model organism.
Collapse
|
19
|
Abstract
In his classic novel Invisible Cities, Italo Calvino describes a series of fantastic imagined cities that fulfill core human needs that remain unmet in ordinary cities. In light of the recent founding of a number of high-profile biomedical institutes, Calvino's descriptions encourage us to consider the unmet needs of the biomedical community and imagine unorthodox institutes designed to fulfill these needs.
Collapse
Affiliation(s)
- William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
20
|
Ross L, Normark BB. Evolutionary problems in centrosome and centriole biology. J Evol Biol 2015; 28:995-1004. [PMID: 25781035 PMCID: PMC4979663 DOI: 10.1111/jeb.12620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/01/2023]
Abstract
Centrosomes have been an enigma to evolutionary biologists. Either they have been the subject of ill-founded speculation or they have been ignored. Here, we highlight evolutionary paradoxes and problems of centrosome and centriole evolution and seek to understand them in the light of recent advances in centrosome biology. Most evolutionary accounts of centrosome evolution have been based on the hypothesis that centrosomes are replicators, independent of the nucleus and cytoplasm. It is now clear, however, that this hypothesis is not tenable. Instead, centrosomes are formed de novo each cell division, with the presence of an old centrosome regulating, but not essential for, the assembly of a new one. Centrosomes are the microtubule-organizing centres of cells. They can potentially affect sensory and motor characters (as the basal body of cilia), as well as the movements of chromosomes during cell division. This latter role does not seem essential, however, except in male meiosis, and the reasons for this remain unclear. Although the centrosome is absent in some taxa, when it is present, its structure is extraordinarily conserved: in most taxa across eukaryotes, it does not appear to evolve at all. And yet a few insect groups display spectacular hypertrophy of the centrioles. We discuss how this might relate to the unusual reproductive system found in these insects. Finally, we discuss why the fate of centrosomes in sperm and early embryos might differ between different groups of animals.
Collapse
Affiliation(s)
- L Ross
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - B B Normark
- Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
21
|
Fırat-Karalar EN, Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0460. [PMID: 25047614 DOI: 10.1098/rstb.2013.0460] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
22
|
Lee J, Kang S, Choi YS, Kim HK, Yeo CY, Lee Y, Roth J, Lee J. Identification of a cell cycle-dependent duplicating complex that assembles basal bodies de novo in Naegleria. Protist 2014; 166:1-13. [PMID: 25555149 DOI: 10.1016/j.protis.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/27/2014] [Accepted: 11/21/2014] [Indexed: 12/30/2022]
Abstract
During the differentiation of the amoeba Naegleria pringsheimi into a flagellate, a transient complex containing γ-tubulin, pericentrin-like protein, and myosin II (GPM complex) is formed, and subsequently a pair of basal bodies is assembled from the complex. It is not understood, however, how a single GPM is formed nor how the capability to form this complex is acquired by individual cells. We hypothesized that the GPM is formed from a precursor complex and developed an antibody that recognizes Naegleria (Ng)-transacylase, a component of the precursor complex. Immunostaining of differentiating cells showed that Ng-transacylase is concentrated at a site in the amoeba and that γ-tubulin is transiently co-concentrated at the site, suggesting that the GPM is formed from a precursor, GPMp, which contains Ng-transacylase and is already present in the amoeba. Immunostaining of growing N. pringsheimi with Ng-transacylase antibody revealed the presence of one GPMp in interphase cells, but two GPMps in mitotic cells, suggesting that N. pringsheimi maintains one GPMp per cell by duplicating and segregating the complex according to its cell cycle. Our results demonstrate the existence of a cell cycle-dependent duplicating complex that provides a site for the de novo assembly of the next generation of basal bodies.
Collapse
Affiliation(s)
- JungHa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Seungmin Kang
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Yong Seok Choi
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hong-Kyung Kim
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea
| | - Yangsin Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program, Yonsei University, Graduate School, Seoul 120-749, Korea
| | - Jürgen Roth
- Department of Integrated OMICS for Biomedical Science, WCU Program, Yonsei University, Graduate School, Seoul 120-749, Korea
| | - JooHun Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
23
|
The persistence of facultative parthenogenesis in Drosophila albomicans. PLoS One 2014; 9:e113275. [PMID: 25415200 PMCID: PMC4240631 DOI: 10.1371/journal.pone.0113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022] Open
Abstract
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species' range, consistent with models of geographical parthenogenesis.
Collapse
|
24
|
Landmann F, Foster JM, Michalski ML, Slatko BE, Sullivan W. Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl Trop Dis 2014; 8:e3096. [PMID: 25165813 PMCID: PMC4148215 DOI: 10.1371/journal.pntd.0003096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination. Filarial nematodes are responsible for a number of neglected tropical diseases. The vast majority of these human parasites harbor the bacterial endosymbiont Wolbachia. Wolbachia are essential for filarial nematode survival and reproduction, and thus are a promising anti-filarial drug target. Understanding the molecular and cellular basis of Wolbachia-nematode interactions will facilitate the development of a new class of drugs that specifically disrupt these interactions. Here we focus on Wolbachia segregation patterns and interactions with the host cytoskeleton during early embryogenesis. Our studies indicate that centrosomes are maternally inherited in filarial nematodes resulting in a posterior microtubule-organizing center of maternal origin, unique to filarial nematodes. This microtubule-organizing center facilitates the concentration of Wolbachia at the posterior pole. We find that the microtubule motor dynein is required for the proper posterior Wolbachia localization. In addition, we demonstrate that Wolbachia rely on polarity signals in the egg for their preferential localization at the posterior pole. Conversely, Wolbachia are required for normal embryonic axis determination and Wolbachia removal leads to distinct anterior-posterior embryonic polarity defects. To our knowledge, this is the first example of a bacterial endosymbiont required for normal host embryogenesis.
Collapse
Affiliation(s)
- Frederic Landmann
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
- * E-mail:
| | - Jeremy M. Foster
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Michelle L. Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Barton E. Slatko
- Molecular Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
25
|
Abstract
Centrosomes are composed of two centrioles surrounded by pericentriolar material (PCM). However, the sperm and the oocyte modify or lose their centrosomes. Consequently, how the zygote establishes its first centrosome, and in particular, the origin of the second zygotic centriole, is uncertain. Drosophila melanogaster spermatids contain a single centriole called the Giant Centriole (GC) and a Proximal centriole-like (PCL) structure whose function is unknown. We found that, like the centriole, the PCL loses its protein markers at the end of spermiogenesis. After fertilization, the first two centrioles are observed via the recruitment of the zygotic PCM proteins and are seen in asterless mutant embryos that cannot form centrioles. The zygote’s centriolar proteins label only the daughter centrioles of the first two centrioles. These observations demonstrate that the PCL is the origin for the second centriole in the Drosophila zygote and that a paternal centriole precursor, without centriolar proteins, is transmitted to the egg during fertilization.
Collapse
|
26
|
Brownlee CW, Rogers GC. Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 2013; 70:1021-34. [PMID: 22892665 PMCID: PMC11113234 DOI: 10.1007/s00018-012-1102-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Centrosomes are organelles involved in generating and organizing the interphase microtubule cytoskeleton, mitotic spindles and cilia. At the centrosome core are a pair of centrioles, structures that act as the duplicating elements of this organelle. Centrioles function to recruit and organize pericentriolar material which nucleates microtubules. While centrioles are relatively simple in construction, the mechanics of centriole biogenesis remain an important yet poorly understood process. More mysterious still are the regulatory mechanisms that oversee centriole assembly. The fidelity of centriole duplication is critical as defects in either the assembly or number of centrioles promote aneuploidy, primary microcephaly, birth defects, ciliopathies and tumorigenesis. In addition, some pathogens employ mechanisms to promote centriole overduplication to the detriment of the host cell. This review summarizes our current understanding of this important topic, highlighting the need for further study if new therapeutics are to be developed to treat diseases arising from defects of centrosome duplication.
Collapse
Affiliation(s)
- Christopher W. Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
27
|
Alliegro MC, Alliegro MA. Localization of rRNA transcribed spacer domains in the nucleolinus and maternal procentrosomes of surf clam (Spisula) oocytes. RNA Biol 2013; 10:391-6. [PMID: 23324608 DOI: 10.4161/rna.23548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nucleolinus is a nuclear subcompartment long ago posited to play a role in cell division. In a recent study using surf clam oocytes, cytoplasmic foci containing a nucleolinar protein were shown to later recruit γ-tubulin, identifying them as centrosomal precursors. (1) We now demonstrate the presence of structural RNAs from the nucleolinus in these procentrosomes. They include the well-known but poorly understood rRNA-transcribed spacer regions. In situ hybridization revealed a specific and dynamic association of these structural RNAs with the cell division apparatus that extends through the early stages of meiosis. In addition to their bearing on the debate over the nature of centrosome- and spindle-associated RNAs, the observations also suggest that rRNA spacer regions are not simply waste products to be discarded immediately, but may be functional byproducts that play a role in formation of the cell division apparatus.
Collapse
Affiliation(s)
- Mark C Alliegro
- Josephine Bay Paul Center; Marine Biological Laboratory; Woods Hole, MA USA
| | | |
Collapse
|
28
|
Rabeling C, Kronauer DJC. Thelytokous parthenogenesis in eusocial Hymenoptera. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:273-292. [PMID: 23072461 DOI: 10.1146/annurev-ento-120811-153710] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Female parthenogenesis, or thelytoky, is particularly common in solitary Hymenoptera. Only more recently has it become clear that many eusocial species also regularly reproduce thelytokously, and here we provide a comprehensive overview. Especially in ants, thelytoky underlies a variety of idiosyncratic life histories with unique evolutionary and ecological consequences. In all eusocial species studied, thelytoky probably has a nuclear genetic basis and the underlying cytological mechanism retains high levels of heterozygosity. This is in striking contrast to many solitary wasps, in which thelytoky is often induced by cytoplasmic bacteria and results in an immediate loss of heterozygosity. These differences are likely related to differences in haplodiploid sex determination mechanisms, which in eusocial species usually require heterozygosity for female development. At the same time, haplodiploidy might account for important preadaptations that can help explain the apparent ease with which Hymenoptera transition between sexual and asexual reproduction.
Collapse
Affiliation(s)
- Christian Rabeling
- Museum of Comparative Zoology Labs, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
29
|
Li XW, Zhang XC, Jiang HX, Feng JN. Comparisons of developmental and reproductive biology between parthenogenetic and sexual Echinothrips americanus (Thysanoptera: Thripidae). ENVIRONMENTAL ENTOMOLOGY 2012; 41:706-713. [PMID: 22732630 DOI: 10.1603/en11325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Echinothrips americanus Morgan, an invasive pest on various ornamentals and greenhouse crops, was introduced into mainland China recently, posing a potential threat to ornamentals and greenhouse crops. It exhibits two different reproductive modes: arrhenotokous parthenogenesis and sexual reproduction. Laboratory studies were conducted to compare the developmental and reproductive biology of E. americanus in these two reproductive modes. Results showed that the oviposition period, and longevity of female adults using sexual reproduction were longer than those using parthenogenesis. Furthermore, sexual female adults had higher fecundity and survival rates. However, no significant differences were found among immature stages in the durations of first and second instars, prepupae, and pupae between the two reproductive modes, with the exception of the duration of the egg stadium. The survival rates for eggs and first and second instars were higher in sexual E. americanus whereas there were no survival differences for prepupae and pupae. These results provide valuable insights into the mechanisms of parthenogenesis and sex determination in Thysanoptera.
Collapse
Affiliation(s)
- Xiao-Wei Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | |
Collapse
|
30
|
Salinas-Saavedra M, Vargas AO. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora. EvoDevo 2011; 2:23. [PMID: 22133482 PMCID: PMC3248832 DOI: 10.1186/2041-9139-2-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytasters (cytoplasmic asters) are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. PRESENTATION OF THE HYPOTHESIS The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. TESTING THE HYPOTHESIS So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of cytasters. IMPLICATIONS OF THE HYPOTHESIS If cytasters are homologous and highly conserved across bilateria, their potential developmental and evolutionary relevance has been underestimated. The deep evolutionary origin of cytasters also becomes a legitimate topic of research. In Ctenophora, polyspermic fertilization occurs, with numerous sperm entering the egg. The centrosomes of sperm pronuclei associate with cytoplasmic components of the egg and reorganize the cortical cytoplasm, defining the oral-aboral axis. These resemblances lead us to suggest the possibility of a polyspermic ancestor in the lineage leading to Bilateria.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| | - Alexander O Vargas
- Laboratory of Ontogeny and Phylogeny, Department of Biology, Faculty of Science, University of Chile. Las Palmeras, Ñuñoa, Casilla 653, Santiago, Chile
| |
Collapse
|
31
|
Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction 2011; 142:779-92. [PMID: 21964827 DOI: 10.1530/rep-11-0255] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies of centrosome biogenesis, microtubule dynamics, and their management point to their role in mediating conditions such as aging and cancer. Centrosome dysfunction is also a hallmark of pathological polyspermy. Polyspermy occurs when the oocyte is penetrated by more than one sperm and can be pathological because an excess of centrosomes compromises development. However, in some taxa, multiple sperm enter the egg with no apparent adverse effect on zygote viability. Thus, some taxa can manage excess centrosomes and represent cases of non-pathological polyspermy. While these two forms of polyspermy have long been known, we argue that there is limited understanding of the proximate and ultimate processes that underlie this taxonomic variation in the outcome of polyspermy and that studying this variation could help uncover the control and role(s) of centrosomes during fertilization in particular, but also mitosis in general. To encourage such studies we: 1) describe taxonomic differences in the outcome of polyspermy, 2) discuss mechanistic aspects of reproductive biology that may contribute to the different consequences of polyspermy, and 3) outline the potential selective events that could lead to the evolution of variation in polyspermy outcomes. We suggest that novel insights into centrosome biology may occur by cooperative studies between reproductive and evolutionary biologists focusing on the mechanisms generating variation in the fitness consequences of polyspermy, and in the taxonomic distribution of all these events. The consequent discoveries of these studies may lead to informative insights into cancer and aging along with other centrosome-related diseases and syndromes.
Collapse
Affiliation(s)
- Rhonda R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
32
|
Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 2011; 194:165-75. [PMID: 21788366 PMCID: PMC3144413 DOI: 10.1083/jcb.201011152] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/29/2011] [Indexed: 12/28/2022] Open
Abstract
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
Collapse
Affiliation(s)
| | - Juliette Azimzadeh
- Department of Biochemistry and Biophysics, UCSF Mission Bay, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
33
|
Peel AD, Averof M. Early asymmetries in maternal transcript distribution associated with a cortical microtubule network and a polar body in the beetle Tribolium castaneum. Dev Dyn 2011; 239:2875-87. [PMID: 20857499 DOI: 10.1002/dvdy.22423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The localization of maternal mRNAs during oogenesis plays a central role in axial specification in some insects. Here we describe a polar body-associated asymmetry in maternal transcript distribution in pre-blastoderm eggs of the beetle Tribolium castaneum. Since the position of the polar body marks the future dorsal side of the embryo, we have investigated whether this asymmetry in mRNA distribution plays a role in dorsal-ventral axis specification. Whilst our results suggest polar body-associated transcripts do not play a significant role in specifying the DV axis, at least during early embryogenesis, we do find that the polar body is closely associated with a cortical microtubule network (CMN), which may play a role in the localization of transcripts during oogenesis. Transcripts of the gene T.c.pangolin co-localize with the CMN at the time of their anterior localization during oogenesis and their anterior localization is disrupted by the microtubule-depolymerizing agent colcemid.
Collapse
Affiliation(s)
- Andrew D Peel
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece.
| | | |
Collapse
|
34
|
Lehmann GU, Siozios S, Bourtzis K, Reinhold K, Lehmann AW. Thelytokous parthenogenesis and the heterogeneous decay of mating behaviours in a bushcricket (Orthopterida). J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2010.00588.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Lynch JA, Desplan C. Novel modes of localization and function of nanos in the wasp Nasonia. Development 2010; 137:3813-21. [PMID: 20929949 DOI: 10.1242/dev.054213] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
36
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
37
|
Debec A, Sullivan W, Bettencourt-Dias M. Centrioles: active players or passengers during mitosis? Cell Mol Life Sci 2010; 67:2173-94. [PMID: 20300952 PMCID: PMC2883084 DOI: 10.1007/s00018-010-0323-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/31/2022]
Abstract
Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as "the organ for cell division". However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues.
Collapse
Affiliation(s)
- Alain Debec
- Polarity and Morphogenesis Group, Jacques Monod Institute, University Paris Diderot, UPMC Univ Paris 6, Bâtiment Buffon, 15 rue Hélène Brion, 75205, Paris Cedex 13, France.
| | | | | |
Collapse
|
38
|
The insect centriole: A land of discovery. Tissue Cell 2010; 42:69-80. [DOI: 10.1016/j.tice.2010.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 12/26/2022]
|
39
|
Mateo Leach I, Hesseling A, Huibers WHC, Witsenboer H, Beukeboom LW, van de Zande L. Transcriptome and proteome analysis of ovaries of arrhenotokous and thelytokous Venturia canescens. INSECT MOLECULAR BIOLOGY 2009; 18:477-482. [PMID: 19453764 DOI: 10.1111/j.1365-2583.2009.00890.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Under arrhenotoky, unfertilized haploid eggs develop as males but under thelytoky they develop into diploid females after they have undergone diploidy restoration. In the parasitoid wasp Venturia canescens both reproductive modes occur. Thelytoky is genetically determined but the underlying genetics of diploidy restoration remain unknown. In this study we aim to identify the genes and/or proteins that control thelytoky. cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of total ovarian RNA and two-dimensional protein electrophoresis in combination with mass spectrometry revealed putative transcripts and proteins involved in arrhenotokous and thelytokous development. The detected tubulin and actin protein differences are most likely functionally related to the two types of reproduction.
Collapse
Affiliation(s)
- I Mateo Leach
- Evolutionary Genetics, Center for Ecological and Evolutionary Studies, University of Groningen, NL-9750 AA Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Oliveira DCSG, Werren JH, Verhulst EC, Giebel JD, Kamping A, Beukeboom LW, van de Zande L. Identification and characterization of the doublesex gene of Nasonia. INSECT MOLECULAR BIOLOGY 2009; 18:315-24. [PMID: 19523063 PMCID: PMC2872477 DOI: 10.1111/j.1365-2583.2009.00874.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The doublesex (dsx) gene of the parasitic wasp Nasonia vitripennis is described and characterized. Differential splicing of dsx transcripts has been shown to induce somatic sexual differentiation in Diptera and Lepidoptera, but not yet in other insect orders. Two spliceforms of Nasonia dsx mRNA are differentially expressed in males and females. In addition, in a gynandromorphic line that produces haploids (normally males) with full female phenotypes, these individuals show the female spliceform, providing the first demonstration of a direct association of dsx with somatic sex differentiation in Hymenoptera. Finally, the DNA binding (DM) domain of Nasonia dsx clusters phylogenetically with dsx from other insects, and Nasonia dsx shows microsynteny with dsx of Apis, further supporting identification of the dsx orthologue in Nasonia.
Collapse
|
41
|
Schurko AM, Logsdon JM, Eads BD. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol 2009; 9:78. [PMID: 19383157 PMCID: PMC2680839 DOI: 10.1186/1471-2148-9-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 04/21/2009] [Indexed: 11/21/2022] Open
Abstract
Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.
Collapse
Affiliation(s)
- Andrew M Schurko
- Roy J Carver Center for Comparative Genomics and Department of Biology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
42
|
Ferree PM, Avery A, Azpurua J, Wilkes T, Werren JH. A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Curr Biol 2008; 18:1409-14. [PMID: 18804376 DOI: 10.1016/j.cub.2008.07.093] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Male killing is caused by diverse microbial taxa in a wide range of arthropods. This phenomenon poses important challenges to understanding the dynamics of sex ratios and host-pathogen interactions. However, the mechanisms of male killing are largely unknown. Evidence from one case in Drosophila suggests that bacteria can target components of the male-specific sex-determination pathway. Here, we investigated male killing by the bacterium Arsenophonus nasoniae in the haplo-diploid wasp Nasonia vitripennis, in which females develop as diploids from fertilized eggs and males develop parthenogenetically as haploids from unfertilized eggs. We found that Arsenophonus inhibits the formation of maternal centrosomes, organelles required specifically for early male embryonic development, resulting in unorganized mitotic spindles and developmental arrest well before the establishment of somatic sexual identity. Consistent with these results, rescue of Arsenophonus-induced male lethality was achieved by fertilization with sperm bearing the supernumerary chromosome paternal sex ratio (PSR), which destroys the paternal genome but bypasses the need for maternal centrosomes by allowing transmission of the sperm-derived centrosome into the egg. These findings reveal a novel mechanism of male killing in Nasonia, demonstrating that bacteria have evolved different mechanisms for inducing male killing in the Arthropods.
Collapse
Affiliation(s)
- Patrick M Ferree
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
43
|
Matsuda Y, Sahara K, Yasukochi Y, Yamashiki N. Detection of gamma-tubulin in spermatogonial cells of Bombyx mori (Lepidoptera) and Chortophaga viridifasciata (Orthoptera). Zoolog Sci 2008; 24:781-6. [PMID: 18217484 DOI: 10.2108/zsj.24.781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We detected a putative gamma-tubulin gene in silico and detected BACs containing the gene from a Bombyx mori BAC library. BAC-FISH mapping revealed that the gene is located on chromosome 5. To observe the distribution of gamma-tubulin, we employed antibodies against mammalian gamma-tubulin peptides. Western blot analysis disclosed a band very similar in size to gamma-tubulin protein in other species (approximately 48 kDa). In mitotic metaphase of B. mori spermatogonial cells, gamma-tubulin is exclusively localized in the spindle poles, where the centrosomes occur. We applied the same system to the grasshopper Chortophaga viridifasciata, as a representative of insect orders in which the gamma-tubulin distribution had not previously been studied. Gamma-tubulin was also found in the spindle poles during metaphase of spermatogonial cells in the grasshopper.
Collapse
Affiliation(s)
- Yumi Matsuda
- Laboratory of Developmental Biology, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
The wasp Nasonia vitripennis is emerging as a useful model organism in which to address a variety of biological questions, due, in part, to its ease of laboratory use, unique aspects of its biology and the sequencing of its genome. In order to take full advantage of the potential of this organism, methods for manipulating gene function are needed. To this end, a protocol for parental RNA interference (pRNAi) in N. vitripennis is described. pRNAi entails injecting pupae with double-stranded RNA, allowing the injected wasps to eclose and examining the progeny for developmental defects. This basic protocol is described in the context of the life cycle of N. vitripennis. This technique has been useful in elucidating the function of most, although not all, genes tested to date, and has potential applications beyond embryonic patterning. pRNAi experiments in Nasonia can be completed in as little as 2 weeks.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Department of Biology, New York University, 100 Washington Square East, New York, New York 10003, USA
| | | |
Collapse
|
45
|
Peel N, Stevens NR, Basto R, Raff JW. Overexpressing centriole-replication proteins in vivo induces centriole overduplication and de novo formation. Curr Biol 2007; 17:834-43. [PMID: 17475495 PMCID: PMC1885955 DOI: 10.1016/j.cub.2007.04.036] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/13/2007] [Accepted: 04/18/2007] [Indexed: 01/11/2023]
Abstract
Background Centrosomes have important roles in many aspects of cell organization, and aberrations in their number and function are associated with various diseases, including cancer. Centrosomes consist of a pair of centrioles surrounded by a pericentriolar matrix (PCM), and their replication is tightly regulated. Here, we investigate the effects of overexpressing the three proteins known to be required for centriole replication in Drosophila—DSas-6, DSas-4, and Sak. Results By directly observing centriole replication in living Drosophila embryos, we show that the overexpression of GFP-DSas-6 can drive extra rounds of centriole replication within a single cell cycle. Extra centriole-like structures also accumulate in brain cells that overexpress either GFP-DSas-6 or GFP-Sak, but not DSas-4-GFP. No extra centrioles accumulate in spermatocytes that overexpress any of these three proteins. Most remarkably, the overexpression of any one of these three proteins results in the rapid de novo formation of many hundreds of centriole-like structures in unfertilized eggs, which normally do not contain centrioles. Conclusions Our data suggest that the levels of centriolar DSas-6 determine the number of daughter centrioles formed during centriole replication. Overexpression of either DSas-6 or Sak can induce the formation of extra centrioles in some tissues but not others, suggesting that centriole replication is regulated differently in different tissues. The finding that the overexpression of DSas-4, DSas-6, or Sak can rapidly induce the de novo formation of centriole-like structures in Drosophila eggs suggests that this process results from the stabilization of centriole-precursors that are normally present in the egg.
Collapse
Affiliation(s)
- Nina Peel
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Naomi R. Stevens
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Renata Basto
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Jordan W. Raff
- The Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Corresponding author
| |
Collapse
|
46
|
Beukeboom LW, Kamping A, van de Zande L. Sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea): a critical consideration of models and evidence. Semin Cell Dev Biol 2007; 18:371-8. [PMID: 17292644 DOI: 10.1016/j.semcdb.2006.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 12/01/2022]
Abstract
Sex determining mechanisms are highly diverse. Like all Hymenoptera, the parasitic wasp Nasonia vitripennis reproduces by haplodiploidy: males are haploid and females are diploid. Sex in Nasonia is not determined by complementary alleles at sex loci. Evidence for several alternative models is considered. Recent studies on a polyploid and a gynandromorphic mutant strain point to a maternal product that is balanced against the number of chromosomal complements in the zygote and a parent-specific (imprinting) effect. Research is now focused on the molecular details of sex determination in Nasonia.
Collapse
Affiliation(s)
- Leo W Beukeboom
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, Biological Centre, University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|